HeadCraft: Modeling High-Detail Shape Variations for Animated 3DMMs
Supplementary Document

1. Method: Technical Details

1.1. Displacement registration procedure

Here we explain the procedure in more detail. The vertices
and displacements are modeled in the NPHM coordinate
system, aligned with the scans, and the scaling of 30x ap-
plied. The implementation of Butterfly subdivision of the
FLAME template from MeshLab [3] was used. The pa-
rameters of the subdivision are constant across the scans
and equal to 3 subdivision iterations with a threshold of
42.5. The subdivision produces around 100K vertices and
200K triangles for the original template consisting of 5023
vertices and 9976 triangles and smooths the surface. The
description of the optimization problem features individ-
ual loss terms. The expanded expression for the terms are
as follows. The Chamfer term Lcpumer(P1, P2) quantifies
the distance between the point clouds P, € RI71*3 and
P, € RI™21¥3 s supposed to be differentiable w.rt. the
points of P;. In our work, we apply the version pruned
by the distance of the correspondences, i.e. when the Eu-
clidean distance between point and its matched version ex-
ceeds the predefined threshold d, this correspondence is not
accounted in the loss term.

ﬁChamfer(Ply PZ) =
1
e r ldp,nn(p, P2)) < d]’
: Z (d(p, nn(p, P2)) : [d(p, nn(p, PQ)) < d])

pEPL

1
TS o, P) < d]
: Z (d(p, nn(p, Pl)) : [d(p, nn(p, Pl)) < d]) s

pEP

where d(-, -) stands for the Euclidean distance between two

points in space and nn(p, P) = argmin d(p, p’) is the near-
p'epP

est neighbor of p in a point cloud P.

Edge length regularization is defined as follows.

1
['edge(‘/a ‘F) = T4

2
] d"(Ve,, Ve,),)

(easen)€EE

where E = E(F) is a set of graph edges derived from the
faces F. To construct it, we consider each face bringing
three new edges and later leave only the unique edges in E.

Laplacian term is defined as the Euclidean distance be-
tween the vertex and its neighbors, which can be efficiently
calculated via computing sparse Laplacian L = L(V, F) of

the graph:
Lp(V.F) = [IIL]3)
veV

The outer norm is used instead of e.g. L1 averaging
to enforce the uniform smoothness of the mesh and avoid
spikes that tend to appear otherwise (see, e.g., the docu-
mented example in PyTorch3D [8] repository).

During the vector displacement stage, only the scalp
region (defined by the semantic mask shipped with
FLAME [7]) is optimized. During the normal displacement
stage, we also unfreeze the facial region but keep the neck,
eyeballs, ears, and inner mouth region frozen (the latter is
annotated manually in Blender [4] package and is frozen
because of its absence in the ground truth scans, as it is
placed fully interior). Each stage takes around 3 min for 1K
steps on a single NVIDIA RTX 2080 Ti GPU. We used the
PyTorch3D [8] functions for implementation of all the loss
terms.

In Fig. 1, we show how the seam was annotated for the
custom UV layout.

Blender [4] 4.0 package was used to annotate the seam
for the custom UV layout. The seam is manually annotated
to be symmetric w.r.t. the reflection symmetry of FLAME.
Firstly, the layout was constructed via "Unwrap® Blender
tool and adjusted manually via local translation and scaling
tools to better fit the available space. After that, the UVs for
vertices in the left part of the head were assigned with the
mirrored UVs of the vertices in the right part to account for
symmetry. This is repeated for the face and scalp separately.

https://github.com/facebookresearch/pytorch3d/issues/432

Figure 1. Comparison of the FLAME layouts. The standard, commonly used unwrapping for FLAME (left) features a seam corresponding
to the vertical line in the back of the head and pays more attention to the facial region than to the scalp. In the hand-crafted custom layout
that we employ (right), a different seam around the face border is selected, thus making the regions of face and scalp separated and of
similar size to avoid unnecessary breaks and expand the region of interest. Lower neck is not modeled by our method and hence made

partially unseen in UV.

Custom UV

Standard UV

Figure 2. Ablation over the choice of the UV layout. Our method
utilizes custom UV layout that allows us to model more consistent
geometry by mitigating seam artifacts.

Finally, the face, scalp, and eyeballs parts were scaled and
translated to fit the unit square. Regions, for which dis-
placements are not modeled, are either given smaller space
in the layout (eyeballs) or moved outside of the unit square
(unmodeled parts of the neck).

