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A Experiments with Mismatched R

In Table 1, we show the results for mismatched R, where the actual number of rounds at deployment
turns out to be smaller than expected during preparation. Specifically, the model is meta-trained
targeting R = 3, but actual test accuracies are evaluated after R = 2 global rounds in the deployment
stage. We randomly sample τ = 5 classes from 20 test classes that have not been seen during
preparation and distribute across K = 10 clients at deployment. Since we utilize only R = 2 global
rounds, accuracies are generally lower than the results in the main manuscript with R = 3. However,
the trend is consistent with the results in the main manuscript, confirming the advantages of our
algorithm even in the mismatch setup.

Table 1: Mismatch scenario: The model is meta-trained targeting R = 3, but tested after R = 2 global rounds at
deployment.

CIFAR-100 miniImageNet

Methods IID Non-IID IID Non-IID

FedAvg 44.41 ± 0.39% 30.61 ± 0.25% 37.31 ± 0.29% 25.70 ± 0.20%
Fine-tuning via FedAvg 59.83 ± 0.40% 41.38 ± 0.37% 57.40 ± 0.59% 33.56 ± 0.40%
Fine-tuning via one-shot FL 60.53 ± 0.39% 33.62 ± 0.41% 60.25 ± 0.53% 27.36 ± 0.37%
FRL: Linear classifier (Ours) 65.83 ± 0.38% 53.17 ± 0.40% 66.06 ± 0.36% 51.32 ± 0.46%
FRL: Distance-based classifier (Ours) 69.55 ± 0.31% 63.99 ± 0.39% 67.95 ± 0.33% 60.56 ± 0.41%
FRL: Distance-based classifier + GPAL (Ours) 72.65 ± 0.32% 66.07 ± 0.42% 69.22 ± 0.32% 63.26 ± 0.41%

Personalized FL: Linear classifier 60.41 ± 0.32% 50.83 ± 0.42% 61.17 ± 0.36% 51.53 ± 0.45%
Personalized FL: Distance-based classifier 61.05 ± 0.34% 57.39 ± 0.37% 67.02 ± 0.35% 54.96 ± 0.39%

B Experiments with a Larger Group Size

To demonstrate the scalability of the proposed method, we performed additional experiments with
K = 50 participants; we construct each episode with K = 50 participants in the preparation stage, and
averaged the performance of 1000 groups each having K = 50 clients. Other setups are exactly the
same in the main manuscript. Table 2 shows the results in a 5-way setup at deployment, indicating
that our scheme still outperforms other baselines in a larger scale federated learning system.
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Table 2: Experiments with group size K = 50: Meta-trained targeting R = 3 in the preparation stage, and tested
after R = 3 global rounds in the deployment stage.

CIFAR-100

Methods IID Non-IID

FedAvg 27.54 ± 0.25% 23.47 ± 0.16%
Fine-tuning via FedAvg 52.16 ± 0.42% 49.67 ± 0.33%
Fine-tuning via one-shot FL 52.22 ± 0.40% 28.47 ± 0.36%
FRL: Linear classifier (Ours) 61.18 ± 0.40% 53.17 ± 0.36%
FRL: Distance-based classifier (Ours) 69.52 ± 0.32% 69.13 ± 0.33%
FRL: Distance-based classifier + GPAL (Ours) 72.19 ± 0.22% 70.11 ± 0.32%

Personalized FL: Linear classifier 60.81 ± 0.41% 53.01 ± 0.34%
Personalized FL: Distance-based classifier 63.79 ± 0.35% 62.93 ± 0.33%

C Experiments in a 10-way Setup (τ = 10)

In the deployment stage of Table 3, we randomly sampled τ = 10 classes (instead of 5 classes)
from 20 test classes that have not been seen during preparation and distribute across K = 10 clients.
The accuracies are lower than the 5-way setup, which is natural given the more complicated task,
but the trend is still consistent with the previous results, confirming significant advantages of our
meta-trained initialization.

Table 3: Experiments in a 10-way setup in the deployment stage: Meta-trained targeting R = 3 , and tested after
R = 3 global rounds at deployment.

