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Figure 1: An visualization of the data in Vespula-Weevil and Butterfly-Moth datasets.

We visualize the samples from both Vespula-Weevil and Butterfly-Moth datasets in Figure 1.
For Vespula-Weevil dataset, the images were generated by varying its body size and color, and also
the head size and color. To distinguish each image, only a 2-d feature, i.e., 1) the ratio of the size of
body and head; and 2) the contrast of the color of head and body, is sufficient. For Butterfly-Moth
dataset, there are four species in it. Specifically, there are two different species of butterflies (Peacock
butterfly and Ringlet butterfly) and also two different species of moths (Catepillar moth and Tiger
moth). In general, it is much easier to classify Peacock butterfly and caterpillar moth. However, Tiger
moth and Ringlet butterfly are hard to be correctly classified due to the visual similarity.

B Extension to General Costs

When the cost is non-uniform, i.e., c(x) 6= c(x′) if x 6= x′. Then, we can select the example at
iteration t based on the following rule

xct ∈ arg max
∆(x|xc

1:t−1, q,H)

c(x)
. (1)

C Proofs of Theorem 1

Definition 1 (Pointwise submodularity ratio). For any sequence function f , the pointwise submod-
ularity ratio with respect to any sequences σ, σ′ and query function q and hypothesis class H is
defined as

ρH(σ, σ′, q) = min
x∈X

∆(x|σ, q,H)

∆(x|σ ⊕ σ′, q,H)
. (2)

Definition 2 (Pointwise backward curvature). For any sequence function f , the pointwise back-
ward curvature with respect to any sequences σ, σ′ and query function q and hypothesis class H is
defined as

γH(σ, σ′, q) = 1− f(σ′ ⊕ σ|q,H)− f(σ|q,H)

f(σ′|q,H)− f(∅|q,H)
. (3)

Lemma 1. For any (X ,H) and active learner with query function q, we have OPTT ≤ OPTT+AL ≤
2 · OPTT, where OPTT is the classic teaching complexity.

Proof. Suppose the optimal teaching sequence corresponding to OPTT is (xt1, ..., x
t
OPTT) and the

optimal teaching sequence corresponding to OPTT+AL is (xq1, x
c
1, ..., x

q
m, x

c
m) with m = OPTT+AL/2.
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We prove the lemma by contrapositive. Suppose that OPTT+AL < OPTT. For this case, the teaching
sequence (xt1, ..., x

t
OPTT) is not optimal. This contradicts with the definition of OPTT. Therefore, we

must have OPTT ≤ OPTT+AL.

To show that OPTT+AL ≤ 2 · OPTT, consider the following case, we can replace xci with xti for all i.
Then when m = OPTT, the sequence (xq1, x

c
1, ..., x

q
m, x

c
m) must cover all the incorrect hypotheses.

Therefore, we can conclude that the optimal teaching sequence for OPTT+AL must be no longer than
2 · OPTT.

Theorem 1. The sample complexity of the α-approximate greedy algorithm for any active learner
with a initial hypothesis classH is at most(

α · O (log |H| · log (|H|/γg))
ρgγg log(γg/(γg − 1))

+
α · O (log (|H|/γg))

ρgγg

)
· OPTT+AL, (4)

where γg = maxH∈H′ γgH and ρg = minH∈H′ ρgH with

γgH = max
i≥1

γH(σH , xH1:i, q), ρgH = min
i,j≥0

ρH(xH1:i, σ
H
1:j , q), (5)

which are computed with respect to the greedy teaching sequence xH and the optimal teaching
sequence σH for the corresponding active learner with a initial hypothesis class H ∈ H′ =
{Hq(X)|X ∈ X ? ∧ |Hq(X)| ≥ 2} and query function q.

Proof. Suppose that the optimal teaching sequence for active learner with a initial hypothesis class
H is σ, and K = OPTT+AL, we first have the following holds by using the definition of ρg (we omitted
the dependency on q andH in ∆(·) and f(·) for clarity)

∆(σ|xc1:t) =

K∑
i=1

∆(σi|xc
1:t ⊕ σ1:i−1) (6)

≤ 1

ρg
·
K∑
i=1

∆(σi|xc
1:t) (7)

≤ K

ρg
·max
x∈X

∆(x|xc
1:t). (8)

Then, using the definition of backward curvature (f(∅) = 0 in our case), we get

γg · f(xc
1:t) ≥ f(xc

1:t)− f(xc
1:t ⊕ σ) + f(σ). (9)

By combining the first results, we get

f(σ)− γg · f(xc
1:t) ≤ ∆(σ|xc

1:t) (10)

