A Additional Results

A.1 Driving in Imagination

We deploy the model in the fully recurrent setting, and at fixed intervals: (i) we let the model imagine
future states and actions, without observing new images, and execute those actions in the simulator.
(i1) We then let the model update its knowledge of the world by observing new image frames. More
precisely, we set the fixed interval to a two-second window, and set a ratio of imagining vs. observing.
If for example that ratio is set to 0.5, we make the model imagine by sampling from the prior
distribution for 1.0s, then sample from the posterior distribution for 1.0s, and alternate between these
two settings during the whole evaluation run.

We make the ratio of imagining vs. observing vary from 0 (always observing each image frame,
which is the default behaviour) to 0.6 (imagining for 60% of the time). We report both the driving
performance and perception accuracy in Figure 4. The driving performance is measured with the
driving score, and the perception accuracy using the intersection-over-union with the ground truth
BeV semantic segmentation. We compare MILE with a one-frame baseline which has no memory
and only uses a single image frame for inference.

Figure 4a shows that our model can imagine for up to 30% of the time without any significant drop in
driving performance. After this point, the driving score starts decreasing but remains much higher
than its one-frame counterpart. In Figure 4b, we see that the predicted states remain fairly accurate
(by decoding to BeV segmentation), even with an important amount of imagining. These results
demonstrate that our model can predict plausible future states and actions, accurate enough to control
a vehicle in closed-loop.

Figure 5 illustrates an example of the model driving in imagination and successfully negotiating a
roundabout.
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Figure 4: Driving in imagination. We report the closed-loop driving performance and perception
accuracy in CARLA when the model imagines future states and actions and does not observe a
proportion of the images.
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Figure 5: An example of the model imagining and accurately predicting future states and actions to
negotiate a roundabout. When imagining, the model does not observe the image frames, but predicts
the future states and actions from its current latent state.
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A.2 Image Resolution

In urban driving, small elements in the scene can have an important role in decision making. One
typical example is traffic lights, which only occupy a small portion of the image, but dictate whether
a vehicle can continue driving forward or needs to stop at a red light. Figure 6 and Figure 7 illustrate
how traffic lights and pedestrians become much harder to distinguish in lower image resolutions.

We evaluate the importance of image resolution by training MILE at different resolutions: 75 x 120,
150 x 240, 300 x 480, and 600 x 960 (our proposed resolution). We report the results in Table 4 and
observe a significant decrease in both driving score and cumulative reward. The performance drop
is most severe in the infraction penalty metric. To get a better understanding of what is happening,
we detail in Table 5 the breakdown of the infractions. We report the number of red lights run, the
number of vehicle collisions, and the number of pedestrian collisions, all per kilometre driven. As
the resolution of the image lowers, the number of infractions increases across all modalities (red
lights, vehicles, and pedestrians). These results highlight the importance of high resolution images to
reliably detect traffic lights, vehicles, and pedestrians.

Table 4: Analysis on the image resolution. We report driving performance on a new town and new
weather conditions in CARLA.

Image resolution Driving Score Route Infraction Reward Norm. Reward
75 x 120 20.9 £ 0.0 87.5+0.0 253+£00 5674+0.0 0.65 + 0.0
150 x 240 2794+ 0.0 81.8£0.0 404+£0.0 5017+0.0 0.65 £ 0.0
300 x 480 433 4+0.0 96.1£0.0 444400 5814+0.0 0.55+0.0
600 x 960 61.1+3.2 974+08 63.0+3.0 7621+ 460 0.67 = 0.02
Expert 88.4+ 0.9 97.6£12 905412 8694 + 88 0.70 £ 0.01

Table 5: Analysis on the image resolution. We report the breakdown of infraction penalties on a new
town and new weather conditions in CARLA. The metrics are: number of red lights run, number of
vehicle collisions, and number of pedestrian collisions. They are normalised per kilometre driven.
Lower is better.

Image resolution Red lights (/) Vehicles (|]) Pedestrians (|)

75 % 120 3.07+0.0 0.77 £ 0.0 0.07+0.0
150 x 240 2.39£0.0 0.35+0.0 0.03+0.0
300 x 480 0.99 £ 0.0 0.31 £ 0.0 0.05+0.0
600 x 960 0.13 £ 0.04 0.24 + 0.05 0.01 + 0.01
Expert 0.04+£0.01 0.15+0.01 0.02 £ 0.00

A.3 Training Town Evaluation

We also evaluate our method on towns and weather conditions seen during training. As reported in
Table 6, our model shows a 21% relative improvement in driving score with respect to Roach. Note
that the RL expert has a lower performance than in test town Town05, because Town03 was designed
as the most complex town [52].