CIFAR-100 miniImageNet

Methods Non-IID Non-IID

FedAvg 12.45 ± 0.11% 12.85 ± 0.07%
Fine-tuning via FedAvg 29.87 ± 0.21% 21.29 ± 0.17%
Fine-tuning via one-shot FL 23.62 ± 0.19% 16.94 ± 0.21%
FRL: Linear classifier (Ours) 30.77 ± 0.21% 33.49 ± 0.24%
FRL: Distance-based classifier (Ours) 43.93 ± 0.25% 35.02 ± 0.20%
FRL: Distance-based classifier + GPAL (Ours) 46.31 ± 0.28% 38.17± 0.21%

Personalized FL: Linear classifier 34.32 ± 0.28% 27.46 ± 0.65%
Personalized FL: Distance-based classifier 43.54 ± 0.21% 35.19 ± 0.21%

D Experiments with Target R = 5

While the results shown in the main manuscript utilized the model targeting R = 3, in Table 4 we
show the results with target R = 5, in the 5-way setup at deployment. The model is meta-trained
targeting R = 5 in the preparation stage and the accuracies are evaluated after R = 5 global rounds at
deployment. Overall results show that our few-round learning algorithm outperforms other baselines
in this R = 5 as well, especially with non-IID data distributions.

Table 4: Experiments with target R = 5: Meta-trained targeting R = 5 in the preparation stage, and tested after
R = 5 global rounds in the deployment stage.

CIFAR-100 miniImageNet

Methods IID Non-IID IID Non-IID

FedAvg 54.71 ± 0.41% 40.11 ± 0.33% 44.26 ± 0.33% 35.23 ± 0.28%
Fine-tuning via FedAvg 65.97 ± 0.37% 46.75 ± 0.35% 64.32 ± 0.45 % 37.18 ± 0.41%
Fine-tuning via one-shot FL 67.66 ± 0.34% 39.45 ± 0.49% 66.39 ± 0.37% 29.15 ± 0.44%
FRL: Linear classifier (Ours) 71.45 ± 0.32% 55.87 ± 0.41% 67.78 ± 0.35% 54.85 ± 0.43%
FRL: Distance-based classifier (Ours) 69.98 ± 0.31% 63.74 ± 0.39% 67.48 ± 0.35% 60.24 ± 0.42%
FRL: Distance-based classifier + GPAL (Ours) 72.83 ± 0.32% 66.34 ± 0.41% 70.41 ± 0.32% 63.61 ± 0.41%
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Table 5: Comparison with personalized FL: Performance with only unseen classes at deployment in an IID
setup.

Methods CIFAR-100 miniImageNet FEMNIST

FedAvg 51.55 ± 0.38% 38.80 ± 0.26% 74.76 ± 0.35%
Fine-tuning via FedAvg 63.18 ± 0.41% 61.58 ± 0.47% 91.95 ± 0.28%
Fine-tuning via one-shot FL [3] 64.71 ± 0.37% 65.23 ± 0.43% 93.62 ± 0.26%
FRL: Linear classifier (Ours) 67.32 ± 0.37% 67.75 ± 0.35% 94.86 ± 0.13%
FRL: Distance-based classifier (Ours) 69.74 ± 0.31% 68.05 ± 0.34% 95.07 ± 0.10%
FRL: Distance-based classifier + GPAL (Ours) 72.93 ± 0.32% 69.31 ± 0.33% 96.61 ± 0.09%

Personalized FL: Linear classifier [2] 60.87 ± 0.31% 61.88 ± 0.32% 93.19 ± 0.12%
Personalized FL: Distance-based classifier 61.88 ± 0.32% 67.61 ± 0.31% 94.11 ± 0.12%

Table 6: Comparison with personalized FL: Performance with only unseen classes at deployment in a non-IID
setup.

Methods CIFAR-100 miniImageNet FEMNIST

FedAvg 34.85 ± 0.27% 29.74 ± 0.22% 59.22 ± 0.18%
Fine-tuning via FedAvg 44.33 ± 0.37% 33.39 ± 0.41% 58.23 ± 0.65%
Fine-tuning via one-shot FL [3] 35.11 ± 0.46% 27.16 ± 0.42% 57.88 ± 0.67%
FRL: Linear classifier (Ours) 52.98 ± 0.42% 53.51 ± 0.43% 85.14 ± 0.44%
FRL: Distance-based classifier (Ours) 63.85 ± 0.43% 61.07 ± 0.41% 88.60 ± 0.42%
FRL: Distance-based classifier + GPAL (Ours) 66.87 ± 0.40% 63.41 ± 0.39% 92.42 ± 0.32%

Personalized FL: Linear classifier [2] 51.54 ± 0.38% 52.42 ± 0.42% 80.59 ± 0.51%
Personalized FL: Distance-based classifier 58.11 ± 0.39% 55.83 ± 0.35% 88.07 ± 0.37%