≤ K

ρg
·max
x∈X

∆(x|xc
1:t). (11)

By the assumptions of α-approximate greedy algorithm, the marginal gain of selected example xc
t+1

by the greedy policy satisfies

∆(xc
t+1|xc

1:t) ≥
1

α
·max
x∈X

∆(x|xc
1:t). (12)

This implies the objective at iteration t+ 1 can be lower bounded by

1

α
·max
x∈X

∆(x|xc
1:t) ≥

ρg

αK
· (f(σ)− γg · f(xc

1:t)) (13)

⇒ f(xc
1:t) + ∆(xc

t+1|xc
1:t) ≥

ρg

αK
· f(σ) +

(
1− γgρg

αK

)
· f(xc

1:t). (14)

Then, we get the following recursive form of the greedy performance

f(xc1:t+1) ≥ ρg

αK
· f(σ) +

(
1− γgρg

αK

)
· f(xc

1:t). (15)
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By solving the recursion, we have

f(xc1:T1
) ≥ f(σ) ·

T1−1∑
i=1

ρg

αK
·
i−1∏
t=0

(
1− ρgγg

αK

)t
(16)

=
f(σ)

γg
·

(
1−

(
1− ρgγg

αK

)T1
)
. (17)

Since (1 + a)x ≤ eax when x ≥ 0, we have

f(xc1:T1
) ≥ f(σ)

γg
·
(

1− e−(ρ
gγg·T1)/(αK)

)
. (18)

Then, plugging the following in equation 18,

T1 =
α · O(log(|H|/γg))

ρgγg
· OPTT+AL, (19)

we get

f(xc
1:T1

) ≥ |H|
γg
· (1− 1

O(|H|)
) =
|H|
γg

. (20)

Therefore, the above results tells us that, if we run greedy teaching policy for T1 steps, we are
guaranteed to cover at least |H|/γg hypotheses. When γg = 1, we are done.

When γg > 1, we denote the remaining hypotheses asH2 (less than (1−1/γg) · |H|). SinceH2 ⊆ H,
we must have the optimal teaching complexity smaller than 2 · OPTT+AL (by Lemma 1). Therefore,
we can recursively apply the above bound. If we continue run the original greedy algorithm, we are
guaranteed to cover |H2|/γg in

T2 ≤
α · O(log(|H2|/γg))

ρgγg
· OPTT+AL (21)

=
α · O(log(|H| · (γg − 1)/(γg)2))

ρgγg
· OPTT+AL. (22)

We now can write it in terms of Tn,

Tn ≤
α · O(log(|H| · (γg − 1)(n−1)/(γg)n))

ρgγg
· OPTT+AL. (23)

Therefore, the total complexity to cover all the hypotheses except the target hypothesis will be

T =

n∑
i=1

Ti ≤
n∑
i=1

α · O(log(|H| · (γg − 1)(i−1)/(γg)i))

ρgγg
· OPTT+AL. (24)

Since if there is only one hypothesis left, the algorithm will stop. Therefore, we must have the
following upper bound for n(

1− 1

γg

)n
≤ 1

|H|
⇒ n ≤

⌈
log |H|

log(γg/(γg − 1))

⌉
. (25)

Therefore, by plugging n = log |H|/ log(γg/(γg − 1)) + 1 in, we get the total complexity

T =

n∑
i=1

Ti (26)

≤
n∑
i=1

α · O
(
log((|H|/γg) · (γg − 1)(i−1)/(γg)(i−1))

)
ρgγg

· OPTT+AL (27)

≤
nα · O

(
log
(

(|H|/γg) ·
√

(γg − 1)(n−1)/(γg)(n−1)
))

ρgγg
· OPTT+AL (28)

≤ nα · O (log(|H|/γg)
ρgγg

· OPTT+AL (29)

≤
(
α · O (log |H| · log (|H|/γg))
ρgγg log(γg/(γg − 1))

+
α · O (log (|H|/γg))

ρgγg

)
· OPTT+AL. (30)
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D Proofs of Theorem 2

Theorem 2. There exists constraint function ξ, version space H and active learner with query
function q, such that the sample complexity of the greedy teacher is at least Ω(

√
|H|) · OPTT+AL.

Proof. To see this, consider the following realizable example (please refer to Figure 2).

For each xi, we have the following cases

• x1: it can cut away m/6 hypotheses from the version space.
• x2: it can cut away m/6 + 1 hypotheses from the version space.
• x3: it can cut away m/6− 1 hypotheses from the version space.
• xi (i ≥ 4): it can cut away

√
m+ 4− i hypotheses from the version space.

hypothesis
target
data

Figure 2: An illustrative example when the greedy teacher can be arbitrary worse than the optimal teacher. We
visualize the data points and hypotheses in the dual space, where each hypothesis is a point and each data point
is a hyperplane. Specifically, we use • denotes the hypotheses that are not the target one, • denotes the target
hypothesis to teach, and xi are the data points.

