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ABSTRACT

Flow matching and diffusion generative models for tabular data face challenges in
modeling heterogeneous feature interrelationships, especially in data with contin-
uous and categorical input features. Capturing these interrelationships is crucial
as it allows these models to understand complex patterns and dependencies in
the underlying data. A promising option to address the challenge is to devise
suitable encoding schemes for the input features before the generative modeling
process. However, prior methods often rely on either suboptimal heuristics such as
one-hot encoding of categorical features followed by separated modeling of cate-
gorical/continuous features, or latent space diffusion models. Instead, our proposed
solution unifies the data space and jointly applies a single generative process across
all the encodings, efficiently capturing heterogeneous feature interrelationships.
Specifically, it employs encoding schemes such as PSK Encoding, Dictionary
Encoding, and Analog Bits that effectively convert categorical features into contin-
uous ones. Extensive experiments on datasets comprised of heterogeneous features
demonstrate that our encoding schemes, combined with Flow Matching or Diffu-
sion as our choice of generative model, significantly enhance model capabilities.
Our TabUnite models help address data heterogeneity, achieving superior perfor-
mance across a broad suite of datasets, baselines, and benchmarks while generating
accurate, robust, and diverse tabular data.

1 INTRODUCTION

Tabular data are ubiquitous in data ecosystems in many sectors such as healthcare, finance, and
insurance (Clore et al., 2014; Moro et al., 2012; Datta, 2020). These industries utilize tabular data
generation for many practical purposes, including imputing missing values, reducing sparse data, and
better handling of imbalanced datasets (Jolicoeur-Martineau et al., 2024; Onishi & Meguro, 2023;
Sauber-Cole & Khoshgoftaar, 2022). However, a particular challenge inherent to tabular data that
generative models face is feature heterogeneity (Liu et al., 2023). Specifically, accounting for feature
heterogeneity is vital in flow matching and diffusion-based generative models, since they rely on
continuous transformations of denoising score-matching, or invertible mappings between data, and
latent spaces (Ho et al., 2020a; Lipman et al., 2022). Unlike homogeneous data modalities such
as images or text, tabular data often contain mixed feature types, ranging from (dense) continuous
features to (sparse) categorical features. More importantly, these tabular features, regardless of form,
are intertwined contextually (Borisov et al., 2023). For example, the numerical salary of a person is
correlated with their categorical age and education (Becker & Kohavi, 1996). Therefore capturing the
interrelationships between tabular heterogeneous features is crucial for flow and diffusion tabular
generative models to incorporate contextual knowledge for understanding complex patterns and
dependencies in the underlying data.

A promising solution for the feature heterogeneity challenge is to devise suitable encoding schemes
for pre-processing the input features before applying the generative model. However, existing
methodologies often rely on (1) separate generative processes on discrete & continuous features
which do not model their correlations properly, (2) suboptimal encoding heuristics, or (3) learned
latent embedding which is parameter inefficient. For example, the one-hot encoding approach for
categorical variables leads to sparse representations in high dimensions, where generative models are
susceptible to underfitting (Krishnan et al., 2017; Poslavskaya & Korolev, 2023). On the other hand,
creating a latent embedding space requires training an additional embedding model such as ResNet
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(He et al., 2015), or a Transformer-based β-VAE (Higgins et al., 2017; Kingma & Welling, 2013;
Zhang et al., 2023), and trained using e.g., self-supervised learning (Chen et al., 2020). Hence, the
quality of latent space generative models also depends on the embedding model’s capability to capture
the underlying dependency structure of the tabular data. To summarize, proper pre-processing of
heterogeneous features is crucial for high-quality tabular data generation, and poor encoding schemes
for the data features can lead to information loss that cannot be recovered from the generative model.

Our goal is to generate high-quality synthetic tabular data using proficient categorical encoding
schemes to unify the data space. This enables a single flow or diffusion model to be applied, capturing
crucial heterogeneous feature interrelationships. In summary, our contributions are as follows:

1. We introduce two novel categorical encoding schemes, PSK Encoding, and Dictionary
Encoding, as well as leverage Analog Bits (Chen et al., 2022) from the discrete image domain
which seamlessly converts categorical variables into an efficient and compact continuous
representation. By facilitating the model to generate data in a unified continuous space, we
can “unite” the mixed features to capture heterogeneous feature interrelationships based
on a single flow/diffusion model on continuous inputs. Empirically, under our encoding
schemes, the model learns to accommodate the heterogeneity of tabular features.

2. We conduct a comprehensive review between Flow Matching (Lipman et al., 2022) and
DDPM (Ho et al., 2020b) as our generative model. Our results showcase that combining our
categorical encoding schemes with DDPM attains state-of-the-art results on most settings.
Conversely, Flow Matching speeds up the sampling speed dramatically, saving time and
computation power, while yielding competitive results to DDPMs. Consequently, we
propose the following models: TabUnite(i2b)-Flow/DDPM, TabUnite(dic)-Flow/DDPM,
and TabUnite(psk)-Flow/DDPM. These models achieve superior performances across a wide
spectrum of tabular data generation baselines, datasets, and benchmarks. The architecture
of our models is illustrated in Table 1. Note that we also introduce TabFlow, a Flow
Matching/Discrete Flow Model (Campbell et al., 2024) that models heterogeneous features
separately, as a baseline.

3. We curate a large-scale heterogeneous tabular dataset from the Census dataset (Meek et al.,
2001) with over 80 mixed continuous/categorical features, and over 2.4 million samples.
This benchmark is significantly more challenging for tabular generative models than existing
benchmarks from public data repositories (Dua & Graff, 2017; Vanschoren et al., 2013)
which often have ≤ 100k datapoints and ≤ 30 features. It better reflects the scalability
of tabular generative models, where our empirical results justify the importance of good
encoding schemes for heterogeneous features.

2 RELATED WORKS

Generative Models in Tabular Data Generation. The latest tabular data generation methods have
made considerable progress compared to traditional methods such as Bayesian networks (Rabaey
et al., 2024) and SMOTE (Chawla et al., 2002). CTGAN and TVAE (Xu et al., 2019) were two
models based on the Generative Adversarial Network (Goodfellow et al., 2014) and Variational
Autoencoder (Kingma & Welling, 2013) architectures respectively. These models were applied along
with techniques such as conditional generation and mode-specific normalization to further learn
column-wise correlation. Other works such as GReaT (Borisov et al., 2023) and GOGGLE (Liu
et al., 2023) saw successes with the use of graph neural networks and autoregressive transformer
architectures respectively in performing tabular data synthesis. Recently, Diffusion (Ho et al., 2020b)
and Flow Matching (Lipman et al., 2022) provided new avenues for exploration within the tabular
domain. This included STaSy (Kim et al., 2022), which employed a score-matching diffusion model
paired with techniques such as self-paced learning and fine-tuning to stabilize the training process,
and CoDi (Lee et al., 2023), which used separate diffusion schemes for categorical and numerical
data along with interconditioning and contrastive learning to improve the synergy among different
features. TabDDPM (Kotelnikov et al., 2023) presented a similar diffusion scheme compared to
CoDi and showed that the simple concatenation of categorical and numerical data before and after
denoising led to improvements in performance. The most recent work in this domain was TabSYN
(Zhang et al., 2023), a latent diffusion model that transformed features into a unified embedding via a
feature tokenizer before applying EDM diffusion (Karras et al., 2022) to generate synthetic data.
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Figure 1: TabUnite(psk/dic/i2b)-Flow/DDPM Architecture. Continuous features xcont are encoded
via a QuantileTransformer (Pedregosa et al., 2011). Categorical data xcat are encoded using Analog
Bits or Dictionary Encoding methods. With an efficient continuous data space, we apply Conditional
Flow Matching as our generative model where we ultimately synthesize samples. These samples are
then mapped back to their original representation via their respective decoding schemes.

Encoding Schemes. CoDi (Lee et al., 2023) and TabDDPM (Kotelnikov et al., 2023) utilized a
separated data space, where Gaussian Diffusion (Ho et al., 2020b) was performed on numerical
columns and Multinomial Diffusion (Hoogeboom et al., 2021) was performed on categorical columns,
with some additional techniques used to bind the two separate diffusion models. However, learning
the cross-correlation among various features through separate methods was often less effective than
conducting diffusion directly across a unified data space that included all features in the dataset. To
achieve this, various encoding schemes were employed to process both categorical and numerical
data so they occupy the same data space. One of the most widely used methods was one-hot encoding,
which was used in both STaSy (Kim et al., 2022) and TabSYN (Zhang et al., 2023) that encoded
categorical columns. One-hot encoding transformed categorical variables into a binary vector, where
each category was populated with 0’s with the exception of a single 1 that indicated the presence
of a particular category. On top of one-hot encoding, TabSYN (Zhang et al., 2023) further used
a column-wise feature tokenization technique that together transformed numerical and categorical
features all into shared embeddings of the same length.

Flow and Diffusion Generative Models. Flow methods were introduced to the field of diffusion-
based deep generative models as Probability Flow ODEs (Song et al., 2021), which, originally based
on the concept of normalizing flows (Rezende & Mohamed, 2016), allowed for deterministic inference
and exact likelihood evaluation. Compared to other diffusion-based methods such as score-matching
(Song et al., 2021), DDPM (Ho et al., 2020b), and DDIM (Song et al., 2022a), flow-based models
used continuous transformations defined by neural ODEs, to map samples from a simple distribution
to a more complex target distribution. This allowed for efficient density estimation and generation of
high-dimensional data. In the context of tabular data, Flow Matching was applied to gradient-boosted
trees in place of neural networks to learn the vector field (Jolicoeur-Martineau et al., 2024).