E Comparison with Personalized FL Scheme

We note that our formulation targets creating a global model while the previous works on federated
meta-learning [5, 1] aim at personalized local models. Given these different goals, in a non-IID setup,
our method can generally handle broader classes of data than existing personalization approaches.
There exists a possibility, however, that locally optimized models can be used to generate a single
global model, in case a need arises afterwards. This is done simply by repeating the local updates and
aggregations for R FL rounds starting from the initialized model geared to client personalization,
using given local data. While direct comparison of our scheme with personalized FL is not possible
as the goals are different, we were curious about how this “forced” globalization would fare. Tables
5 and 6 show the results, where the setup is the same as in Tables 1 and 2 in the main manuscript.
Interestingly, the personalization scheme is comparable to the best fine-tuning methods but lags well
behind our methods. This latter observation is expected given the different design objectives. Table 7
also indicates that our proposed method outperforms personalization scheme with both unseen/seen
classes at deployment.

F Performance without Using First-Order Approximation

Our meta-update process is based the first-order approximation in computing the model gradient with
respect to the initial model. Recall that this choice was made as computing the double derivative
terms would have required extra communication bandwidth as well increased computational load.
Nevertheless, we were curious about the performance gap between the schemes with and without
the first-order approximation. Tables 8 and 9 show the results in a non-IID setup with CIFAR-100
and miniImageNet, respectively. The number of FL rounds R is set to 3 in both meta-training and
actual deployment. The number of participating clients is set to 10. However, since calculating and

Table 7: Comparison with personalized FL: Performance with both unseen/seen classes at deployment.
CIFAR-100 miniImageNet

Methods IID Non-IID IID Non-IID

FedAvg 50.03 ± 0.42% 34.82 ± 0.31% 42.17 ± 0.36% 30.37 ± 0.26%
Fine-tuning via FedAvg 66.73 ± 0.36% 44.46 ± 0.36% 63.82 ± 0.49% 36.18 ± 0.42%
Fine-tuning via one-shot FL [3] 69.84 ± 0.39% 35.33 ± 0.46% 67.05 ± 0.44% 29.12 ± 0.43%
FRL: Linear classifier (Ours) 68.22 ± 0.38% 53.62 ± 0.45% 69.02 ± 0.39% 55.18 ± 0.46%
FRL: Distance-based classifier (Ours) 70.49 ± 0.36% 65.13 ± 0.43% 70.39 ± 0.38% 62.42 ± 0.43%
FRL: Distance-based classifier + GPAL (Ours) 73.68 ± 0.37% 67.31 ± 0.44% 71.81 ± 0.34% 65.33 ± 0.42%

Personalized FL: Linear classifier [2] 65.09 ± 0.32% 52.08 ± 0.44% 62.05 ± 0.38% 53.53 ± 0.49%
Personalized FL: Distance-based classifier 68.70 ± 0.34% 57.62 ± 0.41% 63.63 ± 0.35% 58.08 ± 0.41%
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storing Jacobian matrices consume a very large memory, the number of data samples in each episode
is downsized during the meta-training stage. Specifically, we decrease the number of data in each
episode from 6000 to 1200 in CIFAR-100, so that each user holds only 120 images. Similarly, in
miniImageNet, the number of data in each episode is decreased to 320 considering the size of images.
Now that each client possesses less data, we decreased the batch size to 60 for CIFAR-100 and 16 for
miniImageNet, respectively. In the deployment stage, we do not reduce data since double derivatives
are not used there. We also let τ = 5 at deployment. It can be seen that the performances do improve
by considering the double derivatives from other users. We stress, however, that our scheme with
only fist-order derivatives still outperforms other baselines, as shown throughout the main manuscript
and Supplementary Material.