Obviously, n =
√
m + 3. There are in total

√
m + 3 examples in the data set. The total number

of hypotheses are |H| = m. We assume that m = (6k + 6)2 where k ∈ N+, which means√
m < m/6 − 1. In addition, we have the following assumptions on the active learner and the

constraint ξ:

• Active learner: we consider the GBS learner.
• Constraint ξ: given the query, the teacher can only choose contrastive examples from the

immediate neighbors of the query point. For example, if the learner picks x4, then the
teacher can only pick contrastive examples from the constrained set {x3, x5}.

Optimal teacher without constraints: for the optimal teacher without the constraints, the total
sample complexity is 2. That is, no matter what the active learner chooses, the teacher can always
choose xn, which cover all the hypotheses except for h?. This gives us OPTT+AL = O(1).

Optimal teacher with constraints: for the optimal teacher with the constraints, the total sample
complexity is 4. That is, the active learner first queries x2, since it cuts the version space most
evenly (so, it is most favored by the GBS learner). Then, the teacher will select x4. In the next
iteration, the learner will query x1, and the techer will pick xn, which cut away all the hypotheses
except the target hypothesis.

Greedy teacher with constraints: for the greedy teacher with the constraints, the total complexity
is
√
m+ 3. At the first iteration, the learner queries x2, and the greedy teacher will select x1. Then,

the learner will query x3, and the teacher picks x4. As we continue, for iteration i ≥ 2, the learner
will query xi+1, and correspondingly, the teacher will pick xi+1. This process will end until xn given
to the learner. Therefore, all the examples will be needed to teach the learner with greedy teacher.

In the above example, we have the sample complexity for the greedy teacher at least

Ω(
√
m) · OPTT+AL = Ω(

√
|H|) · OPTT+AL. (31)
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However, the bound in Theorem 1 also depends on ρg and γg. In this example, the length of the
optimal sequence must be 1 (see the reasoning in optimal teacher without constraints), because the
example xn is sufficient to teach the learner the target hypothesis. Therefore, we can get

ρg = 1 and γg = 1. (32)

Since when γg → 1, the L.H.S. in the parentheses of equation 4 in Theorem 1 is 0. Therefore, the
entire bound will be simplified to

α · O (log (|H|)) · OPTT+AL. (33)

To compute α for the example, we can directly use the definition

α = max
t

maxx∈X ∆(x|xc1:t−1, q)
maxx∈ξ(xq

t)
∆(x|xc1:t−1, q)

≈
√
m. (34)

Since log |H| = o(
√
m), and combining the above reasoning, we can conclude that the linear

dependency on α cannot be avoided in the bound for general cases.

E Proof of Theorem 3 and Remark 2

Definition 3 (k-neighborly). Consider the graph (V,E) with vertex set V = X , and edge set
E = {(x, x′)|dH(x, x′) ≤ k, ∀ x, x′ ∈ X}, where dH(x, x′) = |{h|h ∈ H and h(x) 6= h(x′)}|.
The query and hypotheses space (X ,H) is k-neighborly if the induced graph is connected.
Definition 4 (Coherence parameter). The coherence parameter for (X ,H) is defined as

c?(X ,H) := min
P

max
h∈H

∣∣∣∣∣∑
X
h(x)dP (x)

∣∣∣∣∣ , (35)

where we minimize over all possible distribution on X .
Lemma 2. [Nowak, 2008] Assume that (X ,H) is k-neighborly, and the coherence parameter is c?.
Then, for everyH′ ⊂ H, the query x selected according to GBS must reduce the viable hypotheses
by a factor of at least (1 + c?)/2, i.e.,∣∣∣∣∣∑

h∈H′

h(x)

∣∣∣∣∣ ≤ c? · |H′|, (36)

or the setH′ is small, i.e.,

|H′| ≤ k

c?
. (37)

Proof. For eachH′ ⊂ H, consider the following two situations,

1. minx∈X |H′|−1|
∑
h∈H′ h(x)| ≤ c?,

2. minx∈X |H′|−1|
∑
h∈H′ h(x)| > c?.

