

Objectives

- Define the maximal and single linkage algorithms in terms of the finite fuzzy singular set functor.
- 2 Reformulate existing results on hierarchical overlapping clustering algorithms [CGHS16] in terms of functors that factor through a category of simplicial complexes.
- ³Introduce a functorial strategy for using a finite clustering to partition an infinite space.

Extrapolation

In practice we often need to extrapolate a clustering to out-of-sample points. Say we have a flat clustering functor C, a not-necessarily-finite uber-metric space $(\mathbf{X}, d_{\mathbf{X}})$, and some finite $X \subset \mathbf{X}$. We want to produce a covering of $(\mathbf{X}, d_{\mathbf{X}})$ by grouping the points in $\mathbf{X} - X$ into the sets in $C(X, d_{\mathbf{X}})$. Intuitively, we want to do this in a way such that if the points $x' \in X$ and $x \in \mathbf{X} - X$ would be placed into the same cluster if we ran C on $X \cup \{x\}$, then they will share a set in this covering of $(\mathbf{X}, d_{\mathbf{X}})$.

To do this, first define a functor $C_{X \cup \{x\}}$ that maps uber-metric spaces of the form $(X \cup \{x\}, d_{\mathbf{X}})$ to the maximal cover that is refined by $C(X, d_{\mathbf{X}}) \cup \{\{x\}\}$ and refines $C(X \cup \{x\}, d_{\mathbf{X}})$. The cover $C_{X \cup \{x\}}(X \cup \{x\}, d_{\mathbf{X}})$ $\{x\}, d_{\mathbf{X}}$) is identical to $C(X, d_{\mathbf{X}})$, except some of the sets in this cover will also contain the point x. Intuitively, $C_{X \cup \{x\}}$ assigns each $x \in \mathbf{X} - X$ to the sets in $C(X, d_{\mathbf{X}})$ that contain the points in X that share a cluster with x in $C(X \cup \{x\}, d_{\mathbf{X}})$. In order to stitch together each of these assignments into a cover of \mathbf{X} , we can simply take the colimit of the functor $C_{X\cup\{x\}}$. Intuitively, this colimit is a cover of X that is refined by $C(X, d_{\mathbf{X}}) \cup \{\{x_i\} \mid x_i \in \mathbf{X} - X\}.$