Table 6: Driving performance in CARLA on a town and weather conditions seen during training.
Metrics are averaged across three runs.

Driving Score Route Infraction Reward Norm. Reward

Roach [9] 506 £ 1.9 91.0+ 0.7 569=+12 4419 £ 487 0.38 + 0.04
MILE 61.4+0.3 89.3+25 694+13 7627 £190 0.71 + 0.01

Expert 81.5+£28 95.1+12 85.6+£17 7740 =£220 0.69 + 0.03
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(b) Resolution 300 x 480. (¢) Resolution 150 x 240. (d) Resolution 75 x 120.

Figure 6: Input image observation at different resolutions. The red traffic light becomes almost
indistinguishable in lower resolutions.

A.4 Evaluation in the Settings of Past Works
We also evaluated our model in the evaluation settings of:

* TransFuser [48]: the full 10 test routes of Town05 in ClearNoon weather and no scenarios
(Table 7);

e LAV [10]: 2 test routes from Town02 and 2 test routes in Town05 in weathers [SoftRainSun-
set, WetSunset, CloudyNoon, MidRainSunset] and no scenarios (Table 8).

Table 7: Driving performance in CARLA in the TransFuser [48] evaluation setting.

Driving Score Route Infraction Reward Norm. Reward
TransFuser [48] 437+ 2.4 79.6 = 8.5 - - -
MILE 69.9 + 7.0 98.3+21 709+68 7792+ 663 0.69 £ 0.03

Table 8: Driving performance in CARLA in the LAV [10] evaluation setting.
Driving Score Route Infraction Reward Norm. Reward

LAV [10] 542+ 8.0 78758 73.0+4.9 - -
MILE 64.3 £5.2 99.1+15 646£54 9631+ 341 0.72 £ 0.01
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(b) Resolution 300 x 480. (c) Resolution 150 x 240. (d) Resolution 75 x 120.

Figure 7: Input image observation at different resolutions. It becomes increasingly harder to see the
pedestrian as the resolution decreases.
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B Lower Bound Derivation

Proof. Let qu.s = q(hi7,s1.r|ovr, yi.r, a1r) = q(hiz, s1.7|o1.r, a1.7—1) be the variational
distribution (where we have assumed independence of (yi.r,ar) given (o1.r,a;.7—1)), and
p(h1.7,81.7|01.7,y1.7, 21.7) be the posterior distribution. The Kullback-Leibler divergence be-
tween these two distributions writes as:

Dxr (q(hy.r,sir|ovr, yir,arr) || p(hrr,sirlorr, yir, arr))

q(hi.7,s1.rlovT, YT, arT)

p(hir,sirloLr, yir, air)

q(hlzTa51:T|01:T7YI:TaalzT)p(OlzT7y1:T>al:T)
p(hy.r,si.r)p(or.r, yi.r,ar.r|hir, s1.1)

=logp(or.r,y1.7,a1:7) = Eny i sio~gn.s 108 (01, Y17, arrhir, si.7)]
+ Dxwi(q(hy.r, si.r|ovr, yir, avr) || p(hir, sir))

= Eh1:T~,51;T~¢ZH,S |:10g

= ]EhlzT,Sl:TNlIH,S |:10g

Since Dk, (¢(h1.7,s1.r[ovr, yi7,a1.r) || p(hir, sirlovr, yi.r,a1.7)) > 0, we obtain the fol-
lowing evidence lower bound:

IOgP(OLT, YiT, a1:T) Z Ehl:T,serNqH,s [logp(ol:Ta Y1, al:T‘hltTa sl:T)]
— Dxr(q(hy.r, sir|orr, anr—1) || p(hir,sir)) (N

Let us now calculate the two terms of this lower bound separately. On the one hand:

Ehl:T751:T""ZH,S Ung(Ol:Tay1:T7al:T|h1:T7SI:T)]

T
= Bhyrsirmans 108 [ [ P(0ihe, so)p(yilhy, so)p(ac/hy, s;) ®)
t=1

T
= Ehy,siimalhiesiclocacs) 102 P(0ihe, s¢) + log p(yi[he, s;) + log p(ay by, s¢)]  (9)

t=1

where Equation (8) follows from Equation (2), and Equation (9) was obtained by integrating over
remaining latent variables (h11.7, S¢41.7).