The displacement vectors entries typically belong to the
[-2, +2] range, while some large shape variations (e.g. a
ponytail) can introduce the offsets into a large range up to
[-20, +20]. We clip any displacements, obtained after full
registration, to the [-20, +20] range. As the last step, the dis-
placements are rendered in UV space, and each UV map is
saved as uint16 image files linearly renormalized from [-20,
+20] to [0, 216 — 1]. Saving in uint16 (double-byte inten-
sity value) instead of the widely used uint8 (single-byte in-
tensity value) is important, since most of the displacements
vector entries are concentrated around the small neighbor-
hood of zero and the precision can be lost when renormal-
izing from [-20, +20] to [0, 2% — 1] instead and discretiz-
ing. Saving UV maps as raw files would otherwise facili-
tate much slower training of the generative model due to the
time-consuming loading and memory usage overhead.

1.2. Generative model

For training StyleGAN, we used the stylegan2-ada-
lightning implementation with ADA and augmentations
turned off and the following hyperparameters:

The model was trained on four NVIDIA RTX 2080 Ti

latent dim | # layers (z — w) Glr DIr
512 8 0.002 0.001
Agp Aplp img size batch size
4.0 2.0 256 x 256 8

GPUs. For training of the StyleGAN, the ground truth UV
displacement maps were transformed from 256 x 256 x 3
into 256 x 256 x 6 by first bilinearly upscaling the dis-
placement maps over the width dimension (resulting in the
map of shape 256 x 512 x 3) and then splitting it into two
three-channel maps by the width dimension. This effec-
tively means that StyleGAN predicts the face and scalp as
two separate three-channel images, which increases the spa-
tial area in the output dedicated to each region. Addition-
ally, we replaced the facial part of the registered UV maps of
subjects in the NPHM dataset with the corresponding facial
part from the neutral expression scan of the same person.
This has been done to better support various expressions at
the inference time. We also found it beneficial to disable
the StyleGAN noise at the inference time, typically injected
into the generator, for the face part of the UV map to smooth
out the generated facial displacements relative to the scalp
displacements that normally require a higher level of detail.
For the scalp region, the StyleGAN noise is constant, ini-
tialized separately for each generator layer before training.
This noise schedule separation is performed via two passes
through StyleGAN — one with zero noise and another with
constant noise — and combining the corresponding results.

Post-processing. To ensure a smooth transition from the
face to the scalp part around the seam, we first create a mesh
by querying the UV map as is, then identify the seam ver-
tices and apply Laplacian smoothing [9] to the mesh in the
K -vertex vicinity of the seam (vicinity obtained via BFS-
style expansion of the seed vertices defining the seam in

https://github.com/nihalsid/stylegan2-ada-lightning
https://github.com/nihalsid/stylegan2-ada-lightning

a graph defined by the mesh edges). In our experiments,
K = 10 (corresponding to the subdivided template with
roughly 100K vertices), and Laplacian smoothing is re-
peated 10 times, only affecting the seam vicinity area. Since
the face displacements are modeled with lower smoothness
due to the disabled StyleGAN noise in that area, the post-
processing technique results in a smooth transition from the
relatively smooth face displacements to sharper details in
the scalp area while maintaining local geometric consis-
tency. The visualization is shown in Fig. 3.

2. Results

Unconditional sampling. In Fig. 7, we provide more un-
conditional samples from our model from different view-
points. All the samples have been produced by sampling
z € N(0,I) with a truncation trick [1] with the power
1 = 0.7. For the evaluation in the Table 1 in the main text,
the implementation of the metrics MMD, JSD, COV from
PointFlow [10] was used. Since FaceVerse contains sam-
ples grouped by subjects, the nearest neighbor of a ground
truth scan is typically a scan of the same subject with a
different expression. Because of that, we only select one
ground truth sample per subject (with the same neutral ex-
pression for all subjects) to calculate COV. All FaceVerse
scans are used to calculate MMD and JSD. As a distance
measure between individual point clouds, aggregated over
multiple observations in MMD and COV, we use Chamfer
Distance.

r o ™ 1 [

1€k eeeere
1 g 3 V /
Figure 4. Ablation over the model design. VAE and VQ-VAE both
follow the ResNet-18 encoder and decoder architecture, while our

method is based on StyleGAN2. [VQ-]VAE mostly match the di-
versity of the training data but not the level of detail.

