
Published as a conference paper at ICLR 2024

FROM ZERO TO TURBULENCE:
GENERATIVE MODELING FOR 3D FLOW SIMULATION

Marten Lienen, David Lüdke, Jan Hansen-Palmus, Stephan Günnemann
Department of Informatics & Munich Data Science Institute
Technical University of Munich, Germany
{m.lienen,d.luedke,j.hansen-palmus,s.guennemann}@tum.de

ABSTRACT

Simulations of turbulent flows in 3D are one of the most expensive simulations in
computational fluid dynamics (CFD). Many works have been written on surrogate
models to replace numerical solvers for fluid flows with faster, learned, autoregres-
sive models. However, the intricacies of turbulence in three dimensions necessitate
training these models with very small time steps, while generating realistic flow
states requires either long roll-outs with many steps and significant error accumula-
tion or starting from a known, realistic flow state—something we aimed to avoid in
the first place. Instead, we propose to approach turbulent flow simulation as a gener-
ative task directly learning the manifold of all possible turbulent flow states without
relying on any initial flow state. For our experiments, we introduce a challenging
3D turbulence dataset of high-resolution flows and detailed vortex structures caused
by various objects and derive two novel sample evaluation metrics for turbulent
flows. On this dataset, we show that our generative model captures the distribution
of turbulent flows caused by unseen objects and generates high-quality, realistic
samples amenable for downstream applications without access to any initial state.

1 INTRODUCTION

CFD is an integral component of engineering today, and significant computing resources are spent on
it every day at scales small and large. Engineers simulate fluid flows to maximize the throughput
in chemical plants, optimize the energy yield of wind turbines, or improve the efficiency of aircraft
engines (Reguly et al., 2016). The widespread use of these simulations makes their acceleration with
machine learning highly impactful (Raissi et al., 2019; Rackauckas et al., 2021; Kochkov et al., 2021;
Li et al., 2021).

A CFD simulation consists of a discretized geometry represented as a grid or mesh, boundary
conditions that specify, for example, the position and behavior of walls and inlets, and initial
conditions that provide a known state of the flow. Since the turbulent flow’s behavior is unknown,
these initial conditions are usually specified as constants or smooth approximations of the expected
flow. To produce realistic turbulent states, a numerical solver solves the Navier-Stokes equation

∂u

∂t
= ν∇2u− 1

ρ
∇p− (u · ∇)u (1)

forward in time until the flow transitions from the simplified initial conditions to fully developed
turbulence. The equation describes the relationship between velocity u and pressure p for a viscous
fluid with kinematic viscosity ν and constant density ρ. For liquids, Eq. (1) is often supplemented
with the incompressibility assumption ∇ · u = 0, and we do so, too.

While numerical solvers can simulate most kinds of flows to high precision, large simulations can be
very slow, especially in three dimensions (3D). A prominent approach to accelerate these simulations
is to emulate the numerical solver with autoregressive models parameterized by neural networks.
Many works have demonstrated formidable speedups in two dimensions (2D) for scenarios of varying
complexity and all kinds of models of this class (Horie & Mitsume, 2022; Pfaff et al., 2021; Shu et al.,

Find code and data at https://cs.cit.tum.de/daml/generative-turbulence.

1

https://cs.cit.tum.de/daml/generative-turbulence

Published as a conference paper at ICLR 2024

2023; Yang & Sommer, 2023; Janny et al., 2023; Obiols-Sales et al., 2020; Zhao et al., 2022; Kochkov
et al., 2021; Wang et al., 2020; Li et al., 2021; Brandstetter et al., 2022) and several benchmark
datasets for the 2D Navier-Stokes equation have been published in recent years (Bonnet et al., 2022;
Gupta & Brandstetter, 2022; Takamoto et al., 2022; Otness et al., 2021). In comparison, 3D results
are much sparser in terms of models (Stachenfeld et al., 2022) as well as datasets (Takamoto et al.,
2022; Li et al., 2008), even though 3D simulations offer the highest acceleration potential because of
their enormous computational costs.

Autoregressive models usually outperform numerical solvers by taking larger time steps without
diverging. However, in 3D, turbulent flows exhibit a stark difference to their 2D counterparts
hampering this strategy. Because short-lived, small-scale vortices drive the chaotic turbulence in 3D
to a much higher degree, their behavior needs to be modeled, which limits the size of the time step
of an autoregressive model. At the same time, the complete replacement of the numerical solver
requires the model to evolve the flow from the solver’s initial state until a turbulent flow state has
fully developed, which can require hundreds of steps and lead to catastrophic error accumulation.

However, in many applications, practitioners use numerical simulations not to explore one specific
solution trajectory through time but as a proxy to explore the distribution of possible flow states. For
example, in design optimization, an engineer might be interested in the possible size, length, and
energy of vortices caused by an object, such as an airplane wing, but not in the exact evolution of one
particular vortex. In other applications, the formation of certain patterns, such as jets, or the location
of stagnation points on the boundary of an object, where the flow velocity is zero, might be important.
We conclude that many use cases can be solved by independent snapshots of possible flow states just
as well as with a classical numerical simulation.

In this paper, we take an entirely different direction to autoregressive models and propose a generative
approach to turbulent flow simulation by directly learning the manifold of all possible turbulent flow
states. This way, we overcome the problem of long roll-outs of autoregressive models and skip the
initial transition phase as well as all the intermediate states that a numerical solver has to generate to
produce a diverse set of flow states.

Our contributions can be summarized as follows:

• We present a novel 3D turbulence dataset with challenging geometries and systematically investi-
gate the specific challenges of forecasting 3D turbulent flows compared to 2D.

• We propose to approach 3D turbulence simulation as a generative task to overcome the roll-out
dilemma of autoregressive models. In doing so, we derive an appropriate generative diffusion
model and evaluation metrics.

• We verify experimentally that our model captures the distribution of turbulent flows, generalizes
to unseen geometries and generates high-quality, realistic samples amenable for downstream
application, ultimately eliminating the reliance on numerical solvers.

2 TURBULENCE IN TWO AND THREE DIMENSIONS

3D

2D

Figure 1: The same simulation exhibits vastly
different qualities when the solver operates in
three dimensions compared to two.

For a complete introduction to turbulent flows, we re-
fer the reader to (Pope, 2000) and (Mathieu & Scott,
2000). (Ouellette, 2012) gives a great overview of
the differences between 2D and 3D turbulence.

In principle, one can solve the incompressible Navier-
Stokes-Eq. (1) in two spatial dimensions just as well
as in three. However, when we compare the resulting
flow fields of two simulations in Fig. 1 that only
differ in that one simulation domain extends into
the third dimension, it becomes obvious that some
effect must be exclusive to 3D fluid flows. The 3D
data exhibits many small-scale features, while the
two-dimensional flow field is dominated by relatively
smooth and orderly large-scale structures. But why is that?