On the other hand:

D1 (q(hy.7, si.r|orr,arr—1) || p(hir,si.r))

Q(hlzT751:T|01:TaalzT1):|
= Eh . . |:10
1:7,81:T~qH,S g p(hl:T751:T)

g(hi.r, sir|orr, arr—1)
p(hi.r,s1.7)

= / g(hi.7, s1.v|o1.r, a1.r—1) log dhy.rdsi.7
hy.7,s1.7

[ gy b1, 8i_1)q(se|o<r, acy)
t|t—1,9t—-1 t|O<t, A<t
= q(hy.7,s1.7|01.7,21.7—1) lo = dhy.7ds;.
/hl-T,sl.T ( 1:T 1T\ 1.7, a1:T 1) g Epht“'lt St 1) (Stlht17st1)] 1.7 dS1.T
(10)
[ q(stlo<t,act)
<t»
~ [ dursurlour.airi)log [ Aottt any g dsir an
hi.r,s1.7 f:1p5t| t—1,St— 1)
(12)

where:

* Equation (10) follows from the factorisations defined in Equation (2) and Equation (5).

* The simplification in Equation (11) results of g(h¢|h;—1,s;—1) = p(h¢|hi_1,8:-1) .
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Thus:

DKL(‘](hlzT; 51:T|01:Ta al:T—l) H p(hlzTa Sl:T))

T T
q(s¢lo<s,ay)
= q(h |h 1,8 _1)q(s O<t,a ) 10g+ dhl;T dSl:T
[IlquslzT (151:[1 o ' tl = <! tz:; p(st|ht717st71)
. a(s1fo1)
= / [T amubi_i.s1)a(silo<i.acy) | | log ==
hyrsur \3—1 p(sl)

T

Q(St|0<tya<t)
+ E log ———=——"— | dhy.p ds;.
—2 gp(st|ht—17st—1)> LR

q(s1]o1)
= Es, g(s1o1) [log ]9(51)]

T T
St|0<t7a<t)
by by - —————— | dhy.pds;.
" /hl:T’SLT <Hq( i s 1)‘1(St|0<t’a<t> <Z p(s¢lhy 1,8 1)) wreT

t=1 2
(13)
= DKL((](51|01> || p(Sl))

T
q(s2lo1:2,a1)
+ hy|h;_1,s:-1)q(st|o<,a log ——=—~
/hlmsm <HQ( tlhe—1,8:-1)q(stfo<t <t)> < g p(s2]h1,51)

t=1
St‘0<t7a<t)
log ———=———"— | dhy.p ds;.
+§ og (st 1,50 1)> rrdsyr

= Dxr(q(s1]o1) [ p(s1)) + Enysi~g(hysifor) [Prr(g (Szlol‘zval) || p(s2/hy,s1))]

T
St|0<t7a<t)
+ hh/—ys_ S¢|0<¢t, A ] _AANTUIT S TR dh dS:
/hl:TaslzT <t1:[1(I( tlhe—1,8:-1)q(st[o< <t> <Z p(selhe_1, s 1)> 1.7 dS1.7
(14)

where Equation (13) and Equation (14) were obtained by splitting the integral in two and integrating
over remaining latent variables. By recursively applying this process on the sum of logarithms
indexed by t, we get:

DKL(Q(hlzTa Sl:T|01:Ta al:T—l) || p(h1;T, Sl:T))
T

= ZEhl:t—laslzt—l’\’q(hl:t—hsl:t—l‘Ogt—l’a<t—1) [DKL(q(St|0§t7a<t) H p(st|ht—1vst—1))] (15)
t=1

Finally, we inject Equation (9) and Equation (15) in Equation (7) to obtain the desired lower bound:

Ing(OlzTa Yi.T, al:T)

T
2 ZEh1:t,S1thq(h1:z751:z\Ogt,»a<t) [logp(ot“lt? St) + Ing(yt|hta St) + Ing(at|hta St)]
t=1
T
- Z]Ehlzt—l;slzt—l"’q(hl:t—hsl:t—l O<t—1,a<t—1) [DKL(q(St‘OSt’a<t) || p(st|ht—1vst—1))] 0
t=1
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C Model Description

We give a full description of MILE. The graphical models of the generative and inference models
are depicted in Figure 8. Table 9 shows the number of parameters of each component of the model,
and Table 10 contains all the hyperparameters used during training. Table 11 describes the inference
network, and Table 12 the generative network.