3 TABUNITE MODELS

Before diving into our methodology, we begin the section with preambles regarding a high-level
overview of the tabular setting. Here a tabular dataset is characterized as X = {xi}Ni=1 with N
samples (rows), where a datapoint xi ∈ RDcont × NDcat comprises of Dcont continuous features and
Dcat categorical features. We denote each xi as xi := [xcont

i,1 , · · · , xcont
i,Dcont

, · · · , xcat
i,1, · · · , xcat

i,Dcat
].

Our goal is to generate synthetic data samples, xsyn, that mimic the quality of the real data, X. To do
so, we are required to learn a parameterized generative model known as pθ(X), from which xsyn can
be sampled. Prior to learning, extensive data pre-processing is required where categorical features
are encoded into continuous features: f(xcat), where f denotes the encoder. Poor or sparse feature
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Figure 2: TabUnite Encoding Methods. We leverage PSK, Dictionary, and Analog Bits encoding to
transform categorical features into a compact and efficient continuous representation before applying
a single unified generative model to synthesize tabular data.

encoding of categorical features can hinder the model’s ability to learn effectively. Therefore, we
devise efficient and effective encoding schemes to address this issue.

3.1 ENCODING SCHEMES

We explore PSK, Dictionary, (naming conventions inspired by (Carson, 1922; Mairal et al., 2008)),
and Analog Bits (Chen et al., 2022) to encode categorical features. An overview of our methods can
be found in Figure 2 and Table 1. One-hot encoding typically lead to high-dimensional sparse vectors
(Poslavskaya & Korolev, 2023) and causes underfitting when learning from it (Krishnan et al., 2017).
In contrast to traditional one-hot categorical encoding, our encoding methods offer more efficient and
dense representations while being able to incorporate crucial feature interrelationships.

Note that continuous features are encoded using the QuantileTransformer (Pedregosa et al., 2011) per
TabSYN’s and TabDDPM’s methodology (Zhang et al., 2023; Kotelnikov et al., 2023). Additionally,
the order in which the categories of a feature are assigned in our encoding schemes is based on
lexicographic ordering for simplicity purposes. In the following sections, we consider an element of a
categorical feature (single cell in a table), xcat

i,j , that has K unique categories: xcat
i,j ∈ {0, . . . ,K − 1}.

PSK ENCODING – TABUNITE(PSK)

PSK encodes categorical embeddings using a phase-based representation. Each category is assigned
a unique phase angle in the complex plane, effectively transforming categorical variables into
continuous, circular representations. The K values will be evenly distributed as points on the unit
circle, such that the k-th category is positioned at phase θk = 2kπ

K . This phase value can easily be
translated to cartesian coordinates in a complex domain, with a real component of cos(θk), and an
imaginary component of sin(θk) as per Euler’s Formula. The real and complex components are then
concatenated to create our PSK-encoding in the form of:

fpsk(x
cat
i,j) =

[
cos

(
2xcat

i,jπ

K

)
, sin

(
2xcat

i,jπ

K

)]
(1)

For example, assume 4 categories denoted by the set xcat
i,j ∈ {0, 1, 2, 3}. After PSK encoding, we

obtain: {0, 1, 2, 3} → {[1, 0], [0, 1], [−1, 0], [0,−1]}. These are the coordinates of 4 dots at 0, 90,
180, and 270 degrees of the unit circle. To perform decoding, the PSK encoded values are converted
to their original categorical form by calculating the phase angle of the real and imaginary components
using atan2, and then mapping this angle to the nearest category.
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Cat. Encoding Schemes Cat. Dimensions Examples

One-Hot
∑Dcat

j=1K:,j [0, 0, 1, 0] → Dim. = 4

TabUnite(i2b) – Analog Bits
∑Dcat

j=1 ⌈log2(K:,j)⌉ [0, 1] → Dim. = 2
TabUnite(dic) – Dictionary Dcat [−0.33] → Dim. = 1
TabUnite(psk) – PSK 2 ·Dcat [0, 1] → Dim. = 2

Table 1: Comparison of Encoding Schemes. K and Dcat denote the number of unique categories per
categorical feature and the total number of categorical features respectively. For the examples, we
assume one categorical feature with four unique categories, and we encode the value xcat

i,j = 1.

PSK encoding has an equidistant representation which ensures that all categories are treated equally
in terms of their relative positions. This helps maintain a compact representation while avoiding the
unintended bias that might arise from arbitrary ordinal encodings. Additionally, its circular continuity
inherently captures the cyclical nature of certain categorical variables such as periodic events in a
calendar and financial fiscal quarters.

DICTIONARY ENCODING – TABUNITE(DIC)

Dictionary encodes categorical features using a look-up embedding table function. This function
encodes the categories to equally spaced real-valued representations within a range from −1 to 1.
Note that when a categorical feature contains more categories, the embedding may require a larger
range to prevent the values from being too close to each other, which could hinder the model’s ability
to distinguish between categories. This can be addressed by tuning the range accordingly.

We begin by defining our one-dimensional Dictionary encoding function as:

fdic(x
cat
i,j) = −1 +

2xcat
i,j

K − 1
(2)

For example, assume that there are 5 categories denoted by the set xcat
i,j ∈ {0, 1, 2, 3, 4}. After one-

dimensional Dictionary encoding, we obtain the following: {0, 1, 2, 3, 4} → {−1,−0.5, 0, 0.5, 1}.
This encoding ensures the preservation of the intrinsic order in ordinal data. In our experiments, we use
the one-dimensional encoding setup described above. To perform decoding, the Euclidean pairwise
distance between xsyn

i,j and each of the K categorical embeddings is calculated. The categorical value
corresponding to the nearest embedding vector is selected.

Dictionary Encoding can be extended to n dimensions to capture more nuanced patterns in complex
datasets. We create an embedding matrix M ∈ RK×n by first filling M with randomly sampled
values from a standard normal distribution N (0, 1). Then normalize M by scaling the values of each
column linearly between range −1 and 1, using each column’s minimum and maximum values.

Dictionary encoding preserves the intrinsic ordering among ordinal categorical data in the embedding
space. This preservation of order is crucial for maintaining the semantic relationships between
categories, especially where the sequence matters. By mapping categories to equally spaced values, it
ensures that the relative distances between categories in the original data are reflected in the encoded
representation. This compact format reduces dimensionality and improves model performance.

ANALOG BITS ENCODING – TABUNITE(I2B)

Analog Bits encode categorical features using a binary-based continuous representation. The encoding
process involves two steps. First, we convert the categorical value to a binary representation where
each category can be expressed using ⌈log2(K)⌉ binary bits based on the number of categories. For
example, a categorical feature with K = 5 categories is expressed using ⌈log2(5)⌉ = 3 bits that maps
xcat
i,j ∈ {0, 1, 2, 3, 4} to xcat

i,j ∈ {000, 001, 010, 100, 101} respectively. Subsequently, each binary bit
is cast into a real-valued representation, followed by a shift and scale formula.

fi2b(x
cat
i,j) = (xcat

i,j · 2− 1) (3)

where xcat
i,j ∈ {0, 1}⌈log2(K)⌉.

5
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This transformation shifts and scales the binary values from {0, 1} to {−1.0, 1.0}. Thus, training and
sampling of continuous-feature generative models (e.g., diffusion models) become computationally
tractable. To decode, thresholding and rounding are applied to the generated continuous bits from the
model to convert them back into binary form, which can be decoded trivially back into the original
categorical values.

Analog Bits provide a dense representation which reduces dimensionality. It improves memory
efficiency by requiring only ⌈log2(K)⌉ dimensions per feature instead of K in one-hot. This higher
information density helps preserve heterogeneous feature relationships in a compact space.

Overview. In Figure 2, we consider an example categorical data point of xcati,j = 5 with K = 7

categories where xcati,j ∈ {0, 1, 2, 3, 4, 5, 6}. PSK’s phase-based representation is obtained by mapping
xcati,j = 5 to fpsk(xcat

i,j) =
[
cos( 10π7 ), sin( 10π7 )

]
. Dictionary creates a look-up embedding table and

maps xcati,j = 5 to fdic(xcat
i,j) = .67. Analog Bits encode xcati,j = 5 using ⌈log2(7)⌉ = 3 bits, followed

by casting into R then a scale and shift yielding: fi2b(xcat
i,j) = [1.0,−1.0, 1.0].

Note that out-of-index (OOI) can occur due to the generative nature of models like Flow Matching
and DDPM, which may produce continuous values that don’t directly correspond to the original
categorical encoding range. For PSK, OOI values are cast to the value of the 0-th index i.e., for 2
categories, we have {0, 1} → {[1, 0], [0, 1]}. If we encounter an OOI category like 4, it would be cast
to the value of the 0-th index. So: 4 → 0 → [1, 0]. For Dictionary, OOI values are cast to the closest
value in the embedding look-up table. For Analog Bits, OOI values are cast to the bit representation
of the numerically largest value. Although casting ensures that all generated categorical values fall
within the valid range, it introduces a bias. However, due to the generative capabilities of Flow
Matching and DDPM, out-of-index values rarely occur as shown by the performance of TabUnite.

3.2 FLOW MATCHING AND DIFFUSION MODEL

After encoding our continuous and categorical columns, we are presented with a unified and con-
tinuous data space, Xi2b ∈ RN×(Dcont+

∑Dcat
j=1⌈log2(K:,j)⌉), Xdic ∈ RN×(Dcont+Dcat), and Xpsk ∈

RN×(Dcont+2·Dcat). This enables us to directly model continuous state flow and diffusion models
without requiring a discrete state space (multinomial diffusion/discrete flow) or re-formulation of
the continuous flow/diffusion process (latent spaces). For convenience, we define Xunite to represent
either Xi2b, Xdic or Xpsk, depending on the encoding method used.