2

Published as a conference paper at ICLR 2024

One of the defining features of turbulence in 3D is the energy cascade, a process that moves kinetic
energy from large-scale vortices to ever smaller scales until it is finally directly converted to thermal
energy at the molecular scale. The main drivers of this process are two effects called vortex stretching
and strain self-amplification (Carbone & Bragg, 2020). Together, they are responsible for the
continued creation of vortex structures at all scales and the high-frequency features characteristic
of 3D turbulence.

In two dimensions, both of those effects vanish mathematically, ultimately due to the fact that the
vorticity ω = ∇× u, which describes the local rotationality of the flow, is orthogonal to the velocity
gradient in 2D. As a consequence, the energy cascade is only driven by a weaker interaction effect
between vorticity and strain, which inverts the energy cascade (Johnson, 2021). The inverted energy
cascade, in contrast to 3D, transports energy from the small to the large scales and creates more
homogeneous, long-lived structures.

Temporally, the lifetime of vortex structures depends on their size, with smaller structures decaying
faster than larger ones (Lozano-Durán & Jiménez, 2014). From a machine learning perspective, this
means that forecasting the future trajectory of a fluid simulation in 3D requires smaller time steps
than for 2D data to resolve the nonlinear behavior of small-scale features under the Navier-Stokes
equation.

3 AUTOREGRESSIVE FORECASTING IN 3D

Autoregressive models are popular surrogate models for numerical solvers of time-dependent partial
differential equations (PDEs) and, in particular, the Navier-Stokes equation, as they promise faster
runtimes than full simulations. They emulate numerical solvers by learning to predict the next state
from the current state and, optionally, a set of previous states, which enables approximating fluid
dynamics over time via an iterative roll-out. While autoregressive models offer advantages, i.e. faster
evaluation, ease of parallelization, and the ability to use larger time steps, their possible runtime
improvement is directly limited by how many solver steps the model can compress into one model
evaluation.

0.1 3.2 6.4 9.6 12.8
Step size ∆t [ms]

0

1

N
or

m
al

iz
ed

M
SE

(u
)

1 8 16 24 32
Gaussian smoothing kernel width σ

DilResNet, stride t
Smoothing

Figure 2: 1-step forecast MSE of u increases
at a rate comparable to Gaussian smoothing of
states to remove small-scale features.

0.1 5 10
Roll out time [ms]

0

100

200

E[
‖û
−

u
‖2
]

0.1 0.8 1.6 2.4 3.2
Trained stride [ms]

Figure 3: Error accumulates quickly for longer
roll-outs even when the time step is sufficiently
small.

As described in Section 2, 3D turbulent flows contain many small-scale features that evolve nonlinearly
on short timescales. In our experiment shown in Fig. 2, we have trained a Dilated ResNet (DilResNet)
on one-step-ahead prediction with varying step size ∆t. While the model achieves a very small error
for the smallest time step, the one-step forecasting error grows as we increase the time step that we
train the model for. Notably, the error curve aligns closely with the curve resulting from smoothing of
the target with a Gaussian kernel of increasing width. By smoothing the velocity field with a Gaussian
kernel of variance σ2, we remove features of scale approximately σ and below. The alignment of
the curve then indicates that the model trained to predict ∆t ahead fails to predict features below a
cut-off scale σ that scales linearly with ∆t. In fact, visual inspection of the forecasts reveals that the
model makes increasingly smooth predictions as the model’s time step increases. Conversely, this
means that the model needs to be trained and evaluated with a very small time step to even have a
chance to forecast fully resolved future states of 3D turbulent flows over multiple steps.

3

Published as a conference paper at ICLR 2024

Ultimately, modeling 3D turbulent flow simulations poses an inescapable dilemma for autoregressive
models. On the one hand, turbulent flows exhibit significant small-scale behavior that is important to
the overall behavior of the flow because of backscattering effects from small to large scales, which
requires models to be trained with a small step size. On the other hand, these simulations need
to be forecast for hundreds of steps into the future to traverse the transition phase from an initial
simulation state to a fully developed turbulent flow, which necessitates long roll-outs. However,
autoregressive models trained with smaller step sizes and, consequently, more roll-out steps suffer
from more error accumulation in their forecasts, cf. Fig. 3. Conversely, models trained with large
time steps accumulate less error but start with large amounts of error from the first step.

4 GENERATIVE MODELING FOR 3D TURBULENT FLOWS

We have seen that forecasting 3D turbulent flows with their chaotic nature and many small-scale,
short-lived features is challenging, in particular for autoregressive models. Given their chaotic nature
and sensitivity to infinitesimal perturbations, turbulent flows can be understood as stochastic processes
(Pope, 2000), i.e. the solution trajectory {(u, p)t}t∈R+ given some initial conditions follows the
distribution p({(u, p)t}t∈R+ | u0, p0). Yet, many applications do not require an exact trajectory
but rather a selection of turbulent flow states that represent the set of all possible flows well. Thus,
we propose to circumvent the roll-out dilemma of autoregressive models by modeling the marginal
distribution Et[p((u, p)t | u0, p0, t)] = p((u, p) | u0, p0) directly, capturing the distribution of
turbulent flows with a generative model.

4.1 GENERATIVE TURBULENCE SIMULATION

Consider a simulation domain Ω ⊂ R3 with boundary conditions B and initial conditions
u(0) : Ω → R3, p(0) : Ω → R for velocity and pressure, where B is chosen such that the flow
becomes turbulent. The fields usol : R+ × Ω → R3 and psol : R+ × Ω → R solving the Navier-
Stokes-Eq. (1) describe the resulting, turbulent flow. In the following, we define X = (u ∥ p) to
denote the concatenation of velocity and pressure. Now we define the probability distribution over all
attained flow states after a time t,

p≥t(X | X(0),B) = lim
T→∞

Et′∈[t,T]

[
δXsol(t′)

]
. (2)

If the initial state X(0) is not turbulent, there is a transition phase of length tturb depending on the
domain geometry and X(0) until turbulence is fully developed. Beyond this point, the distribution
becomes, remarkably, independent of the initial state, i.e. p≥tturb

(X | X(0),B) = p≥tturb
(X | B),

because of the often assumed ergodicity of turbulence (Galanti & Tsinober, 2004), which says that a
turbulent flow will visit all possible flow states. Based on this insight, we define the task of generative
turbulence simulation as finding a model pθ such that

pθ(X | B) ≈ p≥tturb
(X | B). (3)

Importantly, such a model does not have access to an initial turbulent state X ∼ p≥tturb
(X | B).