Ours Ours w/ VAE | Ours w/ VQ-VAE

Ablating over the choice of the UV layout. We assess the
effect of a manually hand-crafted UV space for FLAME
on the quality of generations in Fig. 2. As observed, mov-
ing the seam from the vertical middle line, as in the stan-
dard UV layout for FLAME, to the face border, allows us to
model more consistent and complex geometry without large
distinction between a left and a right part.

Ablating over the choice of the generative model archi-
tecture. The VAE used in our experiments is based on the
Lightning Bolts library. The encoder follows the ResNet-
18 architecture consisting of blocks of 2 convolutions each,
with every second convolution with a stride of two (starting
from the third) to downsample the activations spatially the
increasing number of channels (64 in the first two blocks,

then 128, 256, 256, 256, 512, 512 in the next blocks, re-
spectively). The Lightning Bolts implementation adds two
fully-connected layers on top of the encoder (one for the
1 and one for the o prediction). The dimension of the la-
tent space equals 512. The decoder follows the architecture
symmetric to the encoder, where the stride two for some
convolutions is replaced with a nearest-neighbor 2x upscal-
ing.

For VQ-VAE implementation, we used the imple-
mentation of the VQ layer from vector-quantize-pytorch.
Pixelcnn-pytorch served as a basis for the PixelCNN sam-
pler implementation. Similarly to VAE, ResNet-18 encoder
and decoder were used, with the exception that fewer down-
sampling operations have been used: they were introduced
at each second layer (starting from the third), not each first
layer. This is introduced to maintain a trade-off between the
autoencoder quality and sampling ability, i.e. not to make
PixelCNN operate in a too small latent space. The spatial
resolution of the bottleneck is 32 x 32, which we found to
be optimal, as the sampling performance of PixelCNN de-
grades from the top-left corner to the bottom-right corner
and it is very noticeable already at the 64 x 64 bottleneck
spatial resolution. The number of channels is 64, 128, 128,
32 for each two consecutive blocks, respectively. VQ-VAE
is trained for 10K steps with batch size of 8, which we found
to be enough to reach the sufficient visual quality of autoen-
coding. To facilitate the sampling, we obtain a dataset of
VQ indices and learn PixelCNN to autoregressively sample
from those for 200 epochs with a batch size of 32.

Visual comparison of the generative model choices is
demonstrated in Fig. 4.

Behavior of the registration procedure. In Fig. §, 9, 10,
11, we show how the mesh deforms as a result of the vector
displacements optimization and normal displacements opti-
mization.

Registration quality. In Table 1, we report exactly the
same metrics as in NPHM [6] for both stages of our reg-
istration, averaged over identities. N.C. refers to Normal
Consistency score; see [6] for clarification on all metrics.
We excluded the region below the threshold by vertical axis
(-0.30 in standard NPHM coordinate system) in order to not
account for non-modeled region (clothes and neck). The
registration precision is naturally better by all metrics than
FLAME that does not provide a hair fit and better face fit.

Registration ‘ Li-Chamfer | N.C.1T F-Score @ 1.5 1
FLAME 3.33e-1 0.763 0.266
Stage 1 only 9.20e-2 0.817 0.861
Stage 1+2 (Ours) 5.68e-2 0.841 0.949

Table 1. Metrics reflecting the registration quality for our method
w.r.t. only using Stage 1 of the registration procedure (vector off-
sets) and FLAME fits.

https://github.com/Lightning-Universe/lightning-bolts
https://github.com/lucidrains/vector-quantize-pytorch/tree/master
https://github.com/jzbontar/pixelcnn-pytorch/tree/master

w/0 postprocessing w/ postprocessing

w/0 postprocessing w/ postprocessing

w/0 postprocessing w/ postprocessing

Figure 3. Comparison w/ and w/o the post-processing procedure that enables smoother transition between the face and scalp parts modeled

in unconnected regions of the UV space.

The necessity of the second stage is also motivated accord-
ingly. Note that even though the numbers are not directly
comparable to the ones in the NPHM paper [6], since there
the evaluation over the face region only was conducted, and
for us it is for the whole FLAME surface, they are still
in the same scale. This indicates that the quality attained
by non-rigid face refinement procedure in NPHM has been
mostly achieved by our registration procedure for both face
and hair.