Subsequently, we examine Flow Matching (FM) (Lipman et al., 2022) and Denoising Diffusion
Probabilistic Models (DDPMs) (Ho et al., 2020b) as our generative models where we apply our
encoding methods prior to the modeling process. FM is a simulation-free framework for training
continuous normalizing flow models (Chen et al., 2019) by replacing the stochastic diffusion process
with a predefined probability path constructed with theories from optimal transport (McCann, 1997).
On the other hand, DDPM learns a reverse denoising process by gradually transforming Gaussian
noises into data samples.

Our encoding schemes, combined with FM and DDPM, yield our TabUnite models which are referred
to as TabUnite(i2b)-Flow/DDPM, TabUnite(dic)-Flow/DDPM, and TabUnite(psk)-Flow/DDPM
respectively. Please find additional details regarding Flow Matching and DDPM in Appendix A, B,
Lipman et al. (2022), and Ho et al. (2020b). The following delineates the formulation for FM and
DDPM in our setting.

Let x denote a sample from the dataset Xunite, i.e. x ∼ Xunite. For FM, We learn a vector field vt(x)
to approximate the true vector field ut(x|x1), yielding our objective function of the following:

LFM(θ) = Eq(x1),pt(x|x1)||vt(x)− ut(x|x1)||2 (4)

For DDPM, we learn a noise prediction network ϵθ(xt, t) to approximate the noise added during the
forward process, yielding our objective function of the following:

LDDPM(θ) = Et,x0,ϵt ∥ϵt − ϵθ(xt, t)∥2 (5)

Relative to DDPM, FM synthesizes tabular data with a much higher sampling speed while also
attaining a competitive generalization.
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4 EXPERIMENTS

We evaluate the performance of TabUnite(i2b)-Flow/DDPM (Analog Bits + FM/DDPM),
TabUnite(dic)-Flow/DDPM (Dictionary encoding + FM/DDPM), and TabUnite(psk)-Flow/DDPM
(PSK encoding + FM/DDPM) on a wide range of real-world and synthetic datasets, benchmarks,
and compare the proposed models with a comprehensive number of baselines. Hyperparameters can
be found in Appendix B.3. In the figures, we use TabUnite(psk) as our exemplars. Figures of other
TabUnite methods can be found in the Appendix as we reference them in their respective sections.

Datasets. The datasets in our experiments are from the UCI Machine Learning Repository (Dua &
Graff, 2017), L2X paper (Chen et al., 2018), and our own self-curated dataset, “Census Synthetic”.
The real-world UCI tabular datasets have previously been utilized in existing baselines. Next, we
leverage synthetic toy datasets to prove the faithfulness of our model (Appendix C.1 and D.3). Lastly,
we curate a dataset much larger than existing datasets in the number of samples (approx. 2.5 million
samples) and include a large set of mixed features (40 and 41 categorical and continuous features
each). The training/validation/testing sets are split into 80/10/10% apart from the Adult dataset which
we adhere to its original documented splits. Full details of the datasets can be found in Appendix C.1.

Baselines: Existing modeling approaches. We compare our model against eight other existing
methods for tabular generation. This includes CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019),
GOGGLE (Liu et al., 2023), GReaT (Borisov et al., 2023), TabDDPM (Kotelnikov et al., 2023),
STaSy (Kim et al., 2022), CoDi (Lee et al., 2023), and, TabSYN (Zhang et al., 2023). SMOTE
(Chawla et al., 2002), is also included as a base reference model. Results from CTGAN, TVAE,
GOGGLE, GReaT, STaSy, and CoDi are taken from the TabSYN paper (Zhang et al., 2023). The
main competitors to our model are TabSYN and TabDDPM since they are the best-performing
models to date. Hence, we reproduce the results of TabSYN and TabDDPM per the recommended
hyperparameters mentioned by the authors of their respective papers. More details in Appendix C.2.

Ablations: Encoding schemes and generative models (Flow/Diffusion). We conduct our ablation
studies with respect to various encoding schemes and generative models. This assists us in proving
the effectiveness of our encoding schemes (PSK, Dictionary, and Analog Bits) and highlights FM’s
(Lipman et al., 2022) competitive yet fast performance against DDPMs. Details in Appendix C.3.

Benchmarks & Metrics. We evaluate the generative performance on a broad suite of benchmarks
from TabSYN (Zhang et al., 2023). We analyze the capabilities in downstream tasks such as machine
learning efficiency (MLE), where we determine the AUC score for classification tasks and RMSE
for regression tasks of XGBoost (Chen & Guestrin, 2016) on the generated synthetic datasets. Next,
we conduct experiments on low-order statistics where we perform column-wise density estimation
(CDE) and pair-wise column correlation (PCC). Lastly, we examine the models’ quality on high-order
metrics such as α-precision and β-recall scores (Alaa et al., 2022). We add two extra benchmarks
including a detection test metric, Classifier Two Sample Tests (C2ST) (SDMetrics, 2024) – Appendix
D.6, and a privacy preservation metric, Distance to Closest Record (DCR) (Minieri, 2022) – Appendix
D.7. Further details are found in Appendix C.4.

4.1 MODEL COMPARISONS ON PREDEFINED BASELINES

We benchmark TabUnite(i2b)-Flow, TabUnite(dic)-Flow, and TabUnite(psk)-Flow across 6 datasets,
against a wide range of baselines, in terms of a downstream MLE task. Following the setting in
TabDDPM and TabSYN (Kotelnikov et al., 2023; Zhang et al., 2023), we split the datasets into
training and testing sets where the generative models are trained on the training set. Synthetic samples
of equivalent size are then generated based on the trained generative models. The generated data
is subsequently evaluated against the mentioned benchmarks, using the testing set—unseen during
training and generation phases—to assess the models’ performance and generalization.

As observed in Table 2, TabUnite methods achieve the best MLE performance compared to existing
baselines across 6 datasets. We also identify that PSK is the most superior encoding setup, obtaining
the best results in 5/6 of the datasets. Furthermore, we observe that TabUnite(psk)-Flow yields the
highest performance in 3/6 of the best-performing TabUnite models.
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Table 2: AUC (classification) and RMSE (regression) scores of Machine Learning Efficiency. ↑
indicates that the higher the score, the better the performance, vice versa. Values bolded in red is the
best-performing model. Details are found in Appendix C.

Methods Adult Default Shoppers Magic Beijing News
AUC ↑ AUC ↑ AUC ↑ AUC ↑ RMSE ↓ RMSE ↓

Real 0.927±0.000 0.770±0.005 0.926±0.001 0.946±0.001 0.423±0.003 0.842±0.002

SMOTE 0.899±0.007 0.741±0.009 0.911±0.012 0.934±0.008 0.593±0.011 0.897±0.036

CTGAN 0.886±0.002 0.696±0.005 0.875±0.009 0.855±0.006 0.902±0.019 0.880±0.016

TVAE 0.878±0.004 0.724±0.005 0.871±0.006 0.887±0.003 0.770±0.011 1.01±0.016

GOGGLE 0.778±0.012 0.584±0.005 0.658±0.052 0.654±0.024 1.09±0.025 0.877±0.002

GReaT 0.844±0.005 0.755±0.006 0.902±0.005 0.888±0.008 0.653±0.013 OOM
STaSy 0.906±0.001 0.752±0.006 0.914±0.005 0.934±0.003 0.656±0.014 0.871±0.002

CoDi 0.871±0.006 0.525±0.006 0.865±0.006 0.932±0.003 0.818±0.021 1.21±0.005

TabDDPM 0.910±0.001 0.761±0.004 0.915±0.004 0.932±0.003 0.592±0.012 3.46±1.25

TabSYN1 0.906±0.001 0.755±0.004 0.918±0.004 0.935±0.003 0.586±0.013 0.862±0.021

ForestFlow2 OOM OOM 0.918±0.003 0.936±0.003 OOM OOM

TabUnite(i2b)-DDPM 0.912±0.001 0.762±0.003 0.919±0.004 0.944±0.002 0.542±0.008 0.844±0.013

TabUnite(dic)-DDPM 0.912±0.002 0.763±0.005 0.910±0.006 0.943±0.003 0.541±0.005 0.851±0.012

TabUnite(psk)-DDPM 0.913±0.002 0.764±0.005 0.912±0.005 0.939±0.003 0.508±0.006 0.836±0.0015

TabUnite(i2b)-Flow 0.911±0.001 0.763±0.004 0.918±0.005 0.941±0.003 0.543±0.007 0.847±0.014

TabUnite(dic)-Flow 0.911±0.002 0.758±0.006 0.908±0.006 0.943±0.003 0.555±0.006 0.848±0.013

TabUnite(psk)-Flow 0.912±0.002 0.782±0.005 0.919±0.005 0.941±0.003 0.536±0.006 0.814±0.0015

1 Despite numerous rerun attempts per TabSYN’s repo, we cannot reproduce Adult (.915±.002) and
Shoppers (.920±.005) that are ≥ than our results in TabSYN’s paper.

2 ForestFlow’s training procedure is CPU-based, its architecture cannot handle datasets > 21,000 samples.

4.2 ABLATION STUDY: ENCODING SCHEME AND MODEL CHOICE

To further validate the effectiveness of TabUnite’s encoding schemes, we conduct an ablation study
to isolate the generative model while varying the encoding methods among PSK, Dictionary, Analog
Bits, separate modeling, and one-hot encoding. We also perform the reverse, isolating the encoding
schemes while varying the generative models between Flow Matching and DDPM. The real-world
datasets we select for comparison in our main text are “Adult” and “News” since they have a good
amount of samples, as well as a balanced set of continuous and categorical features. Results for the
remaining datasets can be found in Appendix D.2.