4.2 DISCRETIZATION

We discretize the simulation domain Ω into a regular grid of cells Ωh = [W]× [H]× [D] where [N]
denotes the set of integers 1 through N . In the following, we will denote cell indices (i, j, k) ∈ Ωh

as i. Each cell has one of K types, Ti ∈ [K], marking a cell as, for example, wall or inlet, which
discretizes the location and type of boundary conditions B. To discretize solution fields usol(t) and
psol(t) at time t, we define the tensor Xi = (usol(t,xi) ∥ psol(t,xi)) ∈ R4 where xi is location of
the center of cell i.

See Appendix B for more details on how we construct X and T .

4.3 GENERATIVE MODEL

We base our model TurbDiff on denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020;
Sohl-Dickstein et al., 2015), which have been adapted to other domains (Kollovieh et al., 2023; Lüdke
et al., 2023). DDPMs are latent-variable models that learn a generative model pθ to reverse a fixed

4

Published as a conference paper at ICLR 2024

Markov chain q(xn|xn−1), which gradually transforms a data sample x0 over N steps into Gaussian
noise until no information remains, i.e. q(xN | x0) ≈ N (0, I). Training occurs by minimizing the
KL-divergence between pθ(xn−1 | xn) and q(xn−1|x0,xn), so that pθ approximates the true pos-
terior. The reverse process then constitutes a powerful sampling mechanism that transforms sampled
noise xN ∼ N (0, I) into a data sample by iteratively sampling from pθ(xn−1 | xn) and, at the same
time, formally defines our generative model as pθ(x0) =

∫
p(xN)

∏N
n=1 pθ(xn−1 | xn)dx1 . . .xN .

We adapt DDPM and include Dirichlet boundary conditions to guide the diffusion process similar
to the inpainting method proposed by (Lugmayr et al., 2022). Dirichlet conditions fix the value of
velocity or pressure at a specific location to a given value, e.g. u = 0 at the walls or the given inflow
velocity at the inlet. Therefore, we sample the values at these locations from fixed distributions
instead of the learned distribution pθ . This ensures that the values at the boundaries converge towards
their prescribed values throughout the sampling process, guiding the sample as a whole towards the
data distribution.

In particular, we begin by defining a mask Mi = ITi=free that selects all cells free cells, i.e. those
that have no boundary conditions or any other kind of special role. Let X0 ∼ p≥tturb

(X | B) and
we want to sample from its distribution by transforming a sample XN ∼ p(0, I). Then, we define
our model as

p(Xn−1 | Xn,T)i ∼
{
pθ(Xn−1 | Xn,T)i if Mi = 1,

q(Xn−1 | X0,Xn)i otherwise.
(4)

In effect, we denoise the input only in cells that contain actual velocity and pressure data. For other
cells, we sample their values from the true posterior q(Xn−1 | X0,Xn), which is possible because
for these cells X0,i is predetermined from the boundary conditions and therefore always available.
Since we also use the same case distinction during training, our model is only trained on actual data
cells and not on boundary values.

4.4 PARAMETRIZING POSTERIOR AND DIFFUSION PROCESS

Since we discretize the data domain as a three-dimensional, regular grid, we base our model archi-
tecture on a U-Net (Ronneberger et al., 2015) extended to 3D (Çiçek et al., 2016). After 4 levels of
downsampling, we apply a transformer (Vaswani et al., 2017) with pre-group normalization (Xiong
et al., 2020; Wu & He, 2020) to ensure global communication within the model across the whole
simulation domain. Within the transformer, we use flash attention to reduce the memory requirements
of the transformer from O(n2) to O(n) (Dao et al., 2022).

For the forward diffusion process, we choose N = 500 steps and a noise schedule that scales the noise
so that the log-signal-to-noise ratio of the noise grows linearly (Kingma et al., 2021). This schedule
ensures that several diffusion steps are spent in the high-signal regime to let the model denoise small
details, but at the same time, reaches large enough noise levels to ensure that q(xN | x0) ≈ N (0, I)
despite the long tails of velocity and pressure values in turbulent flows.

For more details on the components and hyperparameters, see Appendix D.

5 RELATED WORK

The works of (Drygala et al., 2022) and (Drygala et al., 2023) are most closely related to our research.
They prove that generative adversarial networks (GANs) sample from the correct distribution for
ergodic systems such as turbulent flows (Galanti & Tsinober, 2004) and train a GAN to generate 2D
slices of high-resolution 3D turbulent flow data of the velocity field orthogonal to the slice. Compared
to their work, we allow arbitrary geometries by encoding all types of boundary conditions via learned
cell type embeddings and we propose a metric that measures the quality of samples as a whole,
whereas Drygala et al. examine particular sections of their samples individually.

Several other works have been published on machine learning for 3D fluid flows. (Xie et al., 2017)
super-resolve low-resolution turbulent flows with a GAN in a temporally coherent manner. (Matsuo
et al., 2021) learn to reconstruct 3D flows from 2D slices for channel flows around a cylinder.
(Stachenfeld et al., 2022) propose a model to forecast non-forced, decaying turbulence at a coarser
resolution to achieve speedups over numerical solvers. (Kim et al., 2019) predict velocity fields one
step ahead for 3D flows in computer graphics applications. They report that they need to train with a

5

Published as a conference paper at ICLR 2024

small time step for their latent-space autoregressive model to track small details and generate accurate
roll-outs. It is important to note that these works refine, expand, or evolve turbulent flow fields given
as input to the model. In contrast, we sample turbulent flows from scratch based solely on the domain
geometry and boundary conditions.

6 EXPERIMENTS

6.1 DATASET

Figure 4: A subset of the objects in
our turbulent flow dataset with iso-
surfaces of the vorticity magnitude.

To evaluate the viability of generative modeling for 3D turbu-
lent flows, we have generated a challenging new dataset. The
dataset consists of 45 simulations of an incompressible flow
through a 0.4 m × 0.1 m × 0.1 m channel at 20 m s−1, which
results in a Reynold’s number of Re = 2× 105, well into the
turbulent regime. The channel is discretized into 192 × 48
× 48 regular grid cells, which balances the spatial resolution
to resolve small-scale behavior adequately with memory and
storage requirements.

For each simulation, we place a distinct object into the flow,
each of which causes a characteristic flow pattern. Fig. 4
shows a subset of the objects and how the object’s shape in-
fluences the flow. We split the simulations into 27 for training,
9 for validation, and 9 for testing to verify that models can
generalize to unseen objects in the flow.

We run all simulations for 0.5 s of physical time with Open-
FOAM (Weller et al., 1998), an industrial-grade CFD solver,
in large eddy simulation (LES) mode and save a flow state every 0.1 ms. The resulting dataset
contains 5000 flow states for each simulation and requires 2.2 TB of storage after preprocessing.

See Appendix A for more details on our datasets and data generation pipeline.