For the first situation where minx∈X |H′|−1|
∑
h∈H′ h(x)| ≤ c?, GBS will query the corresponding

x that minimize |H′|−1|
∑
h∈H′ h(x)|. This ensures that

∣∣∑
h∈H′ h(x)

∣∣ ≤ c? · |H′|.
For the second situation where minx∈X |H′|−1|

∑
h∈H′ h(x)| > c?, we claim that there must exists

x+, x− ∈ X such that |H′|−1
∑
h∈H′ h(x+) ≥ c? and |H′|−1

∑
h∈H′ h(x−) < −c?. To see this,

recalling that

c? = c?(X ,H) = min
P

max
h∈H

∣∣∣∣∣∑
X
h(x)dP (x)

∣∣∣∣∣ . (38)
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Then, we must have the following hold

c? ≥ |H′|−1
∣∣∣∣∣∑
h∈H′

∑
X
h(x)dP (x)

∣∣∣∣∣ , (39)

where P is the corresponding minimizer in equation 38. If

|H′|−1
∑
h∈H′

h(x+) ≥ c?, ∀x ∈ X or |H′|−1
∑
h∈H′

h(x+) < −c?, ∀x ∈ X , (40)

then equation 39 won’t be satisfied, which leads to a contradiction. Therefore, we proved the claim.

Since (X ,H) is k−neighborly, there exists a sequence of examples connecting x+ and x−. In the
sequence, every two immediate neighbors are k−neighborhood (i.e., at most k hypotheses in H
predicts differently on them). Besides, there also must exists two neighbors, say x, x′, in the sequence
such that the signs of |H′|−1

∑
h∈H′ h(x) and |H′|−1

∑
h∈H′ h(x′) are different. Without the loss of

generality, let’s assume that |H′|−1
∑
h∈H′ h(x) > c? and |H′|−1

∑
h∈H′ h(x′) < −c?. Following

the above observation, we immediately have the following two inequalities,∑
h∈H′

h(x)−
∑
h∈H′

h(x′) ≥ 2c?|H′|, (41)∣∣∣∣∣∑
h∈H′

h(x)−
∑
h∈H′

h(x′)

∣∣∣∣∣ ≤ 2k, (42)

where the second inequality follows from the k−neighborly condition. By combining these two
inequalities, we get the desired results

|H′| < k

c?
. (43)

Lemma 3. For GBS learner (i.e., β = 1), if (X ,H) is k-neighborly and with coherence parameter
c?, then ρg ≥ min{(1− c?)/(1 + c?), c?/(k − c?)}

Proof. Recall the definition of ρ (we omitted the dependency on H for clarity),

ρ(σ, σ′, q) = min
x∈X

∆(x|σ, q)
∆(x|σ ⊕ σ′, q)

. (44)

The marginal gain is the sum of the marginal gain of the learner’s query and that of the contrastive
example x. Given the history σ (i.e., the teaching sequence), let’s denote the marginal gain of learner’s
query as ∆q(σ) , and the marginal gain of the contrastive example as ∆c(x|σ) (exclude the gain
overlapped with that of the learner’s query). Then, we can rewrite ρ as the following,

ρ(σ, σ′, q) = min
x∈X

∆q(σ) + ∆c(x|σ)

∆q(σ ⊕ σ′) + ∆c(x|σ ⊕ σ′)
(45)

≥ ∆q(σ)

∆q(σ ⊕ σ′)
. (46)

Since (X ,H) is k-neighborly, and the coherence parameter is c?, therefore, applying Lemma 2, we
must have

∆q(σ) ≥
(

1− c?

2

)
· |Hq(σ)|, (47)

if |Hq(σ)| > k/c?. This further implies that

∆q(σ ⊕ σ′) ≤
(

1 + c?

2

)
· |Hq(σ)|, (48)
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By combining these two, we can get (when |Hq(σ)| > k/c?)

ρ(σ, σ′, q) ≥ 1− c?

1 + c?
. (49)

For the case of |Hq(σ)| ≤ k/c?, we simply have the following

ρ(σ, σ′, q) ≥ 1

k/c? − 1
=

c?

k − c?
. (50)

Therefore, we can conclude

ρg ≥ min

{
1− c?

1 + c?
,

c?

k − c?

}
. (51)

Theorem 3. For the GBS learner with a initial hypothesis class H and ground set X , if (X ,H) is
k-neighborly and with coherence parameter c?, then the sample complexity of the greedy teaching
algorithm with any constraint function ξ is at most

α

ε
· O
(
log2(|H|)

)
· OPTT+AL, (52)

where ε = min {(1− c?)/(1 + c?), c?/(k − c?)}, and α ≤ max{k/c?, 2/(1− c?)}.

