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1 OVERVIEW
In this supplement, we present:

• Section 2: Implementation details.
• Section 3: Additional experiments and analyses.
• Section 4: Model architectures.
• Section 5: More discussions about limitations and future
work.

2 IMPLEMENTATION DETAILS
The complete configurations of the training of Exp-FaceNet and one-
shot fine-tuning are shown in Table 1. We utilized the official codes
to generate the results of the compared baselines HeadNeRF1 [4],
GIF2 [1], and DiffusionRig3 [3]. In inference, we generate the initial
noise map 𝑋𝑇 by sampling from N(0, 𝐼 ) rather than computing
through a reverse deterministic generative process proposed in the
original Diff-AE [5]. The further analysis of this setting is provided
in Section ??.

3 ADDITIONAL EXPERIMENTS AND
ANALYSES

3.1 Semantic Conditioning of Diff-AE
In original Diff-AE [5], the initial noise map 𝑋𝑇 in inference is com-
puted through a reverse deterministic generative process, which
has a capacity for capturing stochastic details. In Figure 1, we com-
pare the reconstruction and editing results of separately using the
reverse deterministic noise and the randomly sampled noise as the
initial denoising map in Diff-AE. It can be observed that using a
deterministic initial noise map can achieve a better reconstruction
of the input image such as the background, however generating the
editing images with less accurate explicit control and incoherent
facial appearance. This might because that the reverse determinis-
tic noise computing can encode the stochastic details of the input
image, which is crucial for a near-exact reconstruction. However,
this process inherently conflicts with the explicit face editing where
some details of the input image should be changed based on the
modifications of the explicit parameters. Also it is inconsistent
with the initialization in the training of Exp-FaceNet. Given this,
in this work, we choose to generate the initial noise map 𝑋𝑇 by
sampling from N(0, 𝐼 ) in inference. Moreover, we can find that
using a simple one-shot fine-tuning can effectively enhance the

1https://github.com/CrisHY1995/headnerf
2https://github.com/ParthaEth/GIF
3https://github.com/adobe-research/diffusion-rig

Unpublished working draft. Not for distribution.ACM MM, 2024, Melbourne, Australia
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Exp-FaceNet training One-shot fine-tuning
Image size 256
Patch size 16
Image normalization [-1, 1]
Masking ratio sample from𝑈 (0.25, 0.75)
Optimizer AdamW (no weight decay)
Diffusion loss MSE loss
EMA decay 0.9999 \
Learning rate 1e-4 1e-5
Batch size 32 4
Denoising steps 1000
Iterations 437500 1500
Device 8 V100s 1 V100
Training time 3 days 4minutes

Table 1: The complete configurations of the training of Exp-
FaceNet and one-shot fine-tuning.

Figure 1: The reconstruction and editing results of using
different initial noise map computing strategy in Diff-AE. 𝑋𝑇
indicates using the original reverse deterministic computing
to generate the initial noise map of Diff-AE.

semantics preservation in the editing result, e.g., more faithful hair
style.

3.2 Additional Ablation Studies
Fine-grained face geometry. In EMOCA [2], a person-specific
detail vector 𝛿 is specially estimated and can be further combined
with pose parameter 𝜃 and expression parameter 𝜙 to generate the
expression dependent displacement map for refining the face geom-
etry with animatable wrinkle details. Here we compare the editing
results between using estimated FLAME parameters to calculate
the 3D face mesh and additionally introducing the detail vector 𝛿 in
the mesh calculation. Figure 2 demonstrates that using 𝛿 can gen-
erate a rendered snapshot with refined expression-dependent face
geometry, which thereby helps to recover the detailed expressions

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Ablation study on fine-grained face parameters.
Adopting the detail vector 𝜃 estimated by EMOCA [2] can
help to generate the control conditionwithmore fine-grained
face geometry, which allows faithful facial details preserva-
tion.

(e.g., wrinkles) of the edited face.

Different masking strategies in inference. Here we explore
how the masking strategy used in inference affects the editing per-
formance. The comparison is shown in Figure 3, we can observe
that when setting masking ratio to 0% for all inference steps, the
edited image can not match the control signal very well which can
be attributed to strong deterministic reconstruction in this setting.
Meanwhile, setting masking ratio to 75% and 25% for all inference
steps slightly harm the semantics recovering and explicit control,
respectively. Besides, we can see the other three masking strate-
gies can achieve better editing results where the proposed linear
masking ratio can perform overall best editing with accurate face
control and good preservation of facial semantics.

4 MODEL ARCHITECTURES
The structural details of the proposed DisControlFace is presented
in Figure 4. The detailed architecture of Diff-AE is provided in
the published paper [5] and released code4. The proposed Exp-
FaceNet mirrors the structure of the Conditional DDIM (i.e., U-Net)
in Diff-AE, which however, customizes the input layer by setting
the input channel number to 6, allowing it to take the concatenated
snapshots as input. On this basis, we fuse the 2D feature maps
outputted by the input layers of Conditional DDIM and Exp-FaceNet
by pixel-wise summation, then feeding the fused feature maps
into the subsequent layers of Exp-FaceNet for generating spatial-
wise explicit conditioning features. To further provide fine-grained
conditioning for the diffusion generation process, we add multi-
scale features outputted by the decoder blocks of the Exp-FaceNet
(𝑓𝐴 to 𝑓𝑀 in Figure 4) back to the corresponding blocks of the
Diff-AE backbone.

5 ADDITIONAL LIMITATIONS AND FUTURE
WORK

Our DisControlFace has a separate editing control network besides
the U-Net noise predictor and performs denoising diffusion process
in image space, which results in the model being able to generate
images with limited resolutions. Potential future improvements
includes introducing a light-weight super-resolution network to
the model or extending the model to a latent diffusion version.

4https://github.com/phizaz/diffae

In the proposed Masked Diff-AE training, we randomly mask
some patches of the input image as the input of the semantic en-
coder of the Diff-AE backbone, which enables an effective training
of Exp-FaceNet in a disentangled setting. Meanwhile, only per-
forming random masking on face-related patches is expected to
further improve the consistency of the background region of the
input portrait with different editing applied, which however might
slightly increase the training and inference time. Corresponding ex-
plorations and experiments can serve as another potential valuable
future work.
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Figure 3: Ablation study on different masking strategies in inference. We set the inference denoising steps to 20 for all masking
strategies. Strategy A: the masing ratio is set to 0% for all 20 steps; Strategy B: the masking ratio is set to 75% for all 20 steps;
Strategy C: the masking ratio is set to 25% for all 20 steps; Strategy D: the masking ratio is set to 25% and 75% for the first 10
steps and last 10 steps; Strategy E: the masking ratio is set to 75% and 25% for the first 10 steps and last 10 steps: Strategy F: the
linear masking ratio introduced in the main paper.
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Figure 4: Detailed architecture of the proposed DisControlFace. Please zoom in to see details.
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