6.2 BASELINES

In our experiments, we compare our generative model against two autoregressive models specifically
developed for turbulent flows, Turbulent Flow Net (TF-Net) and DilResNet. TF-Net takes inspiration
from hybrid RANS-LES modeling of turbulent flows and learns a spatial and temporal filtering with an
architecture of multiple U-Nets (Wang et al., 2020). DilResNet is a general-purpose architecture that
combines stacks of dilated convolutions with residual connections into an expressive convolutional
model with a large receptive field (Stachenfeld et al., 2022). Both models take a set of recent
observations X(t−(h−1):t) and map it to a prediction of the system state X(t+1) one step ahead.

For both forecasting models, we compare two different ways to turn them into generative models.
For the first, we take a sample X(t) ∼ p≥tturb

(X | T) and then apply the model autoregressively 22
times to generate a new sample X(t+22). We chose 22 steps because that is the distance between two
steps in our dataset at which they become approximately uncorrelated. Therefore, we consider the
model to have transformed X(t) into a new sample X(t+22). Obviously, the model could not replace
the numerical solver in this way since we need the solver to generate the input to the generative model
in the first place, but it serves us as a very strong baseline because it already starts with a sample
from the distribution that we want to sample from. We denote these models by DilResNet-22 and
TF-Net-22, respectively.

For the second way to turn our baselines into generative models, we add a small amount of noise to
the initial state of the numerical solver and then roll out the models for 200 steps. We chose 200 steps
because that is the minimum number of steps the flow needs to develop turbulence for any simulation
in our dataset. The small amount of noise leads to independent samples because turbulent flows
are chaotic and therefore sensitive to initial conditions, i.e. even an infinitesimal change in initial
conditions will produce a completely different trajectory. Of course, these generative variants need

6

Published as a conference paper at ICLR 2024

far more roll-out steps, but it completely forgoes the use of a numerical solver, thereby offering the
largest speed-up. We denote these models by DilResNet-init and TF-Net-init, respectively.

We list hyperparameters for these baselines in Appendix C.

6.3 METRICS

Comparing the quality of turbulent flow samples is a non-trivial task. Unlike in the one-step-ahead
prediction of autoregressive models, we do not have a ground truth state but must derive new metrics
to quantify the difference between the samples of distributions. We quantify the sample quality of
TurbDiff and the baselines by their Wasserstein-2 (W2) distance to samples from the numerical solver.
The W2 distance between two sets of samples is the minimal average distance achievable for any
matching between the two sample sets w.r.t. some underlying distance d. Formally, let µ, ν be two
empirical distributions over the sample sets we want to compare and Γ be the space of all possible
joint distributions that have µ and ν respectively as marginal distributions. Then the W2 distance
between µ and ν is defined as

W2(µ, ν) =

(
min

γ∈Γ(µ,ν)
E(x,y)∼γd(x, y)

2

) 1
2

. (5)

In addition to being the basis of the ubiquitous Fréchet inception distance (FID) in generative image
modeling (Heusel et al., 2017), W2 is also used in video (Unterthiner et al., 2019) and molecule
generation (Preuer et al., 2018). However, these metrics rely on learned embeddings from pre-trained
models that are widely accepted to capture the important characteristics of individual samples.

It remains to specify the underlying distance function d. The Euclidean distance would be an
obvious but lousy choice for a curious reason. Because of the chaotic nature and strong, small-scale
fluctuations of turbulent flows, it is highly unlikely for two independent samples of a turbulent flow to
be close under this distance. In fact, in our dataset, the smooth mean flow is closer to all samples than
any two uncorrelated turbulent flow samples are to each other with respect to the Euclidean distance.
This, however, would be antithetical to our goal to define a metric that rewards turbulent samples and
discourages smoothing and mean flow samples.

Turbulent kinetic energy (TKE) Our first choice of distance compares samples by their TKE
spectra. The TKE in each cell is defined as the quadratic velocity deviation from the mean velocity,
Ei =

1
2∥ui − ūi∥22. To get the spectrum, i.e. the spectral intensity as a function of the wavenumber,

we take the 3D fast Fourier transform (FFT) of E over a cuboid subset C of the domain and integrate
the squared frequency magnitude spherically over all 3D wavenumbers ∥(kx, ky, kz)∥ = k:

E(k) =

∫

S2

∣∣∣
∫

C⊂Ω

E(x)e−i(kv)·x dx
∣∣∣
2

dv (6)

Then we define the distance between two samples as the L2 distance between their log energy spectra,

d(X(1),X(2)) = ∥ logEX(1) − logEX(2)∥2. (7)

We denote this distance by W2,TKE.

Distributional distance TKE spectra capture global patterns in the flow velocity by measuring the
energy contained in the various spatial scales. However, the energy spectra neglect the pressure and
are invariant to wrong positioning or orientations of flow patterns. To remedy this shortcoming, we
introduce a second metric that measures if two samples contain similar velocity and pressure values
in similar locations.

If we regard a turbulent flow as a stochastic process as is common, the velocities and pressures in
each cell follow a marginal distribution p(ui, pi). Then, we can call two samples close if their values
in each cell follow similar marginal distributions. However, comparing cell values pointwise directly
would make it highly unlikely for two samples from the same flow to be close, as explained above.
Instead, we propose to group cells with similar marginal distributions together and interpret the values
in each cell group as samples from the same marginal. Then we compare these sample sets by their
W2 distance and average over all cell groups.

7

Published as a conference paper at ICLR 2024

(a) Samples generated with TurbDiff (b) Data sample for the same object

Figure 5: Example flows for a test object from our dataset showing isosurfaces of the vorticity ω.

Table 1: TurbDiff generates samples from scratch of similar quality in W2,TKE & W2,R distance to
samples generated by the strongest regression baseline which takes a true data sample as initial state.
In addition, our model is much faster to evaluate because it eschews the 10 minutes needed by the
numerical solver to generate a realistic initial state for DilResNet-22. For models marked with (*),
we have excluded runs that diverged due to error accumulation.

W2,TKE W2,R RMSE xmax−TKE Runtime [s]

TF-Net-init* - - - 1.834
TF-Net-22* 189 493 108 602 + 0.23

DilResNet-init 60 ± 47 4.6 × 108 42 ± 23 12.82
DilResNet-22 2.15 ± 0.06 1.240 ± 0.001 2.5 ± 1.2 602 + 1.58

TurbDiff (ours) 3.9 ± 0.4 1.38 ± 0.04 5.9 ± 1.8 20.63

In particular, for each simulation, we approximate the marginal velocity distribution p(ui) of each
cell with an isotropic Gaussian N (µi,diag(σ

2
i)). Then, we cluster the cells into regions R with

similar marginal distributions via k-means with the W2 distance between isotropic Gaussians, which
has a closed-form solution. Finally, we define our distance between two samples X(1) and X(2) as

d(X(1),X(2)) =

(∑

R

|R|∑
R′ |R′|W

2
2

(
v
(1)
R ,v

(1)
R

)) 1
2

(8)

where v
(j)
R =

{(
u

(j)
i

σ∥u∥
∥ ω

(j)
i

σ∥ω∥
∥ p

(j)
i

σp

)
| i ∈ R

}
is the set of normalized velocity, vorticity and

pressure at each cell in a homogeneous region. This metric includes the generated pressure as well
as the estimated vorticity, which means that it also takes into account the velocities in neighboring
cells. All components are normalized by their standard deviation over the training set to account
for their different scales. We choose the W2 distance with the 2-norm to compare the sample sets
v
(j)
R to emphasize modeling the extreme values which are important to represent the characteristic

intermittency of turbulent flows, i.e. the heavy tails of their velocity and vorticity distributions
(Jiménez, 2006).