Table 8: CIFAR-100: Performance of FRL with and without first-order approximation.
FRL with first-order approximation FRL without first-order approximation

FRL: Linear classifier (Ours) 36.17 ± 0.37% 38.03 ± 0.33%
FRL: Distance-based classifier (Ours) 58.12 ± 0.40% 61.89 ± 0.41%
FRL: Distance-based classifier + GPAL (Ours) 60.16 ± 0.38% 62.18 ± 0.41%

Table 9: miniImageNet: Performance of FRL with and without first-order approximation.
FRL with first-order approximation FRL without first-order approximation

FRL: Linear classifier (Ours) 39.45 ± 0.31% 42.06 ± 0.33%
FRL: Distance-based classifier (Ours) 54.78 ± 0.37% 56.82 ± 0.42%
FRL: Distance-based classifier + GPAL (Ours) 56.41 ± 0.38% 58.85 ± 0.41%

G Proof of Lemmas

G.1 Proof of Lemma 1

For simplicity, θr(φ1) =∶ θr1 and θr(φ2) =∶ θr2 for r = 0, . . . ,R. Note that θ01 = φ1 and θ02 = φ2. By
using first-order approximation, we can write

∥∇φ1Fk (φ1) −∇φ2Fk (φ2)∥ (1)

= ∥∇θR1 fk (θ
R
1 ) −∇θR2 fk (θ

R
2 )∥ (2)

≤ L ∥θR1 − θR2 ∥ (3)

= L
XXXXXXXXXXX

1

K
∑
k∈At

(θR−11 − α∇θR−11
fk (θR−11 )) − 1

K
∑
k∈At

(θR−12 − α∇θR−12
fk (θR−12 ))

XXXXXXXXXXX
(4)

≤ L 1

K
∑
k∈At

∥θR−11 − θR−12 − (α∇θR−11
fk (θR−11 ) − α∇θR−12

fk (θR−12 ))∥ (5)

≤ L 1

K
∑
k∈At

(∥θR−11 − θR−12 ∥ + α ∥∇θR−11
fk (θR−11 ) −∇θR−12

fk (θR−12 )∥) (6)

≤ L(1 + αL) ∥θR−11 − θR−12 ∥ (7)

≤ L(1 + αL) 1

K
∑
k∈At

(∥θR−21 − θR−22 ∥ + α ∥∇θR−21
fk (θR−21 ) −∇θR−22

fk (θR−22 )∥) (8)

⋮ (9)

≤ L(1 + αL)R ∥φ1 − φ2∥ (10)

≤ L2R ∥φ1 − φ2∥ (11)
= LF ∥φ1 − φ2∥ (12)

Hence, Fk(φ) is LF -smooth where
LF = L2R. (13)

Now from

∇F (φ) = EAt∼p(A)

⎡⎢⎢⎢⎣

1

K
∑
k∈At

∇Fk(φ)
⎤⎥⎥⎥⎦
, (14)
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we have

∥∇F (φ1) −∇F (φ2)∥ ≤ ∑
At∈A

p(At)
XXXXXXXXXXX

1

K
∑
k∈At

(∇Fk(φ1) − Fk(φ2))
XXXXXXXXXXX

(15)

≤ ∑
At∈A

p(At)
⎛
⎝

1

K
∑
k∈At

∥∇Fk(φ1) − Fk(φ2)∥
⎞
⎠

(16)

≤ ∑
At∈A

p(At)
⎛
⎝

1

K
∑
k∈At

LF ∥φ1 − φ2∥
⎞
⎠

(17)

= LF ∥φ1 − φ2∥ . (18)

Hence, F (φ) is also LF -smooth, which completes the proof.

G.2 Proof of Lemma 2

Note that

∇F (φ) = EA∼p(A) [
1

K
∑
k∈A

∇Fk(φ)] (19)

= ∑
A∈A

1

∣A∣
( 1

K
∑
k∈A

∇Fk(φ)) . (20)

By letting σ2 = 1
N ∑

N
k=1 ∥bk − 1

N ∑
N
k=1 bk∥

2
, we can write

1

∣A∣ ∑A∈A
∥( 1

K
∑
k∈A

∇Fk(φ)) −∇F (φ)∥
2

(21)

≤ 1

∣A∣ ∑A∈A
∥( 1

K
∑
k∈A

∇Fk(φ)) −
1

∣A∣ ∑A∈A
( 1

K
∑
k∈A

∇Fk(φ))∥
2

(22)

≤
(a)

1

∣A∣ ∑A∈A
∥( 1

K
∑
k∈A

∇θRfk(θR)) −
1

∣A∣ ∑A∈A
( 1

K
∑
k∈A

∇θRfk(θR))∥
2

(23)

≤
(b)

1

∣A∣ ∑A∈A
∥( 1

K
∑
k∈A

bk) −
1

∣A∣ ∑A∈A
( 1

K
∑
k∈
bk)∥

2

(24)

≤
(c)

1

∣A∣ ∑A∈A
∥( 1

K
∑
k∈A

bk) −
1

N

N

∑
k=1

bk∥
2

(25)

=
(d)

σ2(1 − K
N
)

K
N
(N − 1)

(26)

≤
(e)

Vp(1 − K
N
)

K
N
(N − 1)

(27)

≤
Vp

K
(28)

where (a) comes from first-order approximation, (b) comes by setting bk = ∇φfk(φ), (c) is trivial.