Functorial Clustering via Simplicial Complexes

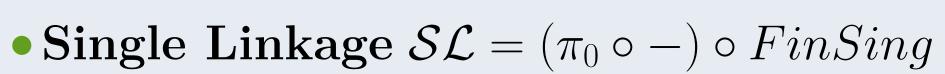
Dan Shiebler

University of Oxford

X is a cover of X such that: (1) if $A, B \in \mathcal{C}_X$ and $A \subseteq B$, then $A = B$, (2) the simplicial complex with vertices corresponding to the elements of X and faces all finite subsets of the sets in \mathcal{C}_X is a flag complex. The category Cov has tuples (X, \mathcal{C}_X) as objects where \mathcal{C}_X is a non-nested flag cover of the finite set X. The morphisms between (X, \mathcal{C}_X) and (Y, \mathcal{C}_Y) are refinement-preserving functions.	\bullet In the category UMet objects are finite
Given a set X , a non-nested flag cover \mathcal{C}_X of X is a cover of X such that: (1) if $A, B \in \mathcal{C}_X$ and $A \subseteq B$, then $A = B$, (2) the simplicial complex with vertices corresponding to the elements of X and faces all finite subsets of the sets in \mathcal{C}_X is a flag complex. The category Cov has tuples (X, \mathcal{C}_X) as objects where \mathcal{C}_X is a non-nested flag cover of the finite set X . The morphisms between (X, \mathcal{C}_X) and (Y, \mathcal{C}_Y) are refinement-preserving functions. A flat clustering functor is a functor C : UMet \rightarrow Cov that is the identity on the	uber-metric spaces and morphisms are
X is a cover of X such that: (1) if $A, B \in C_X$ and $A \subseteq B$, then $A = B$, (2) the simplicial complex with vertices corresponding to the elements of X and faces all finite subsets of the sets in C_X is a flag complex. The category Cov has tuples (X, C_X) as objects where C_X is a non-nested flag cover of the finite set X. The morphisms between (X, C_X) and (Y, C_Y) are refinement-preserving functions. A flat clustering functor is a functor $C : \mathbf{UMet} \to \mathbf{Cov}$ that is the identity on the	non-expansive maps.
and $A \subseteq B$, then $A = B$, (2) the simplicial complex with vertices corresponding to the elements of X and faces all finite subsets of the sets in \mathcal{C}_X is a flag complex. The category Cov has tuples (X, \mathcal{C}_X) as objects where \mathcal{C}_X is a non-nested flag cover of the finite set X. The morphisms between (X, \mathcal{C}_X) and (Y, \mathcal{C}_Y) are refinement-preserving functions. A flat clustering functor is a functor $C : \mathbf{UMet} \to \mathbf{Cov}$ that is the identity on the	Given a set X, a non-nested flag cover \mathcal{C}_X
complex with vertices corresponding to the elements of X and faces all finite subsets of the sets in C_X is a flag complex. The category Cov has tuples (X, C_X) as objects where C_X is a non-nested flag cover of the finite set X. The morphisms between (X, C_X) and (Y, C_Y) are refinement-preserving functions. A flat clustering functor is a functor C : UMet \rightarrow Cov that is the identity on the	X is a cover of X such that: (1) if $A, B \in \mathcal{C}_X$
elements of X and faces all finite subsets of the sets in \mathcal{C}_X is a flag complex. The category Cov has tuples (X, \mathcal{C}_X) as objects where \mathcal{C}_X is a non-nested flag cover of the finite set X. The morphisms between (X, \mathcal{C}_X) and (Y, \mathcal{C}_Y) are refinement-preserving functions. A flat clustering functor is a functor $C: \mathbf{UMet} \to \mathbf{Cov}$ that is the identity on the	and $A \subseteq B$, then $A = B$, (2) the simplicial
sets in \mathcal{C}_X is a flag complex. The category Cov has tuples (X, \mathcal{C}_X) as objects where \mathcal{C}_X is a non-nested flag cover of the finite set X. The morphisms between (X, \mathcal{C}_X) and (Y, \mathcal{C}_Y) are refinement-preserving functions. A flat clustering functor is a functor $C : \mathbf{UMet} \to \mathbf{Cov}$ that is the identity on the	complex with vertices corresponding to the
The category Cov has tuples (X, \mathcal{C}_X) as objects where \mathcal{C}_X is a non-nested flag cover of the finite set X. The morphisms between (X, \mathcal{C}_X) and (Y, \mathcal{C}_Y) are refinement-preserving functions. A flat clustering functor is a functor $C : \mathbf{UMet} \to \mathbf{Cov}$ that is the identity on the	elements of X and faces all finite subsets of the
where C_X is a non-nested flag cover of the finite set X. The morphisms between (X, C_X) and (Y, C_Y) are refinement-preserving functions. A flat clustering functor is a functor $C : \mathbf{UMet} \to \mathbf{Cov}$ that is the identity on the	sets in \mathcal{C}_X is a flag complex.
set X. The morphisms between (X, \mathcal{C}_X) and (Y, \mathcal{C}_Y) are refinement-preserving functions. A flat clustering functor is a functor $C: \mathbf{UMet} \to \mathbf{Cov}$ that is the identity on the	The category Cov has tuples (X, \mathcal{C}_X) as object
(Y, \mathcal{C}_Y) are refinement-preserving functions. A flat clustering functor is a functor $C: \mathbf{UMet} \to \mathbf{Cov}$ that is the identity on the	where \mathcal{C}_X is a non-nested flag cover of the finite
• A flat clustering functor is a functor $C: \mathbf{UMet} \to \mathbf{Cov}$ that is the identity on the	set X. The morphisms between (X, \mathcal{C}_X) and
$C: \mathbf{UMet} \to \mathbf{Cov}$ that is the identity on the	(Y, \mathcal{C}_Y) are refinement-preserving functions.
	• A flat clustering functor is a functor
underlying set.	$C: \mathbf{UMet} \to \mathbf{Cov}$ that is the identity on the
	underlying set.