In addition to velocity and pressure, we also include the estimated vorticity ωi because vorticity
is a defining aspect of turbulence, as we have seen in Section 2. Furthermore, since we estimate
the vorticity from the velocity via finite differences, including it in the distance makes it more
discriminative because it includes distance from the multi-point marginal velocity distribution of cell
i and its neighbors.

In our results, we denote this distance by W2,R. See Appendix E for more details on how exactly we
compute each metric.

8

Published as a conference paper at ICLR 2024

6.4 SAMPLE QUALITY

We train all models on the 27 training simulations in our dataset and then evaluate them on 9
unseen test simulations with unseen geometries. For each simulation, we generate 16 samples and
evaluate our sample metrics against 16 true samples chosen equidistantly from the second half of
the simulation. Choosing the data samples from the second half of each simulation ensures that they
represent fully-developed turbulence, and picking them equidistantly means that the samples are
completely uncorrelated. Figs. 5a and 5b show samples generated by TurbDiff and from the dataset
for the same object. See Table 1 for the complete results.

First, we observe that our generative model generates samples very close to the data distribution
in terms of W2,TKE and W2,R distance. Only the DilResNet-22 baseline achieves better scores.
However, this baseline needs a true sample from our target distribution p≥tturb

(X | T) generated
via a numerical solver as initial state and then evolves it forward in time for 22 steps or 2.2 ms. As
we trained the regression baselines on the smallest timestep in our data to allow them to resolve
the dynamics of all scales accurately, see Section 2, and 22 roll-out steps still have tolerable error
accumulation, the baseline is able to preserve the turbulent characteristics of its input state and
achieve slightly better scores. If we evaluate the baselines in the more realistic setting denoted by
the -init suffix without any support from a numerical solver and generate samples by unrolling from
the pre-turbulent initial state of the numerical solver, the increased error accumulation of the longer
roll-out decreases the sample quality immensely. However, this is the only setting that achieves the
original goal of surrogate models to replace costly numerical solvers.

These results support our observation from Sections 3 and 4 that autoregressive models are severely
challenged by the long roll-outs required to fully replace numerical solvers for 3D turbulence and
that a generative approach sidesteps these difficulties elegantly.

Runtime Regarding runtime, TurbDiff outperforms the numerical solver by a factor of 30, as
reported in Table 1. The solver needs roughly 10 minutes to transition from its initial state to
fully-developed turbulence, whereas our model can generate a sample in about 20 seconds. While
both baselines can be evaluated quicker if we consider just the model itself, the complete pipeline
as a surrogate model requires the generation of a realistic initial state for the model, which takes 10
minutes to generate with a numerical solver. In the -init setting, the models avoid this additional
runtime but suffer from significant error accumulation.

All model times represent the minimum achieved time on an NVIDIA A100, and we measured the
solver time with 16-core parallelism on an Intel Xeon E5-2630.

Estimating turbulence properties In applications, samples from a generative turbulence simulator
could be used to measure, for example, the effect of an object’s shape on the turbulence patterns it
causes, e.g. their size or energy. As an example, we estimate how far behind the object in our flow
simulations the mean TKE takes its maximum, i.e. where the turbulent vortices caused by the object
have built up the most kinetic energy. This location depends strongly on the shape of the object and
requires accurate samples to evaluate. The root-mean-squared-error (RMSE) of the estimate from
our samples reported in Table 1 is 5.9 cells or just 1.2 cm in a channel of 40 cm in length. This is
significantly lower than the variability of the true location and provides an actual useable signal to
practitioners compared to the baselines in the full-surrogate setting.

7 CONCLUSION

We have shown that generative modeling lets us access the full acceleration potential of neural
surrogates for 3D turbulent flows by circumventing the need for long roll-outs or initial states from
numerical solvers. Our dataset is an important building block for further research into surrogate
models for engineering applications that challenges models to learn the turbulent dynamics of
high-velocity flows and how objects influence the resulting vortex structures. Our new metrics for
generative turbulence models measure succinctly if a model’s samples follow the expected velocity
and pressure distributions as well as if the turbulent kinetic energy is distributed correctly across
spatial scales.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This research was funded by the Bavarian State Ministry for Science and the Arts within the framework
of the Geothermal Alliance Bavaria project.

REFERENCES

Radovan Bast. Numgrid: Numerical integration grid for molecules, January 2021.

Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan Günne-
mann. Neural Flows: Efficient Alternative to Neural ODEs. In Neural Information Processing
Systems, 2021. doi: 10.48550/arXiv.2110.13040.

Florent Bonnet, Ahmed Jocelyn Mazari, Paola Cinnella, and Patrick Gallinari. AirfRANS: High
Fidelity Computational Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier-
Stokes Solutions. In Neural Information Processing Systems, 2022. doi: 10.48550/arXiv.2212.
07564.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message Passing Neural PDE Solvers.
In International Conference on Learning Representations, 2022.

John Burkardt. SPHERE_LEBEDEV_RULE: Quadrature rules for the unit sphere, 2010.

Maurizio Carbone and Andrew D. Bragg. Is vortex stretching the main cause of the turbulent energy
cascade? Journal of Fluid Mechanics, 883:R2, January 2020. ISSN 0022-1120, 1469-7645. doi:
10.1017/jfm.2019.923.

Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf Ronneberger.
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Sebastien
Ourselin, Leo Joskowicz, Mert R. Sabuncu, Gozde Unal, and William Wells (eds.), Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2016, Lecture Notes in Computer
Science, pp. 424–432, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46723-8.
doi: 10.1007/978-3-319-46723-8_49.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
Memory-Efficient Exact Attention with IO-Awareness. In Neural Information Processing Systems,
2022. doi: 10.48550/arXiv.2205.14135.

Claudia Drygala, Benjamin Winhart, Francesca di Mare, and Hanno Gottschalk. Generative Modeling
of Turbulence. Physics of Fluids, 34(3):035114, March 2022. ISSN 1070-6631, 1089-7666. doi:
10.1063/5.0082562.