Curation of a Large-Scaled Mixed Synthetic Dataset. While our experiments using publicly
available datasets from the UCI machine learning repository (Dua & Graff, 2017), as well as other
databases (Vanschoren et al., 2013) are well established, an issue is that they lack datasets with a
large number of samples (> 100k) and mixed features (> 15 continuous and categorical features).
Therefore, the need for curating publicly available large datasets with mixed features remains crucial
for determining the effectiveness of our categorical encoding schemes. A considerably larger dataset
is the US Census Data (1990) (Meek et al., 2001) which contains 2, 458, 285 samples and 61 features.
However, these samples consist of only categorical variables. To incorporate continuous features,
we begin by converting ordinal categorical features into continuous features. With the remaining
non-ordinal categorical features, we select a subset and convert them to continuous using Frequency
Encoding. Lastly, we leverage a synthetic data generation model (Chen et al., 2018; Si et al., 2024)
to create continuous composite indicators (OECD et al., 2008) that can help capture interactions
between different aspects of the data. The synthetic continuous data are then generated per the
following two polynomials: Syn1 = exp(xixj) and Syn2 = exp(

∑3
i=1(x

2
i − 4)) before applying a

logistic function 1
1+logit(X) . Finally, we concatenate our synthesized continuous features with the

categorical. We have now constructed a Census Synthetic dataset comprised of 41 continuous features,
40 categorical features, and 2, 458, 285 samples. For a regression task, the label is “dIncome1” which
is the annual income of an individual. Further details can be found in Appendix C.1.

Ablation Analysis. In Table 3, TabUnite encoding methods achieve the best overall performance
across the datasets and benchmarks. Solely comparing the performance of our encoding methods,
we observe that TabUnite(psk) does the best, followed by TabUnite(i2b), TabUnite(dic), separated
(TabDDPM/TabFlow), then one-hot. Evaluating Flow Matching vs. DDPM, we observe that while
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Table 3: AUC (classification), RMSE (regression), Column-Wise Density Estimation (CDE), Pair-
Wise Column Correlation (PCC), α-Precision, and β-Recall scores for our Census Synthetic, Beijing,
and Adult datasets. ↑ indicates that the higher the score, the better the performance, vice versa. Values
bolded in red is the best-performing model. Details are found in Appendix C.

Methods Census Synthetic

RMSE ↓ CDE ↑ PCC ↑ α ↑ β ↑
TabDDPM 0.204±0.012 83.60±0.01 86.06±0.11 72.78±0.10 0.09±0.05

oheDDPM 0.954±0.024 54.95±0.02 50.43±0.01 0.00±0.00 0.00±0.00

TabUnite(i2b)-DDPM 0.188±0.004 86.39±0.01 90.61±0.58 85.76±0.10 36.34±0.01

TabUnite(dic)-DDPM 0.156±0.005 86.57±0.02 90.85±0.11 91.71±0.02 36.27±0.08

TabUnite(psk)-DDPM 0.171±0.005 86.16±0.01 90.51±0.13 81.85±0.08 37.37±0.07

TabFlow 0.144±0.005 85.80±0.01 90.74±0.70 94.12±0.04 42.06±0.10

oheFlow 0.502±0.003 64.29±0.01 69.82±0.19 67.09±0.08 0.00±0.00

TabUnite(i2b)-Flow 0.127±0.003 86.24±0.02 91.59±0.11 90.51±0.07 41.38±0.07

TabUnite(dic)-Flow 0.159±0.003 86.12±0.02 91.53±0.10 95.64±0.06 39.02±0.05

TabUnite(psk)-Flow 0.156±0.004 85.78±0.02 90.90±0.12 89.58±0.08 40.17±0.07

Methods Adult

AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑
TabDDPM 0.909±0.002 98.37±0.05 96.69±0.50 90.99±0.37 62.19±0.69

oheDDPM 0.476±0.057 48.54±2.13 35.51±2.67 11.01±4.52 0.47±0.07

TabUnite(i2b)-DDPM 0.912±0.003 99.27±0.13 98.13±0.21 98.50±0.23 47.86±0.09

TabUnite(dic)-DDPM 0.912±0.002 98.97±0.06 97.82±0.19 98.36±0.29 51.34±0.20

TabUnite(psk)-DDPM 0.913±0.002 99.24±0.06 98.10±0.37 97.99±0.19 52.04±0.34

TabFlow 0.908±0.002 96.32±0.52 93.76±0.76 89.34±3.61 52.71±0.36

oheFlow 0.895±0.003 91.05±0.78 84.92±0.87 93.55±3.61 30.26±0.76

TabUnite(i2b)-Flow 0.911±0.001 98.47±0.16 97.28±0.27 99.10±0.38 48.35±0.34

TabUnite(dic)-Flow 0.910±0.002 98.23±0.22 96.01±0.72 98.48±0.68 51.10±0.22

TabUnite(psk)-Flow 0.912±0.001 98.75±0.17 97.55±0.40 99.21±0.30 49.68±0.28

Methods News

RMSE ↓ CDE ↑ PCC ↑ α ↑ β ↑
TabDDPM 0.842±0.025 94.79±1.17 89.52±2.74 90.94±1.43 40.82±0.52

oheDDPM 0.840±0.020 98.06±0.07 97.10±0.44 96.31±0.54 47.10±0.29

TabUnite(i2b)-DDPM 0.844±0.024 98.26±0.04 99.04±0.24 96.09±0.50 48.31±0.40

TabUnite(dic)-DDPM 0.851±0.019 98.22±0.04 98.57±0.27 96.95±0.44 47.94±0.34

TabUnite(psk)-DDPM 0.836±0.021 98.35±0.04 98.78±0.18 95.11±0.28 48.65±0.33

TabFlow 0.850±0.017 96.76±0.18 97.98±0.11 90.20±1.04 50.13±0.28

oheFlow 0.850±0.022 96.09±0.46 98.06±0.13 98.02±1.44 43.38±0.76

TabUnite(i2b)-Flow 0.848±0.016 96.91±0.09 98.43±0.23 90.06±0.48 52.00±0.31

TabUnite(dic)-Flow 0.853±0.014 96.56±0.35 98.13±0.21 92.39±1.28 50.52±0.39

TabUnite(psk)-Flow 0.847±0.014 96.89±0.10 98.34±0.36 90.91±1.29 51.75±0.54

1 oheDDPM collapses on Census Synthetic and Adult for α and β.

DDPM outperforms FM in most scenarios, FM still remains competitive while providing gains in
sampling speed and efficiency.

Sampling Speed. We investigate the sampling speed of Flow Matching against DDPM and DDIM.
In Figure 3, we examine the number of function evaluations the methods require to converge to its
best AUC and average error on the Adult dataset. We observe that TabUnite(psk)-Flow and TabFlow
converge to their best AUC/Average Error in as little as 32 NFEs when compared to DDPM methods
and TabDDIM that require around 1000 NFEs. Additionally, the performance of TabUnite(psk)-
Flow remains competitive to TabUnite(psk)-DDPM at convergence. Therefore, Flow Matching is
computationally efficient and fast at sampling while providing competitive results to DDPMs.

4.3 SUMMARY OF ADDITIONAL EXPERIMENTS

We present additional experiments in the Appendix to strengthen our findings.
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Figure 3: Synthetic Data Quality vs. Sampling Speed of TabUnite(psk)-Flow/DDPM, TabFlow, Tab-
DDPM, and TabDDIM on the Adult dataset. TabUnite(psk)-Flow converges to the best AUC/Average
Error in much fewer NFEs compared to the baselines.

• Additional results for Tables 2 and 3 with more datasets can be found in Appendix D.1 and
D.2. Their results further emphasize the importance and superiority of TabUnite.

• To justify the faithfulness of our model, we use synthetic toy examples to assess our model’s
integrity against the known ground truth. Details and results can be found in Appendix C.1
and D.3 respectively. The synthetic dataset illustrates that TabUnite methods are faithful in
generating high-quality samples that match the ground truth qualitatively. Quantitatively,
training TabUnite methods are stable and converge to a higher accuracy than TabDDPM.

• In Appendix D.4 and D.5, we present low-order statistics and high-order metrics results of
our baselines. The consensus indicates that TabSYN is the best-performing model among
the baselines. However, results in Table 3 and Appendix D.2 indicated that TabUnite models
outperform TabSYN.

• In Appendix D.6 and Appendix D.7 we include results to a detection test metric, Classifier
Two Sample Tests (C2ST) (SDMetrics, 2024), and a privacy preservation metric, Distance to
Closest Record (DCR) (Minieri, 2022). C2ST results showcase that most TabUnite methods
outperform the baselines, highlighting that the synthetic data is similar to the real data.
However, we do not outperform TabSYN in our DCR results, indicating that the synthetic
data will leak the real data’s information. This aligns with our hypothesis where TabSYN
leverages a latent space thus, resulting in a lossy compression, improving their DCR scores.

• In addition to generation, we also conducted a brief investigation on the effects of TabUnite
encoding on prediction tasks in Appendix D.8. While the improvements are less significant
than those of the generation, TabUnite encoding schemes still outperform one-hot encoding.

5 CONCLUSION

We propose an efficient encoding framework for tabular flow and diffusion models that leverages
effective categorical encoding schemes to unify the data space. Since flow and diffusion models
rely on continuous transformations of denoising score-matching, or invertible mappings between the
data and latent space, applying a single flow/diffusion model that captures heterogeneous feature
interrelationships is crucial in improving generation quality. Our models are curated by employing
PSK, Dictionary, and Analog Bits encoding that efficiently convert categorical variables into a dense
and meaningful continuous representation, before applying Conditional Flow Matching to generate
the data. To further strengthen our findings on our categorical embedding schemes, we curate a
large-scale heterogeneous tabular dataset and benchmark TabUnite on it. Relative to the baselines,
our TabUnite models, notably TabUnite(psk)-Flow, outperform them across a wide range of datasets
while evaluated on a broad suite of benchmarks. Additionally, leveraging Flow Matching greatly
bolsters our sampling efficiency, saving computational cost and time while remaining competitive in
performance to DDPMs. Overall, we justify our claim of applying efficient encoding methods such
as TabUnite(psk) to a single efficient flow matching model on a coherent data space.
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A ALGORITHMS

Algorithms 1 and 2 describe the training and sampling of TabUnite’s Flow Matching process. For
more information regarding Flow Matching, please refer to “Flow Matching for Generative Modeling"
(Lipman et al., 2022) or “Improving and Generalizing Flow-Based Generative Models with Minibatch
Optimal Transport" (Tong et al., 2023).