Single and Maximal Linkage

- The functor $Pair : UMet \to FSCpx$ sends the uber-metric space $(X, d_X) \in UMet$ to the fibered fuzzy simplicial complex $F_X: I^{op} \to \mathbf{FSCpx}$ where for $a \in (0, 1], F_X(a)$ is a simplicial complex whose set of 0-simplices is X and whose 1-simplices are the pairs $\{x_1, x_2\} \subseteq X$ such that $d_X(x_1, x_2) \leq -\log(a)$. $F_X(a)$ has no *n*-simplices for n > 1.
- Define the **finite singular set functor** as $FinSing = (S_{fl} \circ -) \circ (Flag \circ -) \circ Pair$
- Maximal Linkage $\mathcal{ML} = (Flag \circ -) \circ FinSing$ • The points x_1, x_2 lie in the same cluster with strength at least a if the largest pairwise distance between them is no larger than $-\log(a)$.



• The points $x_1, x_2 \in X$ lie in the same cluster with strength at least a if there exists a sequence of points $x_1, x_i, x_{i+1}, \dots, x_{i+n}, x_2$ such that $d(x_i, x_{i+1}) \leq -\log(a)$

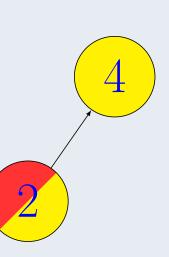
Hierarchical Clustering Definitions

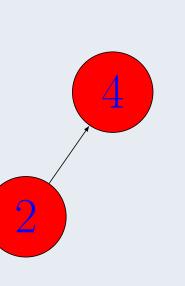
A fibered fuzzy simplicial complex is a functor $F_X: I^{op} \to \mathbf{SCpx}$ such that for any morphism $a \leq a'$ in I^{op} , the simplicial map $F_X(a \leq a')$ acts as the identity on 0-simplices.

Fuzzy non-nested covers are functors $F_X: I^{op} \to \mathbf{Cov}$ such that $S_{fl} \circ F_X$ is a fibered fuzzy simplicial complex. The category of fuzzy non-nested covers and natural transformations is FCov.

The functors $S_{fl} : \mathbf{Cov} \to \mathbf{SCpx}$ and $Flag: \mathbf{SCpx} \to \mathbf{Cov}$ are adjoint functors that map between fibered fuzzy simplicial complexes and fuzzy non-nested covers

A hierarchical clustering functor is a functor $H: \mathbf{UMet} \to \mathbf{FCov}$ such that for $a \in (0,1], H(-)(a) : \mathbf{UMet} \to \mathbf{Cov} \text{ is a flat}$ clustering functor.





Intuitively, single linkage and maximal linkage clustering lie on two ends of a spectrum of clustering refinement. Any other non-trivial hierarchical clustering functor lies between them. Formally, we can make the following claim, which is inspired by Theorem 8 in Culbertson et al [CGHS16]:

Suppose $H : \mathbf{UMet} \to \mathbf{FCov}$ is a non-trivial hierarchical clustering functor such that for all $a \in (0,1]$, the functor $H(-)(a) : \mathbf{UMet} \rightarrow$ Cov has clustering parameter $\delta_{H,a}$ and define $W_H(a) = e^{-\delta_{H,a}}$. Then there exist natural transformations with inclusion maps as components from $\mathcal{ML}(-)(W_H(-))$ to H and from H to $\mathcal{SL}(-)(W_H(-)).$

[CGHS16] Jared Culbertson, Dan P Guralnik, Jakob Hansen, and Peter F Stiller. Consistency constraints for overlapping data clustering. arXiv preprint arXiv:1608.04331, 2016.

I would like to thank my advisors, Jeremy Gibbons and Cezar Ionescu, for their help and support.

Universality of Single/Maximal Linkage

References

Acknowledgements

Contact Information

• Web: danshiebler.com • Email: daniel.shiebler@kellogg.ox.ac.uk