Claudia Drygala, Francesca di Mare, and Hanno Gottschalk. Generalization capabilities of conditional
GAN for turbulent flow under changes of geometry, February 2023.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing Convolutional
Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data. In Proceedings of
the 37th International Conference on Machine Learning, pp. 3165–3176. PMLR, November 2020.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
Titouan Vayer. POT: Python optimal transport. Journal of Machine Learning Research, 22(78):
1–8, 2021.

B. Galanti and A. Tsinober. Is turbulence ergodic? Physics Letters A, 330(3):173–180, September
2004. ISSN 0375-9601. doi: 10.1016/j.physleta.2004.07.009.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. GemNet: Universal Directional
Graph Neural Networks for Molecules. In Neural Information Processing Systems, volume 34, pp.
6790–6802. Curran Associates, Inc., 2021.

10

Published as a conference paper at ICLR 2024

Jorge Gomes, Emanuele Bagnaschi, Isabel Campos, Mario David, Luís Alves, João Martins, João
Pina, Alvaro López-García, and Pablo Orviz. Enabling rootless Linux Containers in multi-user
environments: The udocker tool. Computer Physics Communications, 232:84–97, November 2018.
ISSN 00104655. doi: 10.1016/j.cpc.2018.05.021.

Jayesh K. Gupta and Johannes Brandstetter. Towards Multi-spatiotemporal-scale Generalized PDE
Modeling, September 2022.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition, December 2015.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In
Neural Information Processing Systems, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Neural
Information Processing Systems, 2020. doi: 10.48550/arXiv.2006.11239.

Masanobu Horie and Naoto Mitsume. Physics-Embedded Neural Networks: Graph Neural PDE
Solvers with Mixed Boundary Conditions. In Neural Information Processing Systems, 2022.

J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3):
90–95, 2007. doi: 10.1109/MCSE.2007.55.

Steeven Janny, Aurélien Béneteau, Madiha Nadri, Julie Digne, Nicolas Thome, and Christian
Wolf. EAGLE: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh Transformers. In
International Conference on Learning Representations, 2023. doi: 10.48550/arXiv.2302.10803.

J. Jiménez. Intermittency in Turbulence. In Jean-Pierre Françoise, Gregory L. Naber, and Tsou Sheung
Tsun (eds.), Encyclopedia of Mathematical Physics, pp. 144–151. Academic Press, Oxford, January
2006. ISBN 978-0-12-512666-3. doi: 10.1016/B0-12-512666-2/00368-0.

Perry L. Johnson. On the role of vorticity stretching and strain self-amplification in the turbulence
energy cascade. Journal of Fluid Mechanics, 922:A3, September 2021. ISSN 0022-1120, 1469-
7645. doi: 10.1017/jfm.2021.490.

Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara
Solenthaler. Deep Fluids: A Generative Network for Parameterized Fluid Simulations. Computer
Graphics Forum, 38(2):59–70, 2019. ISSN 1467-8659. doi: 10.1111/cgf.13619.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational Diffusion Models. In
Neural Information Processing Systems, 2021.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov,
Damián Avila, Safia Abdalla, Carol Willing, and Jupyter development team. Jupyter Notebooks -
a publishing format for reproducible computational workflows. In Fernando Loizides and Birgit
Scmidt (eds.), Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp.
87–90, Netherlands, 2016. IOS Press.

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan Hoyer.
Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy
of Sciences, 118(21), 2021. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.2101784118.

11

Published as a conference paper at ICLR 2024

Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang,
and Yuyang Wang. Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic
Time Series Forecasting. In Neural Information Processing Systems. arXiv, 2023. doi: 10.48550/
arXiv.2307.11494.

V. Lebedev and D. Laikov. A Quadrature Formula for the Sphere of the 131st Algebraic Order of
Accuracy. Doklady Mathematics, 1999.

Yi Li, Eric Perlman, Minping Wan, Yunke Yang, Charles Meneveau, Randal Burns, Shiyi Chen,
Alexander Szalay, and Gregory Eyink. A public turbulence database cluster and applications to
study Lagrangian evolution of velocity increments in turbulence. Journal of Turbulence, 9:N31,
January 2008. doi: 10.1080/14685240802376389.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential
Equations. In International Conference on Learning Representations. arXiv, 2021. doi: 10.48550/
arXiv.2010.08895.

Marten Lienen and Stephan Günnemann. Learning the Dynamics of Physical Systems from Sparse
Observations with Finite Element Networks. In International Conference on Learning Representa-
tions, 2022.

Adrián Lozano-Durán and Javier Jiménez. Time-resolved evolution of coherent structures in turbulent
channels: Characterization of eddies and cascades. Journal of Fluid Mechanics, 759:432–471,
November 2014. ISSN 0022-1120, 1469-7645. doi: 10.1017/jfm.2014.575.

David Lüdke, Marin Biloš, Oleksandr Shchur, Marten Lienen, and Stephan Günnemann. Add and
Thin: Diffusion for Temporal Point Processes. In Neural Information Processing Systems. arXiv,
2023. doi: 10.48550/arXiv.2311.01139.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
RePaint: Inpainting using Denoising Diffusion Probabilistic Models. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

Jean Mathieu and Julian Scott. An Introduction to Turbulent Flow. Cambridge University Press,
Cambridge, 2000. doi: 10.1017/CBO9781316529850.

Mitsuaki Matsuo, Taichi Nakamura, Masaki Morimoto, Kai Fukami, and Koji Fukagata. Supervised
convolutional network for three-dimensional fluid data reconstruction from sectional flow fields
with adaptive super-resolution assistance, March 2021.

Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models. In Interna-
tional Conference on Machine Learning, 2021. doi: 10.48550/arXiv.2102.09672.

Octavi Obiols-Sales, Abhinav Vishnu, Nicholas Malaya, and Aparna Chandramowlishwaran. CFD-
Net: A deep learning-based accelerator for fluid simulations. In International Conference on
Supercomputing, pp. 1–12, June 2020. doi: 10.1145/3392717.3392772.

Karl Otness, Arvi Gjoka, Joan Bruna, Daniele Panozzo, Benjamin Peherstorfer, Teseo Schneider,
and Denis Zorin. An Extensible Benchmark Suite for Learning to Simulate Physical Systems. In
Neural Information Processing Systems, 2021. doi: 10.48550/arXiv.2108.07799.

Nicholas T. Ouellette. Turbulence in two dimensions. Physics Today, 65(5):68–69, May 2012. ISSN
0031-9228. doi: 10.1063/PT.3.1570.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. DeepSDF:
Learning Continuous Signed Distance Functions for Shape Representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning
Library, December 2019.

12

Published as a conference paper at ICLR 2024

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning Mesh-
Based Simulation with Graph Networks. In International Conference on Learning Representations,
number arXiv:2010.03409, 2021.

Stephen B. Pope. Turbulent Flows. Cambridge University Press, 2000.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Günter Klambauer. Fr\’echet
ChemNet Distance: A metric for generative models for molecules in drug discovery, August 2018.