Algorithm 1 TabUnite: Training Flow Matching using CFM

1: Sample initial data points x1 ∼ q(x1)
2: Initialize vector field vt(x) and parameters θ
3: while not converged do
4: Sample time step t ∼ U([0, 1])
5: Sample x ∼ pt(x|x1)
6: Calculate true vector field ut(x|x1) as per Eq. 11
7: Compute loss LCFM (θ) = E|vt(x)− ut(x|x1)|2
8: Update θ using gradient descent to minimize LCFM (θ)
9: end while

Algorithm 2 TabUnite: Sampling Flow Matching using CFM

1: Sample x ∼ N (0, I) (start with the noise distribution)
2: Set tmax = T and initialize xT = x
3: for i = T, . . . , 1 do
4: Use ψt to map xT to xti−1

using the learned vector field ut
5: Compute xti−1

with ψti(xT ) = σti(x1)xT + µti(x1)
6: Update xT = xti−1

7: end for
8: x0 is a synthetic sample generated by CFM
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B ARCHITECTURE

B.1 FLOW MATCHING/DDPM MLP

Figure 4 illustrates the MLP architecture used as part of our Flow Matching network, also used in
TabDDPM (Kotelnikov et al., 2023) and TabSYN (Zhang et al., 2023), which is based on (Gorishniy
et al., 2023).

Hidden	Layers

𝑥!

Draw	a	sample	from	
probability	path	

𝒩(𝑡 5 𝑥! + (1 − 𝑡) 5 𝑥", 𝜎#	)

Input	layer Output	layer

𝑡ABC

h1 h2 h3 h4 𝑣#ℎ𝑖𝑛 ℎ&'(

vector	field

Figure 4: The MLP architecture used in the Flow Matching.DDPM process. The neural network takes
in a batch of samples drawn from the probability path at time t’s sampled from U(0, 1) to create a
vector field vθ that represents a continuous normalizing flow from pure noise to our data distribution
p1(x1).

The input layer projects the batch of tabular data input samples xt, each with dimension din, to the
dimensionality dt of our time step embeddings temb through a fully connected layer. This is so that
we may leverage temporal information, which is appended to the result of the projection in the form
of sinusoidal time step embeddings.

hin = FCdt(xt) + temb (6)

The hidden layers h1, h2, h3, and h4 are fully connected networks used to learn and create the vector
field. The output dimension of each layer is chosen as dt, 2dt, 2dt, and dt respectively. On top of the
FC networks, each layer also consists of an activation function followed by dropout, as seen in the
formulas below. This formulation is repeated for each hidden layer, at the end of which we obtain
hout. The exact activations, dropout, and other hyperparameters chosen are shown in Table 4.

h1 = Dropout(Activation(FC(hin))) (7)

At last, the output layer transforms hout, of dimension temb back to dimension din through a fully
connected network, which now represents the vector field vθ.

vθ = FCdin(hout) (8)

B.2 FURTHER FLOW MATCHING DETAILS

Let x denote a sample from the dataset Xunite, i.e. x ∼ Xunite. We learn a vector field vt(x) to
approximate the true vector field ut(x|x1), yielding an objective function of the following:

LCFM (θ) = Eq(x1),pt(x|x1)||vt(x)− ut(x|x1)||2 (9)

This in turn, generates a probability density path pt(x|x1) where the density evolves from the
initial standard normal distribution p0(x|x1) = p0(x) = N(x|0, I), and ultimately converges to the
underlying data distribution p1(x|x1) centered around x = x1 where we sample xsyn. In order to
generate the aforementioned path pt(x|x1) via vector field ut(x|x1), we consider the flow ψt:

[ψt]∗p(x) = pt(x|x1) (10)

where ψt(x) = σ(x1)x+ µt(x1). This property helps move the noise distribution from p0(x|x1) =
p(x) to pt(x|x1). In other words, ψt provides a vector field:

d

dt
ψt(x) = ut(ψt(x)|x1) (11)
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that generates the conditional probability path. Rewriting the objective function and reparameterizing
in terms of x0, we have:

LCFM (θ) = Eq(x1),pt(x|x1)||vt(ψ(x))− ut(ψt(x)|x1)||2 (12)

LCFM (θ) = Eq(x1),pt(x|x1)||vt(ψ(x0))−
d

dt
ψt(x0)||2 (13)

With the simple affine map property of ψt, we use it to solve for vector field u:

ut(x|x1) =
σ′
t(x1)

σt(x1)
(x− µt(x1)) + µ′

t(x1) (14)

generating Gaussian probability path pt(x|x1). Lastly, by integrating optimal transport theories, the
final objective function is the following:

LCFM (θ) = Et,q(x1),p(x0)||vt(ψt(x0))− (x1 − (1− σmin)x0)||2 (15)
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B.3 HYPERPARAMETERS

We generally utilise the same hyperparameters as TabSYN (Zhang et al., 2023) and TabDDPM
(Kotelnikov et al., 2023) for comparability. The exact hyperparameters selected for our models are
shown below in Table 4.

Table 4: TabUnite Hyperparameters.

General Flow Matching/DDPM MLP

Hyperparameter Value Hyperparameter Value

Training Iterations 100, 000 Timestep embedding dimension dt 1024
Flow Matching/DDPM Sampling Steps 50/1000 Activation ReLU
Learning Rate 1e−4 Dropout 0.0
Weight Decay 5e−4 Hidden layer dimension [h1, h2, h3, h4] [1024, 2048, 2048, 1024]
Batch Size 4096
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C EXPERIMENTAL DETAILS

The following delineates the foundation of our experiments:

• Codebase: Python & PyTorch

• CPU: AMD Threadripper 3960X

• GPU: Nvidia RTX A6000, 24GB VRAM

• Optimizer: Adam (Kingma & Ba, 2014)

EXPERIMENT TABLE DETAILS

In Table 2, Table 3, and Appendix Tables, all reported results of baselines in our experiments are taken
from (Zhang et al., 2023), except for TabSYN and TabDDPM, whose results are reproduced utilizing
the public repository: https://github.com/amazon-science/tabsyn, following their
recommended hyperparameters. For Flow Matching experiments, we maintained the same training
steps of 100k while sampling for 50 steps. Additionally, for Table 2, we decided to rerun GReaT in
the same original setting (1 Train, 20 Samples) for the Adult dataset as TabSYN’s reported results
(0.913 ± 0.003) were unusually high. All reported results follow TabSYN’s 1 Training and 20
Sampling trial setting. Note that TabDDPM collapses on the News dataset for all the benchmarks.

For the “Census Synthetic” dataset, all metrics are evaluated on a 10% subsample. The reason is that
it is computationally costly to compute results for diffusion-based models.

C.1 DATASETS

REAL WORLD DATASETS

Experiments were conducted with a total of 6 tabular datasets from the UCI Machine Learning
Repository (Dua & Graff, 2017) with a (CC-BY 4.0) license. Classification tasks were performed
on the Adult, Default, Magic, and Shoppers datasets, while regression tasks were performed on the
Beijing and News datasets. Each dataset was split into training, validation, and testing sets with a
ratio of 8:1:1, except for the Adult dataset, whose official testing set was used and the remainder
split into training and validation sets with an 8:1 ratio. The resulting statistics of each dataset are
shown below in Table 5. Note that the target column indicates the specific operation applied to each
dataset: binary classification for a categorical target with two classes, multiclass classification for a
categorical target with more than two classes, and regression for a numerical target feature. Some
detailed information as well as the statistics of the datasets are shown in Tables 5 and 6 respectively.

Table 5: Statistics of datasets. "# Num" stands for the number of numerical columns, and "# Cat"
stands for the number of categorical columns.

Dataset # Rows # Num # Cat # Train # Validation # Test Task Type

Adult 48, 842 6 9 28, 943 3, 618 16, 281 Binary Classification
Default 30, 000 14 11 24, 000 3, 000 3, 000 Binary Classification
Shoppers 12, 330 10 8 9, 864 1, 233 1, 233 Binary Classification
Magic 19, 019 10 1 15, 215 1, 902 1, 902 Binary Classification
Beijing 41, 757 7 5 33, 405 4, 175 4, 175 Regression
News 39, 644 46 2 31, 714 3, 965 3, 965 Regression
Bank 45, 211 7 10 36, 168 4, 521 4, 521 Binary Classification
Cardio 70, 000 5 7 56, 000 7, 000 7, 000 Binary Classification
Stroke 4, 909 3 8 3, 927 490 490 Binary Classification
Census Synthetic 2, 458, 285 41 40 1, 966, 621 245, 827 245, 829 Regression

SYNTHETIC TOY DATASETS

Qualitative Toy Dataset: The dataset consists of four columns, with the first two columns representing
numerical data point coordinates. Subsequently, the third column categorizes the data points into
five circles whereas the last column indicates the 5 colours each data point can be classified into.
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Table 6: Details of datasets. The "Feature Information" column details the contents of the dataset and
how it is curated. The "Prediction Task" column describes the model’s objective on that dataset.