Consistency of registrations. In Fig. 13, we demonstrate
the analysis as to which template vertices are selected by the
registration procedure to cover various regions of different
meshes. Since we know the UV coordinates of all template
vertices, this can be done by rendering the meshes with a
UV checker texture image. Note that the long hair parts,
such as pony tails, are mostly explained by the same regions
of the layout as the vertices they originate from.

Comparison of the hair length. In Fig. 5, we show the
comparison of the offset length in the scalp region between
the ground truth data (NPHM scans) and the model predic-
tions (HeadCraft). Since this offset length approximates the
haircut size, we use it as a measure of hair length (not ac-
counting for any hair curvature). This is demonstrated for
comparison of the occurrence frequency of long hair sam-
ples in the model’s predictions w.r.t. the ground truth data
distribution.

2.1. Applications

Fitting the latent code to a full scan. To fit the latent
to the complete head scan, we have to apply preliminary
steps, similar to the ones used to construct the training set.
Firstly fit the FLAME to the scan, then apply our registra-
tion procedure to get a UV map Uy,. After that, we fit a
w € W+ C R16%312 Jatent code for the StyleGAN gener-
ator g(w) : W+ — RIXWX3 10 satisfy the following loss
terms:

Average hair length distrib.

NPHM scans
HeadCraft

Max hair length distrib.

NPHM scans
HeadCraft

||““|.I|\n|.... L
10

15 20

||
|||II\|.‘I||.| St 0.0 ||||
0.8

1.0 12 14 5

Figure 5. Comparison of the average offset length distribution in
the scalp region for our method’s predictions and 3D scans from
the NPHM dataset. We consider the offset length in the scalp re-
gion the approximation of the haircut size (or, simplified, a mea-
sure of hair length, without accounting for the hair curvature). The
diversity of the average/maximum of this parameter per scan for
our generated samples is on par with the training data. The hori-
zontal axis quantifies the length in the NPHM coordinate system
and the vertical axis stands for the bin height of the histogram.

ﬁgg’gl(/lU|Ugta A)
= ALPIPS T PIPS (g(w), Ugt)
+ >\L1 _Ll(g(w), Ugt)7

where L1 (-, -) is an average pixel-wise L1 distance between
two images and LPIPS(-,-) corresponds to the LPIPS
score [11]. To calculate LPIPS, we cut the 256 x 256 UV
maps (both predicted U = g(w) and ground truth Uy into
sixteen 64 x 64 patches, evaluate LPIPS between the respec-
tive patches of U and Uy, and average the obtained sixteen
scores. The parameters of the loss equal to A*P'PS = (.1 and
A1 = 3. The loss is being optimized via Adam algorithm
with the learning rate of 10~ for 1K steps. The w is initial-
ized as the average latent predicted by the trained StyleGAN
mapping network, evaluated over 10° codes z € N(0,1).
Finally, we optimize for the StyleGAN noise (only for
the scalp region of the UV space) to better fit the tiny de-
tails of the map Uy;. This step can be omitted in practice
if fitting very high-frequency details is not required. Ex-
actly the same loss terms are being optimized, this time not
with respect to w but with respect to the StyleGAN noise

https://uvchecker.vinzi.xyz/

tensors of all generator layers, while w remains fixed. The
optimization is again carried out by Adam with the same
learning rate and number of steps.

Fitting the latent code to a depth map. Fitting the la-
tent representation to represent a partial observation poses
a more challenging problem than trying to represent a full
scan, since the resulting displacements must both resem-
ble the original point cloud and complete it in a realistic
way. This requires several changes to the fitting pipeline,
described next.

Firstly, prior to applying the registration procedure to
register part of the cloud P in the UV space, we identify
the mask of points m € {0,1}!VI that are allowed to be
offset by selecting only the points within the convex hull
of the point cloud, expanded by 1.5x from its center to
account for the possible important regions missing in the
point cloud. The points below a certain horizontal plane
are not accounted for when estimating the convex hull to
disregard the shoulders and clothing, usually featured in
NPHM raw scans. The level of the horizontal plane is se-
lected as a 30% quantile of the coordinates of the points
along the vertical axis. Masking out the points too far from
the convex hull of the point cloud is especially important
when the point cloud covers the minority of the geome-
try (e.g. if it is coming from a single depth map), since
in this case, these points tend to pull in to cover the parts
that the points inside the hull cannot explain (e.g. due to the
regularizations), and this results in a non-plausible shape.
For the registration procedure itself, stronger regularization
parameters for the first stage have been selected, namely
Asuge 1 = (AGhmter y2ize 3ol) — (2107, 8.10%, 10°).
The correspondence pruning threshold, on the contrary, is
raised to 10.0 for the first stage to allow the points to move
farther while maintaining higher smoothness of the overall
geometry due to stronger regularizations. For the second
stage, the threshold is on the contrary reduced to 0.1 to pe-
nalize for large false movement of points along the template
normals to explain the individual points of the cloud.