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar,
Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal Differential Equations for Scientific
Machine Learning, November 2021.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 00219991. doi: 10.1016/
j.jcp.2018.10.045.

István Z. Reguly, Gihan R. Mudalige, Carlo Bertolli, Michael B. Giles, Adam Betts, Paul H.J. Kelly,
and David Radford. Acceleration of a Full-Scale Industrial CFD Application with OP2. IEEE
Transactions on Parallel and Distributed Systems, 27(5):1265–1278, May 2016. ISSN 1558-2183.
doi: 10.1109/TPDS.2015.2453972.

Alex Rogozhnikov. Einops: Clear and reliable tensor manipulations with einstein-like notation. In
International Conference on Learning Representations, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10674–10685, June 2022. doi: 10.1109/CVPR52688.2022.
01042.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical
Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in
Computer Science, pp. 234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-
24574-4. doi: 10.1007/978-3-319-24574-4_28.

Víctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) Equivariant Graph Neural
Networks. In Proceedings of the 38th International Conference on Machine Learning, pp. 9323–
9332. PMLR, July 2021.

Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for high-fidelity
flow field reconstruction. Journal of Computational Physics, 478, April 2023. ISSN 0021-9991.
doi: 10.1016/j.jcp.2023.111972.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
Learning using Nonequilibrium Thermodynamics. In International Conference on Machine
Learning, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. In
International Conference on Learning Representations, January 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency Models, March 2023.

Kimberly Stachenfeld, Drummond B. Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
Coarse Models for Efficient Turbulence Simulation. In International Conference on Learning
Representations, 2022.

Bane Sullivan and Alexander Kaszynski. PyVista: 3D plotting and mesh analysis through a stream-
lined interface for the Visualization Toolkit (VTK). Journal of Open Source Software, 4(37):1450,
May 2019. doi: 10.21105/joss.01450.

13

Published as a conference paper at ICLR 2024

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. PDEBench: An Extensive Benchmark for Scientific Machine
Learning. In Neural Information Processing Systems, 2022.

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
and Sylvain Gelly. Towards Accurate Generative Models of Video: A New Metric & Challenges,
March 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. In Neural Information Processing Systems,
2017.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards Physics-
informed Deep Learning for Turbulent Flow Prediction. In SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2020.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3D Steerable
CNNs: Learning Rotationally Equivariant Features in Volumetric Data. In Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to computational continuum
mechanics using object-oriented techniques. Computer in Physics, 12(6):620–631, November
1998. ISSN 0894-1866. doi: 10.1063/1.168744.

Yuxin Wu and Kaiming He. Group Normalization. International Journal of Computer Vision, 128(3):
742–755, March 2020. ISSN 1573-1405. doi: 10.1007/s11263-019-01198-w.

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. tempoGAN: A Temporally Coherent, Volumet-
ric GAN for Super-resolution Fluid Flow. ACM Transactions on Graphics, 36(4):1–14, August
2017. ISSN 0730-0301, 1557-7368. doi: 10.1145/3072959.3073643.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On Layer Normalization in the Transformer Architec-
ture. In International Conference on Machine Learning, 2020. doi: 10.48550/arXiv.2002.04745.

Omry Yadan. Hydra - A framework for elegantly configuring complex applications. Github, 2019.

Gefan Yang and Stefan Sommer. A Denoising Diffusion Model for Fluid Field Prediction, January
2023.

Qingqing Zhao, David B. Lindell, and Gordon Wetzstein. Learning to Solve PDE-constrained
Inverse Problems with Graph Networks. In International Conference on Machine Learning, pp.
26895–26910. PMLR, June 2022.

14

Published as a conference paper at ICLR 2024

A DATASET DETAILS

Our dataset consists of 45 simulations, each with a separate object in the flow that causes distinct
turbulence patterns. See Fig. 6 for a visualization of all objects. Each simulation is in a channel of
size 0.4 ×0.1 ×0.1 cm, which is discretized into 192×48×48 cells. The inflow velocity is 20 meters
per second, and we simulate the flow for 0.5 s with a snapshot saved every 0.1 ms. This results in
5,000 flow states in total per simulation.

For the simulations, we use OpenFOAM, an industrial grade CFD solver, in LES mode. LES is
an established method to produce realistic turbulent flow patterns in contrast to simpler Reynold’s-
averaged Navier-Stokes methods. It resolves the vortices above a cut-off scale and uses a simplified
model to represent the effect of sub-grid scales so that the flow does not have to be spatially resolved
all the way to the Kolmogorov scale, which is infeasible computationally as well as spatially in most
situations and also for our dataset.

We choose a low viscosity of ν = 1 × 10−5, which leads to an average Reynold’s number of
Re = ∥u∥L

ν = 2 × 105 and guarantees that fully-developed turbulence will occur.

Turbulent flow simulations need significant time to build up the turbulent flow state from the smooth
initial state, i.e. initiate turbulent structures at all scales and break any symmetry that the simulation
geometry has. The exact time depends on the boundary and initial conditions, i.e. also the object in
the flow. For our dataset, this initial transition lasts for roughly 22 ms to 45 ms in simulation time,
which corresponds to about 2,000 to 4,000 solver steps or 10 to 20 minutes of solver time on 16 CPU
cores.

For training our generative model, we discard the first 25 ms so that it only learns the distribution of
turbulent states and not the distribution of the initial transition phase. For regression models, we train
on the full sequence to ensure they also learn the initial transition for the full roll-out experiments.

B DATA PREPROCESSING

Inlet
Outlet
Wall
Outside
Channel

Figure 7: An illustrative 2D slice of our grid-base
representation of the simulation data.

OpenFOAM generates data within the simula-
tion cells. However, for the baselines and our
model, which rely on convolutions, we have to
embed the data into 3D grids. To also repre-
sent the boundary, inlet, outlet, and inside of
the geometries, we choose the following repre-
sentation. The out-of-domain cells, e.g. in the
objects, are represented with zeros. The outer
boundary around the whole domain represents
the Dirichlet boundary conditions and bound-
ary layer types such as wall or inlet. During the construction of our grid-base representation, we keep
track of the type of each cell to construct the cell type tensor T . See Fig. 7 for an illustration.

C BASELINE DETAILS

We implemented the two baselines TF-Netand DilResNetas described in the original papers and
replaced all 2D convolutions with 3D convolutions. Further, to stay comparable to our model, we
include the cell type information T into the model by learning 8-dimensional embedding vectors
c(T) and concatenating them to the flow state (X ∥ c(T)). We choose all hyperparameters as in
(Stachenfeld et al., 2022), i.e. DilResNet takes only the most recent step X and predicts the delta to
the next step X̂ = X(t+1) −X(t) and uses 4 dilated convolutional blocks of 7 layers with residual
connections. TF-Net takes the 6 most recent X(t−5:t) and predicts the next state X(t+1) directly.