Dataset Feature Information Prediction Task

Adult Demographic and occupational variables
from census data

Whether an individual’s income exceeds
$50,000

Default Demographic and account-specific data
collected from credit card clients

Whether an individual will default on their
credit card payments next month

Shoppers Internet users’ browser session informa-
tion

Whether the user will engage in online
shopping

Magic Generated events simulating the imaging
of gamma-ray air showers

Predict the type of high-energy gamma
particles in the atmosphere

Beijing Hourly atmospheric PM2.5 and meteoro-
logical data readings at the U.S. Embassy
in Beijing

Predict future PM2.5 readings

News Various features from the news site Mash-
able’s published articles

The number of "shares" articles will have
on social media

Census Synthetic 1990 Census Demographics of the US
Population

Annual Income of an individual

Therefore, each row in the dataset contains 2 numerical features and 2 categorical features. A total of
10, 000 samples are generated for this dataset.

Quantitative Toy Dataset: To quantify our model’s ability to generate high-quality data, we generate
a synthetic toy dataset with 11 numerical features, all drawn from a unit Gaussian distribution, to
represent a complex underlying data distribution. From these numerical features, we derive six
categorical variables by applying a variety of transformations, the details of which are described by
the equations below.

xcat1 = xnum0 · xnum1

xcat2 = (xnum2 )2 + (xnum3 )2 + (xnum4 )2 + (xnum5 )2 − 4

xcat3 = −10 · sin(2 · xnum6 ) + 2 · |xnum7 |+ xnum8 − e−xnum
9

xcat4 = (xnum9 < 0) · xcat1 + (1− (xnum9 < 0)) · xcat2

xcat5 = (xnum9 < 0) · xcat1 + (1− (xnum9 < 0)) · xcat3

xcat6 = (xnum9 < 0) · xcat2 + (1− (xnum9 < 0)) · xcat3

(16)

Following the transformations, tanh activation functions are applied followed by digitization to 10
separate bins. A total of 10, 000 samples are generated for this dataset, resulting in our discrete
categorical variables. We quantify the performance of our models by examining the fidelity of
generating these categorical variables. The scoring is determined by taking the absolute value of the
difference between the real and synthesized values.

We perform three trial experiments for each method and report their mean and standard deviation.
Note that in the quantitative experiments, we use a DDIM sampler for TabDDPM thus, the results are
slightly worse than those we reported in our previous tables.

CENSUS SYNTHETIC DATASET

The US Census Data (1990) (Meek et al., 2001) ((CC-BY 4.0) license) contains 2, 458, 285 samples
and 61 features (excluding “dIncome2” to “dIncome8” since they are redundant). However, these
samples consist of only categorical variables. To incorporate continuous features, we begin by
converting the following ordinal categorical features into continuous features:

• Annual income: dIncome1
• Earnings from employment: dRearning
• Age: dAge

17
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• English proficiency: iEnglish
• Hours worked in 1989: dHour89
• Hours worked per week: dHours
• Travel time to work: dTravtime
• Years spent schooling: iYearsch
• Years spent working: iYearwrk

A total of 9 ordinal categorical features are converted. With the remaining non-ordinal categorical
features, we select 12 additional categorical features and convert them to continuous using Frequency
Encoding yielding us 21 continuous features in total. We consider features that are likely to have
a variety of categories and could benefit from a frequency-based transformation. For instance,
occupation covers a wide range of jobs and ancestry covers many different backgrounds. The features
are as follows:

• Primary ancestry: dAncstry1
• Secondary ancestry: dAncstry2
• Citizenship status: iCitizen
• Marital status: iMarital
• Hispanic origin: dHispanic
• Class of worker: iClass
• Place of birth: dPOB
• Occupation: dOccup
• Industry: dIndustry
• Mobility status: iMobility
• Relationship to head of household: iRelat1
• Sex: iSex

Lastly, to balance out the remaining categorical features 40 with the 21 continuous ones, we leverage
a synthetic data generation model (Chen et al., 2018; Yoon et al., 2019; Si et al., 2024) to generate
20 more continuous features based on the converted continuous features. We create continuous
composite indicators (OECD et al., 2008) by combining our curated continuous features in sets of 2
or 3 that can help capture interactions and relationships between different aspects of the data. An
example is a gender and earnings indicator that shows income disparities. Here are the composite
indicators:

• Work hours (Hours worked per week and Hours worked in 1989): dHours, dHour89
• Educational attainment with age (Age and Years of schooling): dAge, iYearsch
• Language skills based on birthplace (English proficiency and Place of birth): iEnglish, dPOB
• Demographic relationships (Citizenship status and Hispanic origin): iCitizen, dHispanic
• Commuting patterns (Travel time to work and Years worked): dTravtime, iYearwrk
• Family structure (Marital status and Relationship to household head): iMarital, iRelat1
• Employment characteristics (Industry and Occupation): dIndustry, dOccup
• Income disparities (Gender and Earnings): iSex, dRearning
• Migration patterns (Mobility status and Citizenship): iMobility, iCitizen
• Heritage (Primary and Secondary Ancestry): dAncstry1, dAncstry2
• Career dedication (Hours worked per week, Hours worked in 1989, and Travel time to work):

dHours, dHour89, dTravtime
• Career progression (Age, years of schooling, and years worked): dAge, iYearsch, iYearwrk
• Cultural integration (English proficiency, place of birth, and citizenship): iEnglish, dPOB,

iCitizen
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• Household dynamics (Marital status, relationship to household head, and mobility status):
iMarital, iRelat1, iMobility

• Job characteristics (Industry, Occupation, and Earnings): dIndustry, dOccup, dRearning
• Income trends (Gender, Earnings, and Age): iSex, dRearning, dAge
• Heritage and immigration status (Primary and Secondary heritage, and Citizenship):

dAncstry1, dAncstry2, iCitizen
• Demographic patterns (Hispanic origin, Relationship to household head, and Age): dHis-

panic, iRelat1, dAge
• Job location and stability (Travel time, Years worked, and Occupation): dTravtime, iYearwrk,

dOccup
• Education’s impact on earnings (Years of schooling, Years worked, and Earnings): iYearsch,

iYearwrk, dRearning

Before generating these composite indicators, we first apply a Standard scaler to the converted
continuous features since the input features are "generated from a Gaussian distribution (X ∼
N(0, I))" (per (Chen et al., 2018)). The synthetic continuous data are then generated according to
the following two polynomials:

• Syn1 = exp(XiXj)

• Syn2 = exp(
∑3

i=1(X
2
i − 4))

where the first set consists of 10 indicators derived from pairs of variables following Syn1 and
the second set consists of 10 indicators derived from triples of variables following Syn2. These
composite indicators are then transformed using the logistic function 1

1+exp(X) . Finally, we merge
our continuous features with the categorical features to create a comprehensive “Census Synthetic”
dataset. The “Census Synthetic” dataset we construct comprises of 41 continuous features, 40
categorical features and 2, 458, 285 samples. For a regression task, the label is “dIncome1” which is
the Annual income of an individual. Note that the dataset will be released with a CC-BY 4.0 license.

C.2 ADDITIONAL DETAILS ON BASELINES: PREDEFINED MODELS.

TabUnite’s performance is evaluated in comparison to previous works in mixed-type tabular data
generation. This includes CTGAN and TVAE (Xu et al., 2019), GOGGLE (Liu et al., 2023), GReaT
(Borisov et al., 2023), STaSy (Kim et al., 2022), CoDi (Lee et al., 2023), TabDDPM (Kotelnikov
et al., 2023), and TabSYN (Zhang et al., 2023). The underlying architectures and implementation
details of these models are presented below in Table 8.
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Table 8: Comparison of previous methods in Tabular Data Synthesis.

Method Model1 Type2 Categorical
Encoding

Numerical
Encoding

Additional Techniques

CTGAN GAN U One-Hot
Encoding

Scaled Bayesian
Gaussian Mixture

Mode-specific normalization
to represent complex distribu-
tions & conditional generation
to address data imbalances

TVAE VAE U One-Hot
Encoding

Scaled Bayesian
Gaussian Mixture

Mode-specific normalization
& conditional generation

GOGGLE VAE + GNN U One-Hot
Encoding

- Learning relational structures
among features graphically
through an adjacency matrix

GReaT Autoregressive
GPT

U Byte-Pair
Encoding3

Byte-Pair
Encoding3

Textual Encoder which con-
verts data into natural lan-
guage, followed by Feature
Order Permutation and Fine-
tuning

STaSy Score-based
Diffusion

U One-Hot
Encoding

Min-max scaler Self-paced learning and fine-
tuning

CoDi DDPM/
Multinomial
Diffusion

S One-Hot
Encoding

Min-max scaler Model Inter-conditioning and
Contrastive learning to learn
dependencies between cate-
gorical and numerical data

TabDDPM DDPM/
Multinomial
Diffusion

S One-Hot
Encoding

Quantile
Transformer

Concatenation of numerical
and categorical features

TabSYN VAE + EDM U One-Hot Quantile
Transformer

Feature Tokenizer and Trans-
former encoder to learn
cross-feature relationships
with adaptive loss weighing
to increase reconstruction
performance

TabUnite-i2BFlow Flow Match-
ing

U Analog
Bits

Quantile
Transformer

Concatenation of numerical
and categorical features en-
coded with TabUnite’s embed-
ding scheme

TabUnite-dicFlow Flow Match-
ing

U Dictionary Quantile
Transformer

Concatenation of numerical
and categorical features en-
coded with TabUnite’s embed-
ding scheme

1 The ’Model’ Column indicates the underlying architecture used for the model. Options include Generative
Adversarial Networks or GANs (Goodfellow et al., 2014), Variational Autoencoders or VAEs (Kingma
& Welling, 2013), Denoising Diffusion Probabilistic Models or DDPMs (Ho et al., 2020b), Multinomial
Diffusion (Hoogeboom et al., 2021), EDM, as introduced in (Karras et al., 2022).