Proof. By Theorem 1, we have that for any active learner and constraint function, the α-approximate
greedy teaching requires at most(

α · O (log |H| · log (|H|/γg))
ρgγg log(γg/(γg − 1))

+
α · O (log (|H|/γg))

ρgγg

)
· OPTT+AL. (53)

Since γg ≥ 1, then we have

log(|H|/γg) ≤ log(|H|). (54)

Now, consider the following function with x > 1

g(x) =
a

x log(x/(x− 1))
+

1

x
, (55)

of which the derivative is

d
dx
g(x) =

a− (x− 1) · log2(x/(x− 1))− (ax− a) · log(x/(x− 1))

(x− 1) · x2 · log2(x/(x− 1))
. (56)

It’s easy to verify that when a ≥ 2, the derivative must be non-negative. Therefore, the function
g(x) is monotonically increasing. By replacing a with O(log(|H|))2 and x with γg, we have (since
γg < |H|)

O(log(|H|))
γg log(γg/(γg − 1))

+
1

γg
≤ O(log(|H|))
|H| log(|H|/(|H| − 1))

+
1

|H|
≤ O(log(|H|)). (57)

By plugging in the above results to equation 53, we simplifiy it to

α

ρg
· O(log2(|H|)) · OPTT+AL. (58)

By Lemma 3, we can finally conclude that for GBS learner, with k-neighborly (X ,H) and coherence
parameter c?, the sample complexity for α-approximate greedy teaching policy is at most

α

ε
· O(log2(|H|)) · OPTT+AL, where ε = min

{
1− c?

1 + c?
,

c?

k − c?

}
. (59)

2Without the loss of generality, we can assume |H| ≥ 8 > e2
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To further bound the term α, recall the definition of α,

α = max
t

maxx∈X ∆(x|xc1:t−1, q)
maxx∈ξ(xq

t)
∆(x|xc1:t−1, q)

. (60)

Since the learner’s query is the same, the only affecting term is the marginal gain of the contrastive
example provided by the teacher. Consider the extreme case where the numerator covers the entire
version space but the all the examples in ξ(xq

t) cannot cover any hypotheses in the version. This
is equivalent to say that the contribution of x in the denominator is 0. Then, by Lemma 2, when
|Hq(xc

1:t−1)| > k/c?, we must have the following,

α ≤
|Hq(xc

1:t−1)|
(1− c?)/2 · |Hq(xc

1:t−1)|
=

2

1− c?
. (61)

Otherwise, when |Hq(xc
1:t−1)| ≤ k/c?, we must have

α ≤ k/c?

1
=

k

c?
. (62)

By combining them, we can conclude that

α ≤ max

{
2

1− c?
,
k

c?

}
. (63)

Remark 2. The sample complexity of GBS with greedy teacher (even without the constraints) is not
guaranteed to be smaller than that of GBS alone.

Proof. To show this, we provide a realizable example below. In Figure 3, each circle is corresponding
to a data point, and each dot is a hypothesis in the version space. Specifically, the blue • are the
incorrect hypotheses and the red • is the correct/target hypothesis. For each data point xi, all the
hypotheses covered by the corresponding circle are those hypotheses that predict incorrectly on xi.
Therefore, upon the learner receives the data point xi, all the hypotheses covered by the corresponding
circle will be immediately removed from the learner’s version space.

𝑥"
𝑥#

𝑥$
𝑥%

𝑥&

𝑥'

Target hypothesis
Incorrect hypothesis
Data point

Figure 3: An illustrative example when GBS alone can achieve better sample complexity than that of GBS with
greedy teacher.

• For GBS learner alone, it first selects the query x1 which covers/removes the right part
of the hypotheses. Then, it selects x2, because x2 is the most uncertain point among
{x2, x3, x4, x5}. Lastly, it selects any point from {x3, x4, x5}, leaving only the target
hypothesis (red •) in the version space. Therefore, the sequence for the GBS alone is
{x1, x2, x3} or {x1, x2, x4} or {x1, x2, x5}, of which the total cost is 3.

• For GBS with a greedy teacher (with any constraints on the contrastive example), the GBS
learner will first query x1 and the teacher will select x4 as the contrastive example. In the
next round, the learner will query either x3 (or x5), and the teacher will select either x2 or
x5 (or either x2 or x3). Then, only the target hypothesis is left. Therefore, the sequence
for GBS with greedy teacher is (x1, x4, x3, x2) or (x1, x4, x3, x5) or (x1, x4, x5, x2) or
(x1, x4, x5, x3), of which the cost is 4.
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We can see that for GBS learner alone, it only requires 3 examples to identify the target hypothesis,
whereas for GBS with an unconstrained teacher, it needs 4 examples for identifying the target
hypothesis. This example demonstrates that the greedy teacher is not always helpful for active
learners, and sometimes it will even hurt the performance of the active learner.
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