Note that (d) comes from the fact that EA [∥ 1
K ∑k∈A bk − µ∥] ≤

σ2(1−K
N )

K
N (N−1) with µ = 1

N ∑
N
k=1 bk and

σ2 = 1
N ∑

N
k=1 ∥bk − µ∥

2 [4]. See proof of Lemma 5 in [4] for the details. Finally, (e) comes from
Assumption 3.

H Proof of Theorem 1

Step 1: Formulation
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Since F (φ) is LF smooth by Lemma 1, we have

F (φt+1) ≤ F (φt) +∇F (φt)T (φt+1 − φt) + LF
2

∣∣φt+1 − φt∣∣2 (29)

≤ F (φt) − β∇F (φt)T ( 1

K
∑
k∈At

∇̃Fk(φt)) +
LF
2
β2∣∣ 1

K
∑
k∈At

∇̃Fk(φt)∣∣2 (30)

where the last inequality holds since

φt+1 = 1

K
∑
k∈At

(φt − β∇̃Fk(φt)) (31)

= φt − β 1

K
∑
k∈At

∇̃Fk(φt) (32)

By taking the expectation at (30), we have

E[F (φt+1)] ≤ E[F (φt)] − βE[∇F (φt)T ( 1

K
∑
k∈At

∇̃Fk(φt))] +
LF
2
β2E[∣∣ 1

K
∑
k∈At

∇̃Fk(φt)∣∣2].

(33)

Step 2: Bounding E[∇F (φt)T ( 1
K ∑k∈At

∇̃Fk(φt))]

By defining X as

X = 1

K
∑
k∈At

(∇̃Fk(φt) −∇Fk(φt)), (34)

we can write

E[∇F (φt)T ( 1

K
∑
k∈At

∇̃Fk(φt))] = E[∇F (φt)T (X + 1

K
∑
k∈At

∇Fk(φt))] (35)

≥ E[∇F (φt)T ( 1

K
∑
k∈At

∇Fk(φt))]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Z1

− ∣∣E[∇F (φt)TX]∣∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Z2

(36)

By the definition of our global loss function F (φ) and the law of total expectation, we have

Z1 = E[∣∣∇F (φt)∣∣2]. (37)

Now we consider Z2. Recall that

∇Fk(φ) = ∇θRfk (θR) (38)

using first-order approximation. We define the stochastic gradient ∇̃Fk(φ) as follows

∇̃Fk(φ) = ∇̃θRfk (θR, D̃k) . (39)

Since ∇̃θRfk (θR, D̃k) is an unbiased estimator of ∇θRfk (θR),

∥E[∇̃Fk(φ) −∇Fk(φ)]∥ = 0. (40)

Moreover, since E[UTV ] ≤ 1
4
E[∥U∥2] +E[∥V ∥2] holds for any vectors U and V , we can write

Z2 = ∥E[∇F (φt)TX]∥ (41)

= ∥E [E [∇F (φt)TX ∣Ω]]∥ (42)

= ∥E [∇F (φt)TE [X ∣Ω]]∥ (43)

≤ 1

4
E[∣∣∇F (φt)∣∣2] +E [∥E [X ∣Ω]∥2] (44)

= 1

4
E[∣∣∇F (φt)∣∣2]. (45)
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where the last equality holds from (40).

By inserting (37) and (45) to (36), we obtain

E[∇F (φt)T ( 1

K
∑
k∈At

∇̃Fk(φt))] ≥
3

4
E[∣∣∇F (φt)∣∣2]. (46)

Step 3: Bounding E[∣∣ 1
K ∑k∈At

∇̃Fk(φt)∣∣2]

Since 1
K ∑k∈At

∇̃Fk(φt) = 1
K ∑k∈At

∇Fk(φt) −X, we can write

∣∣ 1

K
∑
k∈At

∇̃Fk(φt)∣∣2 ≤ 2∣∣ 1

K
∑
k∈At

∇Fk(φt)∣∣2 + 2∣∣X ∣∣2 (47)

= 2∣∣ 1

K
∑
k∈At

∇Fk(φt)∣∣2 + 2∣∣ 1

K
∑
k∈At

(∇̃Fk(φt) −∇Fk(φt))∣∣2 (48)