2 The ’Type’ column indicates the data integration approach used in the model. ’U’ denotes a unified data
space where numerical and categorical data are combined after initial processing and fed collectively into
the model. ’S’ represents a separated data space, where numerical and categorical data are processed and fed
into distinct models.

3 Byte-Pair Encoding (Sennrich et al., 2016) is a tokenization method that iteratively merges the most frequent
adjacent characters or character pairs into single tokens, creating a vocabulary of subwords that efficiently
handles rare and unknown words in text processing.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.3 ADDITIONAL DETAILS ON ABLATIONS: ENCODING SCHEMES AND GENERATIVE MODELS
(FLOW/DIFFUSION).

On top of the models developed by previous related works in mixed-type tabular data synthesis, we
developed baselines that would provide a direct and analogous comparison to justify flow-matching
and our particular encoding methods. This includes the flow-matching-based one-hotFlow (oheFlow),
TabFlow, and the DDPM-based i2bDDPM, dicDDPM, and one-hotDDPM (oheDDPM).

Our DDPM-based baseline methods (i2bDDPM, dicDDPM, and oheDDPM) primarily inherit the
design and implementation of TabDDPM (Kotelnikov et al., 2023). Whereas TabDDPM leverages
two separate diffusion models, namely Gaussian diffusion and Multinomial diffusion, we devise
i2bDDPM, dicDDPM, and oheDDPM to rely solely on Gaussian Diffusion. This is because their
corresponding methods of Analog Bits, Dictionary Encoding, and One-Hot Encoding allow us to
perform diffusion in a unified data space. Implementation of these methods is done by simply altering
the data processing stage of the model. The DDPM architecture is largely kept the same.

Our Flow-based baseline methods (oheFlow, TabFlow) are extended from the TabUnite architecture,
which consists of i2bFlow and dicFlow. oheFlow, as the name suggests, utilizes One-Hot Encoding
in its data processing stage. Tabflow, on the other hand, mirrors the idea of TabDDPM in that two
separate models are used: one for learning categorical features and the other for learning numerical
features. Here, the implementation combines ordinary Flow Matching (Lipman et al., 2022) with
Discrete Flow Matching (Campbell et al., 2024). The respective results of these two models are
concatenated afterward to allow for the synthesis of mixed-type tabular data.

These methods all utilize the QuantileTransformer (Pedregosa et al., 2011) to process numerical data,
which normalizes features to follow a uniform or normal distribution. This is done through sorting
and ranking data points, and then mapping them to fit to the target distribution.

C.4 BENCHMARKS

In this section, we expand on the concrete formulations behind our benchmarks including machine
learning efficiency, low-order statistics, and high-order metrics. We also provide an overview on the
detection and privacy metrics used in our experiments. These comprehensive benchmarks as well as
their implementations are identical to those established by TabSYN (Zhang et al., 2023), ensuring a
direct and accurate comparison.

MACHINE LEARNING EFFICIENCY

AUC (Area Under Curve) is used to evaluate the efficiency of our model in binary classification tasks.
It measures the area under the Receiver Operating Characteristic (or ROC) curve, which plots the
True Positive Rate against the False Positive Rate. AUC may take values in the range [0,1]. A higher
AUC value suggests that our model achieves a better performance in binary classification tasks and
vice versa.

AUC =

∫ 1

0

TPR(FPR) d(FPR) (17)

RMSE (Root Mean Square Error) is used to evaluate the efficiency of our model in regression tasks.
It measures the average magnitude of the deviations between predicted values (ŷi) and actual values
(yi). A smaller RMSE model indicates a better fit of the model to the data.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (18)

LOW-ORDER STATISTICS.

Column-wise Density Estimation between numerical features is achieved with the Kolmogorov-
Smirnov Test (KST). The Kolmogorov-Smirnov statistic is used to evaluate how much two underlying
one-dimensional probability distributions differ, and is characterized by the below equation:

KST = sup
x

|F1(x)− F2(x)|, (19)
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where Fn(x), the empirical distribution function of sample n is calculated by

Fn(x) =
1

n

n∑
i=1

1(−∞,x](Xi) (20)

Column-wise Density Estimation between two categorical features is determined by calculating
the Total Variation Distance (TVD). This statistic captures the largest possible difference in the
probability of any event under two different probability distributions. It is expressed as

TVD =
1

2

∑
x∈X

|P1(x)− P2(x)|, (21)

where P1(x) and P2(x) are the probabilities (PMF) assigned to data point x by the two sample
distributions respectively.

Pair-wise Column Correlation between two numerical features is computed using the Pearson
Correlation Coefficient (PCC). It assigns a numerical value to represent the linear relationship
between two columns, ranging from -1 (perfect negative linear correlation) to +1 (perfect positive
linear correlation), with 0 indicating no linear correlation. It is computed as:

ρ(x, y) =
cov(x, y)

σxσy
, (22)

To compare the Pearson Coefficients of our real and synthetic datasets, we quantify the dissimilarity
in pair-wise column correlation between two samples

Pearson Score =
1

2
Ex,y|ρ1(x, y)− ρ2(x, y)| (23)

Pair-wise Column Correlation between two categorical features in a sample is characterized by
a Contingency Table. This table is constructed by tabulating the frequencies at which specific
combinations of the levels of two categorical variables work and recording them in a matrix format.

To Quantify the dissimilarity of contingency matrices between two different samples, we use the
notion of the Contingency Score.

Contingency Score =
1

2

∑
α∈A

∑
β∈B

|P1,(α,β) − P2,(α,β)|, (24)

where α and β describe possible categorical values that can be taken in features A and B. P1,(α,β)

and P2,(α,β) refer to the contingency tables representing the features α and β in our two samples,
which in this case corresponds to the real and synthetic datasets.

In order to obtain the column-wise density estimation and pair-wise correlation between a categorical
and a numerical feature, we bin the numerical data into discrete categories before applying TVD and
Contingency score respectively to obtain our low-order statistics.

We utilize the implementation of these experiments as provided by the SDMetrics library1.

HIGH-ORDER STATISTICS

We utilize the implementations of High-Order Statistics as provided by the synthcity2 library.

α-precision measures the overall fidelity of the generated data and is an extension of the
classical machine learning quality metric of "precision". This formulation is based on the assumption
that α fraction of our real samples are characteristic of the original data distribution and the rest are
outliers. α-precision therefore quantifies the percentage of generated synthetic samples that match α
fraction of real samples (Alaa et al., 2022).

1https://github.com/sdv-dev/SDMetrics
2https://github.com/vanderschaarlab/synthcity
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β-recall characterizes the diversity of our synthetic data and is similarly based on the qual-
ity metric of "recall". β-recall shares a similar assumption as α-precision, except that we now assume
that β fraction of our synthetic samples are characteristic of the distribution. Therefore, this measure
obtains the fraction of the original data distribution that is represented by the β fraction of our
generated samples (Alaa et al., 2022).

DETECTION METRIC: CLASSIFIER TWO-SAMPLE TEST (C2ST)

The Classifier Two-Sample Test, a detection metric, assesses the ability to distinguish real data from
synthetic data. This is done through a machine learning model that attempts to label whether a data
point is synthetic or real. The score ranges from 0 to 1 where a score closer to 1 is superior, as
it indicates that the machine learning model cannot concretely identify whether the data point in
question is real or generated. We select logistic regression as our machine learning model in this case,
using the implementation provided by SDMetric (SDMetrics, 2024).

PRIVACY METRIC: DISTANCE TO CLOSEST RECORD (DCR)

The Distance to Closest Record metric quantifies the distance between each generated sample to our
training set. The score is calculated as the proportion of synthetic data points that have a closer match
to the real data set compared to the holdout set. A score close to 50% is ideal, as it indicates that our
generated sample represents the underlying distribution of our training samples without revealing
specific points present in the dataset.
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D FURTHER EXPERIMENTAL RESULTS

We run all experiments outlined in this section on at least: TabUnite(i2b)-Flow/DDPM, TabUnite(dic)-
Flow/DDPM, TabUnite-(psk)-Flow/DDPM, TabSYN (Zhang et al., 2023), and TabDDPM (Kotelnikov
et al., 2023) due to their competitive performance in our MLE experiments, as seen in Table 2 as well
as prior literature (Zhang et al., 2023). Unless otherwise stated, we use experimental results collected
by TabSYN’s author for all other model benchmarks. The metrics and error bars shown in the tables
in this section are derived from the mean and standard deviation of the experiments performed on 20
randomly sampled sets of synthetic data.

D.1 TABLE 1 RESULTS ON ADDITIONAL DATASETS

We include 3 more Kaggle datasets to obtain MLE results: Bank, Cardio, and Stroke. Bank contains
45,211 samples, 10 cat. features and 7 cont. features. Cardio contains 70,000 samples, 7 cat. features
and 5 cont. features. Stroke contains 5,110 samples, 8 cat. features and 3 cont. features. The
following are our results produced under the same setting as our Table 1. We include TabSYN and
TabDDPM as baselines since they are the most competitive and relevant for us.

Table 10: AUC (classification) scores of Machine Learning Efficiency.