C.1 Graphical Models

h; h, hy — .- h; h, h;

e/ OWNCY
oglic ORgC

(a) Generative model. (b) Inference model.

Figure 8: Graphical models representing the conditional dependence between states. Deterministic
and stochastic states are represented by, respectively, squares and circles. Observed states are in gray.

C.2 Network Description

Table 9: Parameters of the model.

Name Parameters

Observation encoder e, 34.9M

Inference model 6 p . ior network (g, 0g) 3.9M
Prior network (pg, o) 2.1M

. Recurrent cell fy 6.9M
Generative model 0 BeV decoder Iy 34.2M
Policy g 5.9M

C.3 Details on the Network and on Training.

Lifting to 3D. The Lift operation can be detailed as follows: (i) Using the inverse intrinsics K '
and predicted depth, the features in the pixel image space are lifted to 3D in camera coordinates with
a pinhole camera model, (ii) the rigid body motion M transforms the 3D camera coordinates to 3D
vehicle coordinates (center of inertia of the ego-vehicle).

Observation dropout. At training time the priors are trained to match posteriors through the KL
divergence, however they are not necessarily optimised for robust long term future prediction. Hafner
et al. [4] optimised states for robust multi-step predictions by iteratively applying the transition
model and integrating out intermediate states. In our case, we supervise priors unrolled with random
temporal horizons (i.e. predict states at ¢ 4+ k with k > 1). More precisely, during training, with
probability pyrop We sample the stochastic state s; from the prior instead of the posterior. We call this
observation dropout. If we denote X the random variable representing the k£ number of times a prior
is unrolled, X follows a geometric distribution with probability of success (1 — parop). Observation
dropout resembles z-dropout from Henaff et al. [S3], where the posterior distribution is modelled
as a mixture of two Gaussians, one of which comes from the prior. During training, some posterior
variables are randomly dropped out, forcing other posterior variables to maximise their information
extraction from input images. Observation dropout can be seen as a global variant of z-dropout since
it drops out all posterior variables together.
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Table 10: Hyperparameters.

Category Name Value
GPUs 8 Tesla V100
Trainin batch size 64
g precision Mixed precision (16-bit)
iterations 5x 104
name AdamW
learning rate 1x10*
weight decay 1x1072
Optimiser g; 88 99
£ 1x10°8
scheduler OneCycleLR
pct start 0.2
size 600 x 960
crop [64, 138, 896, 458] (left, top, right, bottom)

Input image

field of view
camera position
camera rotation

100°
[—1.5,0.0,2.0] (forward, right, up)
[0.0,0.0,0.0] (pitch, yaw, roll)

size H, x W, 192 x 192
BeV label resolution b, 0.2m/pixel
length T’ 12
Sequence frequency 5Hz
observation dropout pgrop  0.25
action weight 1.0
image weight 0.0
segmentation weight 0.1
segmentation top-k 0.25
Loss instance weight 0.1
instance center weight 200.0
instance offset weight 0.1
image weight 0.0
kl weight 1x1073
kl balancing 0.75

Additional details The action space is in R? with the first component being the acceleration in
[—1, 1]. Negative values correspond to braking, and positive values to throttle. The second component
is steering in [—1, 1], with negative values corresponding to turning left, and positive values to turning
right. For simplicity, we have set the weight parameter of the image reconstruction to 0. In order to
improve reconstruction of the bird’s-eye view vehicles and pedestrians, we also include an instance

segmentation loss [54]. Finally, we use the KL balancing technique from [5].
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Table 11:

Inference model ¢.

Category Layer Output size Parameters
Input 3 X 320 x 832 = o 0
ResNet18 [55] [128 x 40 x 104,256 x 20 X 52,512 x 10 X 26] 11.2M
Image encoder e Feature aggregation ~ 64 X 40 X 104 = u, 0.5M
8 ® Depth 37 x 40 x 104 = d, 0.5M
Lifting to 3D 64 x 37 x 40 x 104 0
Pooling to BeV 64 X 48 X 48 = b 0
Route map encoder Input 3 X 64 X 64 = route; 0
P ¢ ResNet18 [55] 16 = ry 11.2M
Input 1 = speed, 0
Speed encoder ¢, Dense layers 16 = m; 304
. Input [64 x 48 x 48,16, 16] = [by, r¢, my] 0
Compressing to 1D ¢, ResNet18 [55] 512 = x; 11.5M
. Input 1024, 512] = [ht, x 0
Posterior network (p.4, 74 ) Depnse layers %5127 512] J= e 3.9M
Table 12: Generative model 6.