At the end of the registration, we refine the mask of
the points by only selecting those of them that are suffi-
ciently close to the fitted point cloud: mi" = m; - [d(v; +
Dstage 2,5, nn(v; + Dsage 2,6, P)) < t], where ¢ defines the
proximity threshold, and its optimal value depends on the
sparsity of the cloud. For the point cloud formed from a
dense depth map, we set t = 0.1, and for a sparse cloud
with only 1% points of the original depth map left, we set
t = 0.3. The regressed displacements and the mask are sep-
arately baked in the UV map as two independent images,
3-channel real-valued U and 1-channel binary M, respec-
tively. In Fig. 12, we demonstrate the typical result of the
partial registration stages.

Another important change lies in the latent fitting pro-
cedure. In our observations, the optimization of w € W+

latent code works great for the visible part but tends to pro-
duce displacements closer to the average shape for the non-
visible part. We explain it by not strong enough supervision
from the prior during fitting in V4 space. To mitigate that
effect, we first fit the 2 € Z C RP latent code of the Style-
GAN mapping network map(z) : Z — W+, obtain the
respective w = map(z) € W+ and regress the delta to
the w code: Aw. We found that optimizing z code yields
much better, yet rougher result of completion, and refining
the map by regressing the Aw greatly improves fitting of
the details.

In more detail, during the first z optimization step, we
optimize the following loss:

‘C(ZDpt(Z|Ugt7 }‘)
= \PIPS CLPIPS (g(map(2)) - M, Uy - M)
+ A Ly (g(map(2)) - M, Uge - M),

Similarly to the cﬁ;jl, we use \FIPS — (.1 and A1 = 3.

The z is initialized from A (0,1) and further optimized by
Adam with the learning rate of 102 for 500 steps. Here and
further, LPIPS(-, -) and L1 (-, -) follow the same expressions
as for the full scan fitting.

During the second Aw optimization step, we optimize a
similar expression with a few additional terms:

LOAPT (Awl|z, Uge, A)
= \FPIPS L PIPS (g(map(z) + Aw) - M, Ugt - M)
+ AL Ly (g(map(z) + Aw) - M, Uy - M)
+ Absone - LPIPS(g(map(z) + Aw) - (1 — M),
g(map(z) - (1 - M))
- Li(g(map(z) + Aw) - (1 — M),
g(map(z)) - (1 — M)),

+ A

preserve

where M is a predefined mask of the face region in the
UV space, reduced to the circle including the eyes, nose and
mouth.

The third and second “preserve” terms are introduced
to not let the map guided by the Aw optimization deviate
much from the output corresponding to the regressed z in
non-visible regions, which is essential due to the tendency
of convergence to the average shape there when optimizing
in the W+ space. A\'P'PS = 0.1 and A" = 3 remain the
same as before, and bty = 0.01 and ALt . = 0.3 are
selected 10 less. The optimization is carried out by Adam
with the same learning rate of 10~2 for 500 steps. The Aw
is initialized with zeros.

Input Kinect frame

RGB Depth (aligned)

Registration

HeadCraft latent fit

Figure 6. An example of the use case for the HeadCraft registration and fitting stages to Kinect depth data. An example of a frontal RGB
frame is shown on the left (the color information is not used further), along with the observed Kinect depth, converted into a mesh and
aligned with the standard FLAME coordinate system. We fit FLAME and apply the partial registration procedure, described in Sec. 2, to
register the displacements in the observed region (middle) and further fit the HeadCraft latent representation to the corresponding part of

the UV map.