D MODEL DETAILS

DDPM The DDPM framework described in Section 4.3 has two hyperparameters, the number of
steps N and the noise schedule βn that controls how quickly the data samples are transformed into

15

Published as a conference paper at ICLR 2024

Gaussian noise. We chose N = 500 and the log-linear signal-to-noise ratio (SNR) schedule from
(Kingma et al., 2021) that scales βn such that the log-SNR of the data falls linearly from 1 × 103

to 1 × 10−5. We have found that this schedule is especially suitable for turbulence data, because it
leaves very little signal in the noisy training samples for large N . This counteracts the large extreme
values in turbulence data and ensures that the distribution q(xN | x0) converges sufficiently closely
to N (0, I) to make the reverse process work well. See (Ho et al., 2020) for the full derivation of the
DDPM framework and a definition of βn.

Architecture We need to parametrize pθ(xn−1 | xn) such that it produces an estimate of
q(xn−1|x0,xn). In particular, we use a U-Net with 4 levels of downsampling and apply a trans-
former at the coarsest scale. First, we encode the noise level n into a 32 dimensional vector with
a sinusoidal positional encoding (Vaswani et al., 2017) and then apply a 2-layer MLP to it. Then,
each cell’s velocity u and pressure p features are concatenated with a 4-dimensional, learned cell
type embedding and mapped linearly onto a 64 dimensional latent vector. Both, the latent feature
vector tensor and the noise level embedding are then passed into a U-Net. The U-Net downsamples
the spatial resolution 4 times by a factor of 2, applying a ResNet style block at each level (He et al.,
2015). After the final downsampling step, we apply full attention between all downsampled cells.
Finally, the resulting representation is upsampled again 4 times to the original resolution with an
equivalent ResNet-style block applied at each level to the upsampled data concatenated with a skip
connection from the downsampling. The final feature tensor is then mapped from the 64-dimensional
latent space to the (u, p) data space via a final ResNet-style block.

Training We trained TurbDiff from 3 different seeds for 10 epochs with a batch size of 6. The
optimizer is RAdam with a learning rate of 1 × 10−4 and and exponential learning rate decay to
1 × 10−6 over those epochs.

Normalization The data for all models is normalized with the maximum norm of u for the velocity
and the maximum of |p| for pressure. We choose to normalize by the maxima of each feature to
handle the long tails of the pressure and velocity distributions, which show values of up to 10σ away
from the mean. Lastly, for our diffusion model, we do not apply noise to the cell-type embeddings
but concatenate them without noise at each diffusion step.

E METRICS DETAILS

The TKE computes an FFT over the flow field. Since we integrate the spectral intensity over all
spatial frequencies of the same magnitude, we would incur boundary effects if we take the FFT over
a rectangular domain because higher frequencies could be computed along the long dimension of the
domain than the shorter ones. To avoid this problem, we compute the the TKE distance separately
over 48×48×48 cubes behind the object, in the middle of the flow and at the end of the channel and
then compute the individual distances

dTKE(Xa,Xb) =

√√√√
3∑

i=1

d2TKE(Xa,block i,Xb,block i). (9)

We estimate the L2 distance between two log TKE spectra Ea(k) and Eb(k)

∥ logEa − logEb∥22 =

∫ 23

1

(logEa(k)− logEb(k))
2 dk (10)

via Gauss-Legendre integration to get a highly accurate estimate. To evaluate logE(k) for non-integer
k = (kx, ky, kz), we interpolate the values linearly from the discrete FFT onto the points k. This
let’s us get a highly accurate estimate of the total spectral intensity at a frequency k estimating the
spherical integral via the Lebedev integration method (Lebedev & Laikov, 1999).

For the distributional distance, we need to take care that no region of cells with approximately the
same marginal distribution has too many cells, because we compute the exact W2 distance within
each region R and the runtime of W2 scales with O(n3) where n is the number of cells within each
region. To avoid this problem, we split regions larger than 512 cells into groups of at most 512 cells

16

Published as a conference paper at ICLR 2024

arbitrarily. We can split them arbitrarily because all the cells in the region behave in very similar
ways anyway.

F LIMITATIONS

Performance While we have shown that our approach reduces the time to first sample significantly
compared to a CFD solver, a solution based on 3D grids will necessarily scale cubically in resolution
per dimension. This could be alleviated by representing the data in different ways such as frequencies
(Li et al., 2021) or more general function spaces (Lienen & Günnemann, 2022). Alternatively,
hierarchical models such as the U-Net could be parallelized over multiple devices. Another aspect
is that generative diffusion is known to produce high-quality samples but also for being expensive.
This could be improved by faster sampling routines (Nichol & Dhariwal, 2021; Rombach et al., 2022;
Song et al., 2021) or replacing the sampling routine altogether with a model (Biloš et al., 2021; Song
et al., 2023).

Equivariance Since TurbDiff is based on a basic 3D U-Net, it does not exploit any of the symmetries
that turbulence as a physical process obeys, which could improve sample efficiency and generalization
(Pope, 2000). This includes translation, rotation and reflection equivariance (Satorras et al., 2021;
Finzi et al., 2020; Weiler et al., 2018; Gasteiger et al., 2021) but also the turbulence-specific Reynolds
number similarity.

Geometry With our grid embedding, we can represent any geometry given that the resolution is
fine enough, however only to a 0th order approximation, i.e. as step functions due to the grid structure.
Since sharp corners have a strong effect on turbulent flows, sample quality for smooth geometries
would likely benefit from 1st order approximations with meshes (Lienen & Günnemann, 2022) or even
smoother representations based on signed distance functions (Park et al., 2019). Mesh-based models
could furthermore posses a certain invariance with respect to the mesh density as was demonstrated
by (Lienen & Günnemann, 2022).

17

Published as a conference paper at ICLR 2024

step-higher step-lower corner opp-corners-sym opp-corners-asym

neighbor-corners corners pillar wide-pillar offset-pillar

double-pillar opp-pillar bar double-bar offset-bar

teeth wide-teeth offset-teeth elbow wide-elbow

elbow-asym elbow-snug open-elbow donut U

H T disjoint-T plus minus

square square-large square-offset 2x2 2x2-large

3x3 3x3-inv cross cross-wide cross-offset

platform step-low high-platform step-high altar

Figure 6: All objects in our dataset.
18

	Introduction
	Turbulence in Two and Three Dimensions
	Autoregressive Forecasting in 3D
	Generative Modeling for 3D Turbulent Flows
	Generative turbulence simulation
	Discretization
	Generative model
	Parametrizing Posterior and Diffusion Process

	Related Work
	Experiments
	Dataset
	Baselines
	Metrics
	Sample Quality

	Conclusion
	Appendix
	Dataset Details
	Data Preprocessing
	Baseline Details
	Model Details
	Metrics Details
	Limitations

