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A More Details about SE(3) Diffusion Model for Point Cloud Registration

A.1 Proof of Variational Lower Bound
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Figure 1: Probabilistic graphical model of our SE(3) diffusion model-based registration framework.

Based on the established probabilistic graphical model in Fig. 1, the variational lower bound on our
SE(3) diffusion model for point cloud registration can be derived as below. Specifically, we first
inject a set of latent transformation variables {H1,H2, ...,HT } into the log likelihood of the training
data {X ,M,H0} ∼ pdata and the initial variational lower bound can be derived as:
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where the inequality (1) is based on the Jensen’s inequality and the step (2) is based on the chain rule
in probability theory; p(HT ) denotes the prior transformation distribution. Next, based on the defined
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conditional dependencies of random variables in our probabilistic graphical model (Fig. 1), the chain
rule is further used to factorize the posterior distribution q(H1:T | H0) and the prior distribution
pθ(H0:T | X ,M) as below:
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By inserting the factorized posterior (Eq. 3) and prior (Eq. 2) distributions into Eq. 1, we can derive
the detailed variational lower bound as below:
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Particularly, using Bayes’ formula, q(Ht | Ht−1) can be deformed as below:
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By inserting Eq. 5 into the variational lower bound 4, we can further rewrite the variational lower
bound as below:
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Finally, considering that source and model point clouds and their ground-truth transformations follow
the distribution of training data pdata, the variational lower bound of the log likelihood over the whole
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training data can be expressed as:
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A.2 Details about Perturbation Transformation Exp(γ
√

1− ᾱtε).

As demonstrated in our main paper, we utilize the Lie algebra for randomly sampling the desired
perturbation transformation to randomize our SE(3) diffusion process. Specifically, we randomly

sample a 6D noise vector ε =
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]
∈ R6 from N (0, I) over R6, which can be interpreted as an
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Its homogeneous transformation matrix in SE(3) can be written as:
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where the rotation matrix R(ε̃r) and the left-jacobian matrix J(ε̃r) can be calculated as:
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Here, the rotation angle θ = ‖ε̃r‖2 and the unit-length direction of the axis of rotation u = ε̃r/θ.

B More Visualization Results

In Fig. 2, we provide more visualization results about the reverse process of Diff-RPMNet on TUD-
L [5], LINEMOD [4], and Occluded-LINEMOD [2] benchmark datasets, respectively. It can be
observed that guided by the Bayesian posterior, the reverse process can progressively refine the pose
of the source point cloud to align with the model point cloud precisely.

C Discussions about Broader Impacts, Limitations and Future Work

Broader Impacts. In this section, we clarify the social and academic impacts of our diffusion
registration model as follows:

(1) For social impact, our diffusion model-based point cloud registration framework has the potential
to significantly enhance the accuracy of pure point cloud-based 6D object pose estimation. Conse-
quently, it can make noteworthy contributions to various computer vision applications, including
robotics, augmented reality, and autonomous systems, particularly in challenging scenarios such as
those involving low-quality lighting conditions. To our best knowledge, we have not identified some
evident negative social impacts, and we believe that by implementing rigorous and secure regulations,
potential negative impacts can be mitigated.

(2) For academic impact, our paper represents the pioneering effort in integrating the diffusion
probabilistic model into the SE(3) registration task to achieve more robust 6D object pose estimation.
This innovative registration framework exhibits promising registration performance. We hold the con-
viction that this new framework will inspire the 3D registration community, driving the development
of more powerful diffusion model-based registration pipelines. Furthermore, within the domain of
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Figure 2: Visualization results of reverse process of Diff-RPMNet on TUD-L [5], LINEMOD [4],
and Occluded-LINEMOD [2] benchmark datasets.

pure point cloud-based 6D object pose estimation, we believe our research not only inspires but also
encourages the exploration of more correlated pose estimation models. To the best of our knowledge,
no apparent negative impact on the academic field has been observed.

Limitations. Despite the promising results of our SE(3) diffusion registration model for 6D object
pose estimation, several limitations should be acknowledged:

(1) Limited inference speed. At each reverse step, our diffusion registration model needs to employ
the surrogate registration for computing the Bayesian posterior as the guidance of the pose refinement
of the source point cloud. Consequently, as the number of reverse steps increases, the inference time
of our model grows linearly, resulting in limited inference efficiency.

(2) Similar to [3], our work also primarily focuses on enhancing the robustness of object-level point
cloud registration in real-world scenarios. However, it does not address the identification of the source
(object) point cloud directly. Instead, we rely on the mask maps provided by the datasets to extract
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the source point cloud from the depth maps and leave the point cloud segmentation that segments
the source (object) point cloud for future work. It is important to note that despite the usage of the
mask map, the resulting source point clouds are still partial due to partial scanning and may contain
outliers, particularly along the object’s boundaries.

Future Work. Those limitations listed above would promote our future research as follows:

(1) To improve the inference speed, we can put our reverse process into a compact feature space for
reverse inference rather than in the original point cloud space. Specifically, we can employ a 3D
encoder (such as PointNet++) to extract global features of the source and model point clouds, serving
as contextual information. With this context, we develop a denoising network to directly regress the
Bayesian posterior in the feature space rather than relying on time-consuming registration operations
in the original point cloud space, thereby significantly reducing the inference time.

(2) In our forthcoming work, we intend to integrate point cloud registration and point cloud segmenta-
tion into a comprehensive framework. As such, we can first learn to extract the source (object) point
cloud from the whole point cloud and then employ our diffusion registration model for estimating
the relative transformation as the 6D pose estimation. In addition, we will explore the possibility of
designing a diffusion model-guided point cloud segmentation framework to enhance the robustness
of segmentation.
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