Finally, we optimize the StyleGAN noise to improve the
details in the visible part. Despite that we consider this
step optional, we found that it helps reconstruct more detail
even for a sparse cloud. We optimize the same expression
as L5, with the difference that it is only being optimized
w.r.t. the StyleGAN noise tensors (only in the scalp region).
The only modification is the introduced regularization that
equals to the sum of the noise tensors L2 norms. The opti-
mization is carried out by Adam with the same learning rate
of 10~2 for 500 steps. The coefficient of this regularization
is equal to 107,

In the Supplementary Video, we demonstrate more re-

sults of fitting the latent to the point clouds with different
sparsity.
Use case: Kinect data. We demonstrate that the Head-
Craft pipeline can be applied to real-world depth scans in
Fig. 6. For a sample RGB-D image captured by Kinect,
we first convert it into a mesh by unprojecting the points
with color and connecting the vertices by the triangles con-
structed from the image pixels. The resulting mesh with
vertex colors is rendered onto three views (frontal, slight
left, and slight right) to obtain the facial landmarks from
each side via an image-based facial landmark detector [2]
and aggregate them (jawline landmarks are obtained from
slight left and slight right and the others from the frontal
rendering). FLAME is fitted using these landmarks, and the
displacements for the visible part of the mesh are obtained
via the partial registration procedure described above and
later baked into the UV displacement map. We also show
the result of fitting the latent representation of HeadCraft
to the visible part of the scan. Compared to the aforemen-
tioned procedure, we omit LPIPS loss to give L1 more rel-
evance in predicting coarse shape and only supervise the
latent in the scalp region.

Animation. Here we expand on more details regarding ap-
plying displacements to a template, deforming over time.
Compared to the simple unconditional scenario, where the

displacements are also applied to a certain FLAME tem-
plate, we have to introduce two key differences.

First, as mentioned in Subsec. 1.1, to apply the displace-
ments to the template, we apply Butterfly subdivision, the
MeshLab implementation of which also smooths the sur-
face. However, the result of Butterfly is not consistent over
various FLAME templates and yields a bit different number
of vertices every time. To solve that, we come up with con-
sistent subdivision, i.e. the way to construct the same topol-
ogy for every FLAME. To do that, we first apply Butterfly
subdivision to an arbitrary scan, and for each vertex after
the subdivision, we find which triangle of the original tem-
plate it belongs to and the barycentric coordinates w.r.t. that
triangle. Later, for every new template, the locations of the
subdivided vertices are evaluated based on these triangles
and barycentric coordinates. To handle the seam accurately,
we consider each vertex of every triangle after subdivision
individually, thus accounting for the duplicate vertices.

An artifact of such procedure is that the smoothness of
the surface, introduced in the MeshLab implementation of
Butterfly subdivision, cannot be trivially transferred onto
a new mesh this way. Because of this, the surface nor-
mals remain the same within the large triangles of the orig-
inal template even after the subdivision, creating a non-
appealing “tiling” effect. To mitigate that, we apply Lapla-
cian smoothing [9] in its classical version to smooth the sur-
face. In order to account for important subtle parts, we ap-
ply a different number of Laplacian smoothing iterations to
different regions, namely, 3 times to the lips region, 5 times
to the face skin (face except mouth, eyeballs and eye sur-
roundings), and 10 times to the scalp and the neck. Since
the realism of mouth, ears, and eyeballs is important for an-
imation, they remain intact.

Second, as mentioned in the main text, we
rotate the displacements according to the rota-
tion of the surface normals of the template. To
do that, we first estimate the local basis of the

TBN space [5] for each FLAME in a sequence. This
basis defines the normalized tangent t¥, bitangent b,
and normal nf, pre-estimated for the i-th vertex of the
FLAME template F* = FLAM E(shape,exp®,jaw",
headposek). In addition, we estimate the TBN basis
(ghevtral ppeutral - pheutral) - for a FLAME, corresponding
to the same person and a neutral expression and pose
Frevral — B AM E(shape, 0,0, 0). The displacements D,
queried from the generated UV map U, are first transferred
from the object space into the neutral TBN space:

1 |D]
Seutra . di))i:1

DTBN _ ((t;:leutral . d’L)a (b;leulral . di), (n

Then, for each of the sequence frames, we transfer them
into object space, this time w.r.t. the TBN basis of the given
frame:

object _ ([rk pk k] . gTBNY)IDI
D = ([t b nf]-di™),)
(the t¥, b¥, mk, dIBN vectors above treated as columns).
More examples of animations can be found in the Sup-
plementary Video.