≤ 2∣∣ 1

K
∑
k∈At

∇Fk(φt)∣∣2 + 2
1

K
∑
k∈At

∣∣∇̃Fk(φt) −∇Fk(φt)∣∣2 (49)

where the first inequality comes from the fact that ∥A∥2 ≤ 2∥B∥2 + 2∥C∥2 for A = B +C, and the
last inequality comes from the Cauchy-Schwarz inequality. Now taking expectation at both sides, we
have

E[∣∣ 1

K
∑
k∈At

∇̃Fk(φt)∣∣2] ≤ 2E[∣∣ 1

K
∑
k∈At

∇Fk(φt)∣∣2] + 2
1

K
∑
k∈At

E[∣∣∇̃Fk(φt) −∇Fk(φt)∣∣2] (50)

=
(a)

2E[∣∣ 1

K
∑
k∈At

∇Fk(φt)∣∣2] + 2
1

K
∑
k∈At

E [∥∇̃θRfk (θR, D̃k) −∇θRfk (θR)∥
2
]

(51)

≤
(b)

2E[∣∣ 1

K
∑
k∈At

∇Fk(φt)∣∣2] +
2Vd
∣D∣

(52)

=
(c)

2E[∣∣∇FAt(φt)∣∣2] +
2Vd
∣D∣

(53)

=
(d)

2E[∣∣∇F (φt)∣∣2] +
2Vp

K
+ 2Vd

∣D∣
(54)

where (a) comes from the first-order approximation, (b) comes from Assumption 2, (c) comes from
the definition, (d) comes from Lemma 2.

Step 4: Inserting the results of Steps 2 and 3

Now by inserting (46) and (54) to (33), we obtain

E[F (φt+1)] ≤ E[F (φt)] − β(3

4
− βLF )E[∣∣∇F (φt)∣∣2] + β2LF ( Vd

∣D∣
+
Vp

K
) (55)

≤ E[F (φt)] − β
4
E[∣∣∇F (φt)∣∣2] + β2LF ( Vd

∣D∣
+
Vp

K
) (56)

where the last inequality comes by setting βLF ≤ 1
2

.

Step 5: Final stage

Summing up for all episodes t = 0,1, ...T − 1, we have

E[F (φT )] ≤ E[F (φ0)] − βT
4

( 1

T

T−1
∑
t=0

E[∣∣∇F (φt)∣∣2]) + Tβ2LF ( Vd
∣D∣

+
Vp

K
) . (57)

Finally from F (φ∗) ≤ E[F (φT )], we can write

1

T

T−1
∑
t=0

E[∣∣∇F (φt)∣∣2] ≤ 4(F (φ0) − F (φ∗))
βT

+ 4βLF ( Vd
∣D∣

+
Vp

K
) (58)

= 4(F (φ0) − F (φ∗))
βT

+ βL2R+2 ( Vd
∣D∣

+
Vp

K
) (59)
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which completes the proof.

I Discussion on the Convergence Bound

Let us focus on ε in (59)

ε(β,R, ∣D∣,K) = βL2R+2 ( Vd
∣D∣

+
Vp

K
) . (60)

For a given smoothness L, assumed loss gradient variance bounds (Vd, Vp) and a targeted number
of FL rounds R, ε is controlled by the meta-update learning rate β, the mini-batch size ∣D∣ and the
per-episode number of participants K. Note that if Vp = 0, i.e., no variations in the loss gradients of
different participants, then we have ε = O(1)βLF Vd

∣D∣ for LF = L2R. This is equal to the bound on
stochastic gradient descent for a nonconvex function that is LF -smooth, and we can make ε close
to zero by controlling β and/or ∣D∣. For example, let us say L is in the range 1 ∼ 10 and 2R in the
range of 8 to 1024, which are reasonable. It is easy to imagine the minibatch size ∣D∣ to be large
enough compared to L2R. Now, with a typical value of β like 0.001, we can see that ε would be a
tiny fraction of Vd.

Now consider the case with Vp > 0. Setting ∣D∣ large enough would make Vd

∣D∣ small, in which case,

ε would be dominated by βL2R+2
Vp

K
. Given some R, let us say that the group size K is chosen

to be larger or comparable to L2R+2, which reflects reasonable practical scenarios. Finally, given
the typically very small values of the learning rate β, it is easy to imagine ε settling to a very small
fraction of Vp.
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