Category Layer Output size Parameters
. Input 1024 = hy 0
Prior network (116, 06)  popce jayers (512, 512] 2.1M

Input [1024, 512, 2] = [hy, s¢, a¢] 0
Recurrent cell fo Action layer 64 192
Pre GRU layer 1024 0.6M
GRU cell 1024 = hyyq 6.3M
Input [512 x 3 x 3,1024, 512] = [constant, hy, s¢] 0
Adaptive instance norm 512 x 3 x3 1.6M
Conv. instance norm 512 x 3 x 3 3.9M
Upsample conv. instance norm 512 X 6 X 6 7.9M
BeV decoder I Upsample conv. instance norm 512 X 12 x 12 7.9M
o Upsample conv. instance norm 512 X 24 x 24 7.9M
Upsample conv. instance norm 256 X 48 X 48 3.3M
Upsample conv. instance norm 128 x 96 x 96 1.2M
Upsample conv. instance norm 64 X 192 x 192 0.5M
Output layer [8 x 192 x 192,1 x 192 x 192,2 x 192 X 192] 715
. Input [1024,512] = [hy, s¢] 0
Policy Dense layers 2 5.9M
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D Experimental Setting

D.1 Dataset

Each run was randomised with a different start and end position, as well as with traffic agents [9]. A
random number of vehicles and pedestrians were spawned in the environment as specified in Table 13.

Table 13: Uniform sampling intervals of spawned vehicles and pedestrians in each town during
training.

Town Number of vehicles Number of pedestrians
TownO1 [80, 160] [80, 160]
Town03 [40, 100] [40, 100]
Town04 [100, 200] [40, 120]
Town06 [80, 160] [40, 120]

D.2 Metrics

We report metrics from the CARLA challenge [45] to measure on-road performance: route completion,
infraction penalty, and driving score.

* Route completion Rcompiction € [0, 1]: for a given simulation scenario, the percentage of
route completed by the driving agent. The simulation can end early if the agent deviates
from the desired route by more than 30m, or does not take any action for 180s.

* Infraction penalty /;,q..1,: multiplicative penalty due to various infractions from the agent
(collision with pedestrians/vehicles/static objects, running red lights etc.). Ipenalty € [0,1],
with Ienalty = 1 meaning no infraction was observed.

* Driving score D: measures both how far the agent drives on the given route, but also
how well it drives. D is defined as D = Rcompletion X Ipenaity € [0,1], with D =1
corresponding perfect driving. For a full description of these metrics, please refer to [45].

We now define how the normalised cumulative reward is defined. At every timestep, the environment
computes a reward r € [Rpin, 1] [46] for the driving agent. If N is the number of timesteps
the agent was deployed for without hitting a termination criteria, then the cumulative reward
R € [N X Rpin, N]. In order to account for the length of the simulation (due to various stochastic

events, it can be longer or shorter), we also report the normalised cumulative reward R = R/N.

We also wanted to highlight the limitations of the driving score as it is obtained by multiplying the
route completion with the infraction penalty. The route completion (in [0, 1]) can be understood as the
recall: how far the agent has travelled along the specified route. The infraction penalty (also in [0, 1])
starts at 1.0 and decreases with each infraction with multiplicative penalties. It can be understood as
the precision: how many infractions has the agent successfully avoided. Therefore, two models are
only comparable at a given recall (or route completion), as the more miles are driven, the more likely
the agent risks causing infractions. We instead suggest reporting the cumulative reward in future, that
overcomes the limitations of the driving score by being measured at the timestep level. The more
route is driven, the more rewards are accumulated along the way. This reward is however modulated
by the driving abilities of the model (and can be negative when encountering hard penalties).

D.3 Evaluation Settings

We measure the performance of our model on two settings. Each evaluation is repeated three times.

* New town, new weathers: the 10 test scenarios in Town05 [45], on 4 unseen weather
conditions: SoftRainSunset, WetSunset, CloudyNoon, MidRainSunset.

¢ Train town, train weathers: the 20 train scenarios in Town03 [45], on 4 train weather
conditions: ClearNoon, WetNoon, HardRainNoon, ClearSunset.
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