References

[1] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 3

[2] Adrian Bulat and Georgios Tzimiropoulos. How far are we
from solving the 2d & 3d face alignment problem? (and a
dataset of 230,000 3d facial landmarks). In International
Conference on Computer Vision, 2017. 6

[3] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Mat-
teo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia.
MeshLab: an Open-Source Mesh Processing Tool. In Euro-
graphics Italian Chapter Conference. The Eurographics As-
sociation, 2008. 1

[4] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 1

[5] Joey de Vries. Learn OpenGL: Normal Mapping.
https : / / learnopengl . com / Advanced -
Lighting/Normal-Mapping, 2014. 7

[6] Simon Giebenhain, Tobias Kirschstein, Markos Georgopou-
los, Martin Riinz, Lourdes Agapito, and Matthias NieB3ner.
Learning neural parametric head models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21003-21012, 2023. 3, 4

[7] Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier
Romero. Learning a model of facial shape and expression
from 4D scans. ACM Trans. Graph., 36(6):194-1, 2017. 1

[8] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 1

(9]

(10]

(11]

Jorg Vollmer, Robert Mencl, and Heinrich Mueller. Im-
proved laplacian smoothing of noisy surface meshes. In
Computer graphics forum, pages 131-138. Wiley Online Li-
brary, 1999. 2, 6

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. Pointflow: 3D point cloud
generation with continuous normalizing flows. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 4541-4550, 2019. 3

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586-595, 2018. 4

https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Frontal

Left

Left Frontal Back

Right

Back

Figure 7. Additional demonstration of the diversity and level of detail of the unconditionally sampled generations from HeadCraft. The
generations are obtained by randomly sampling 2 ~ A(0,T) latent code of the generative model. The displacements, returned by the
model, are applied to the random FLAMESs sampled from Gaussian distribution with statistics calculated over the NPHM dataset.

FLAME Stage 1

Stage 2 Ground truth

Frontal

Left

Ground truth

Frontal

Figure 8. Additional demonstration of the two-stage registration. Stage I corresponds to the vector displacements regression; Stage 2 — to

the refinement of the displacements along the normals. The second stage significantly improves the level of detail and allows us to match
the high-frequency component of the scans, such as strands and subtle face features.

Ground truth

Frontal

Left

Top

Frontal

Left

Top

Figure 9. Additional demonstration of the two-stage registration. Stage I corresponds to the vector displacements regression; Stage 2 — to

the refinement of the displacements along the normals. The second stage significantly improves the level of detail and allows us to match
the high-frequency component of the scans, such as strands and subtle face features.

FLAME Stage 1

Ground truth

Frontal

Left

Top

Frontal

Left

Top

Figure 10. Additional demonstration of the two-stage registration. Stage I corresponds to the vector displacements regression; Stage 2 — to

the refinement of the displacements along the normals. The second stage significantly improves the level of detail and allows us to match
the high-frequency component of the scans, such as strands and subtle face features.

Ground truth

Frontal

=
Q
—

Ground truth

Frontal

Figure 11. Additional demonstration of the two-stage registration. Stage I corresponds to the vector displacements regression; Stage 2 — to

the refinement of the displacements along the normals. The second stage significantly improves the level of detail and allows us to match
the high-frequency component of the scans, such as strands and subtle face features.

Input p.c. Ground truth

E
=
E

77 (G

i
= "“"i
3 W

B
=

o
N ¥

. 6N

L

Input p.c. Ground truth

Frontal

Left

Top

Figure 12. Demonstration of the stages of the partial registration procedure required to fit a part of the scan. The key difference between
this procedure and the standard registration used to generate training data for HeadCraft is in the presence of only a part of the scan, e.g. a
point cloud coming from the depth map. To overcome that obstacle, the displacements are being estimated only in the convex hull of the
point cloud, and are subsequently filtered out by a separate mask m™, leaving only the displacements close enough the ground truth scan
(others are nullified in this visualization).

Figure 13. Consistency analysis of the registration. We demonstrate which template vertices are offset with the registration procedure to
cover various regions of different meshes. Since we know the UV coordinates of all template vertices, this can be done by rendering the
meshes with a UV checker texture image. For clarity of the visualization, the texture is applied to the standard FLAME layout. Note that
the long hair parts, such as pony tails, are mostly explained by the same regions of the layout as the vertices they originate from.

	. Method: Technical Details
	. Displacement registration procedure
	. Generative model

	. Results
	. Applications