Methods Bank Cardio Stroke

AUC ↑ AUC ↑ AUC ↑

TabDDPM 0.923±0.002 0.800±0.001 0.755±0.033
TabSYN 0.917±0.002 0.799±0.001 0.752±0.035
TabUnite(i2b)-Flow 0.919±0.002 0.801±0.001 0.763±0.031
TabUnite(dic)-Flow 0.920±0.002 0.801±0.001 0.743±0.037
TabUnite(psk)-Flow 0.918±0.001 0.801±0.001 0.762±0.027

We achieve the best results for Cardio and Stroke and the second best for Bank.
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D.2 TABLE 2 RESULTS ON ADDITIONAL DATASETS

Methods Beijing

RMSE ↓ CDE ↑ PCC ↑ α ↑ β ↑
TabDDPM 0.598±0.009 98.55±0.06 97.60±0.2 98.35±0.27 55.66±0.24

oheDDPM 2.143±0.339 45.71±1.71 36.24±3.5 0.018±0.36 0.018±0.94

TabUnite(i2b)-DDPM 0.542±0.010 81.68±0.17 68.73±0.3 97.54±0.62 59.53±0.25

TabUnite(dic)-DDPM 0.541±0.007 98.96±0.04 97.36±0.2 99.46±0.29 61.94±0.23

TabUnite(psk)-DDPM 0.508±0.013 98.91±0.10 97.41±0.3 99.38±0.32 67.36±2.42

TabFlow 0.574±0.010 96.21±0.22 93.81±0.4 93.66±2.11 58.97±0.47

oheFlow 0.765±0.016 85.14±0.25 74.77±0.8 85.93±1.29 22.58±1.69

TabUnite(i2b)-Flow 0.544±0.007 97.79±0.14 96.43±0.3 98.08±0.79 60.76±0.29

TabUnite(dic)-Flow 0.561±0.013 98.03±0.29 96.44±0.3 97.71±1.03 60.63±0.59

TabUnite(psk)-Flow 0.534±0.006 98.36±0.21 96.48±0.3 98.16±0.72 62.65±0.58

Methods Default

AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑
TabDDPM 0.752±0.008 98.20±0.13 97.16±0.6 96.78±0.44 53.73±0.36

oheDDPM 0.557±0.052 51.39±2.72 51.11±1.7 5.26±0.17 0.16±0.12

TabUnite(i2b)-DDPM 0.762±0.005 99.00±0.09 98.44±0.2 99.12±0.30 47.20±0.38

TabUnite(dic)-DDPM 0.763±0.007 98.24±0.19 92.65±1.6 96.97±0.51 50.57±0.36

TabUnite(psk)-DDPM 0.764±0.005 98.65±0.07 92.87±2.0 98.27±0.20 50.86±0.28

TabFlow 0.742±0.008 96.42±0.27 93.27±1.0 93.15±1.82 53.25±0.74

oheFlow 0.759±0.005 92.78±0.33 86.75±1.4 93.20±0.93 31.09±0.63

TabUnite(i2b)-Flow 0.764±0.004 98.04±0.26 96.88±0.9 98.29±0.48 48.47±0.40

TabUnite(dic)-Flow 0.759±0.007 97.36±0.38 90.84±1.8 96.04±1.25 51.02±0.42

TabUnite(psk)-Flow 0.763±0.006 97.85±0.54 94.51±2.1 97.80±1.58 49.64±0.56

Methods Magic

AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑
TabDDPM 0.940±0.002 99.09±0.07 97.81±0.4 98.40±0.67 53.28±0.53

oheDDPM 0.940±0.002 99.23±0.06 98.16±0.6 99.33±0.27 58.64±0.44

TabUnite(i2b)-DDPM 0.944±0.006 98.97±0.10 98.57±0.5 97.54±0.44 65.92±0.34

TabUnite(dic)-DDPM 0.943±0.003 99.17±0.13 98.06±0.6 99.05±0.43 65.33±0.34

TabUnite(psk)-DDPM 0.939±0.003 99.04±0.09 98.03±0.7 98.41±0.47 58.37±1.42

TabFlow 0.938±0.002 97.74±0.40 97.20±0.8 93.23±1.02 68.17±0.41

oheFlow 0.930±0.003 96.77±0.73 97.30±0.5 92.48±1.54 50.56±0.69

TabUnite(i2b)-Flow 0.941±0.001 98.10±0.57 97.84±0.8 96.05±1.48 68.42±0.50

TabUnite(dic)-Flow 0.940±0.002 98.39±0.14 98.03±0.5 96.54±0.42 68.07±0.50

TabUnite(psk)-Flow 0.940±0.002 98.12±0.37 97.83±0.8 95.69±1.54 67.40±0.61

Methods Shoppers

AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑
TabDDPM 0.904±0.004 97.58±0.12 96.55±0.1 90.28±0.55 72.46±0.51

oheDDPM 0.799±0.126 83.17±11.77 81.62±8.4 67.78±32.72 27.37±15.03

TabUnite(i2b)-DDPM 0.919±0.010 98.77±0.12 98.22±0.1 97.81±0.48 50.85±0.39

TabUnite(dic)-DDPM 0.910±0.005 97.82±0.11 96.14±0.3 95.50±0.53 55.34±0.61

TabUnite(psk)-DDPM 0.912±0.006 97.91±0.09 96.88±0.2 93.42±0.48 67.03±0.44

TabFlow 0.914±0.005 95.73±0.20 93.75±0.2 80.85±1.25 62.26±1.01

oheFlow 0.910±0.006 92.44±0.16 90.58±0.4 80.79±2.88 47.63±0.71

TabUnite(i2b)-Flow 0.916±0.005 97.56±0.08 96.82±0.4 96.71±1.67 55.51±0.88

TabUnite(dic)-Flow 0.903±0.006 96.72±0.10 94.95±0.3 95.09±0.71 52.64±0.57

TabUnite(psk)-Flow 0.911±0.007 97.61±0.10 96.69±0.3 95.40±1.04 56.41±0.58
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Methods Bank

AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑
TabDDPM 0.922±0.002 98.40±0.07 97.21±0.3 92.00±0.55 56.95±0.36

oheDDPM 0.881±0.007 97.32±0.35 94.55±0.1 92.78±1.00 35.70±0.45

TabUnite(i2b)-DDPM 0.920±0.005 99.45±0.08 98.69±0.2 99.02±0.55 46.75±0.31

TabUnite(dic)-DDPM 0.923±0.002 99.21±0.04 98.46±0.1 98.80±0.37 47.68±0.21

TabUnite(psk)-DDPM 0.918±0.002 99.41±0.04 98.71±0.1 99.15±0.32 45.45±0.28

TabFlow 0.910±0.003 96.70±0.33 94.83±0.5 84.74±2.70 52.16±0.41

oheFlow 0.902±0.002 95.08±0.22 93.37±0.3 89.84±1.56 40.51±0.47

TabUnite(i2b)-Flow 0.918±0.002 98.60±0.21 97.75±0.2 98.69±0.77 48.39±0.34

TabUnite(dic)-Flow 0.919±0.002 98.40±0.12 97.25±0.4 99.49±0.27 48.32±0.44

TabUnite(psk)-Flow 0.918±0.002 98.88±0.07 98.07±0.2 98.48±0.42 47.09±0.26

Methods Cardio

AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑
TabDDPM 0.801±0.002 99.39±0.02 96.99±1.6 97.79±0.19 50.20±0.15

oheDDPM 0.800±0.001 99.28±0.10 98.91±0.2 98.12±0.45 49.59±0.17

TabUnite(i2b)-DDPM 0.802±0.006 99.72±0.16 99.38±0.6 99.79±1.07 49.59±0.61

TabUnite(dic)-DDPM 0.802±0.001 99.70±0.02 97.33±1.4 99.69±0.12 49.49±0.17

TabUnite(psk)-DDPM 0.802±0.001 99.69±0.03 99.16±0.4 99.68±0.11 49.22±0.21

TabFlow 0.794±0.003 98.11±0.11 93.64±2.9 91.75±0.56 51.94±0.16

oheFlow 0.794±0.002 94.31±0.18 93.14±0.4 79.61±0.98 52.06±0.23

TabUnite(i2b)-Flow 0.801±0.001 99.07±0.05 93.46±3.3 98.72±0.69 49.76±0.34

TabUnite(dic)-Flow 0.802±0.001 98.93±0.18 95.06±2.9 98.10±0.71 50.05±0.26

TabUnite(psk)-Flow 0.802±0.001 99.05±0.10 95.66±2.1 99.58±0.13 49.23±0.16

Methods Stroke

AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑
TabDDPM 0.842±0.035 99.10±0.09 93.98±1.3 99.32±0.58 72.94±0.65

oheDDPM 0.800±0.036 98.93±0.25 97.97±0.9 98.14±0.55 56.36±0.48

TabUnite(i2b)-DDPM 0.847±0.038 98.99±0.41 96.02±1.5 99.43±0.30 63.32±0.53

TabUnite(dic)-DDPM 0.824±0.021 99.10±0.12 97.56±1.0 98.78±0.50 64.01±0.50

TabUnite(psk)-DDPM 0.856±0.018 99.09±0.14 97.43±1.4 99.46±0.51 57.58±0.62

TabFlow 0.868±0.035 97.79±0.20 96.23±1.9 94.43±0.97 68.54±0.95

oheFlow 0.854±0.025 94.21±0.81 90.86±1.2 79.86±2.01 52.91±1.03

TabUnite(i2b)-Flow 0.840±0.036 98.61±0.20 97.47±1.7 98.83±1.15 64.97±0.89

TabUnite(dic)-Flow 0.807±0.019 98.43±0.16 97.50±2.1 98.72±1.04 67.07±0.57

TabUnite(psk)-Flow 0.857±0.038 98.32±0.09 96.36±0.9 98.16±0.73 62.84±0.68
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D.3 GROUND TRUTH ASSESSMENT WITH SYNTHETIC TOY EXAMPLES

Ta
bU

ni
te

(p
sk

)-
Fl

ow

2 steps 10 steps 100 steps 500 steps GT

Ta
bF

lo
w

Ta
bU

ni
te

(p
sk

)-
D

D
PM

Ta
bD

D
PM

Ta
bD

D
IM

(a) Qualitative Synthetic Toy Dataset.
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(b) Quantitative Synthetic Toy Dataset.

Figure 5: (a) The x-axis illustrates the sampling steps and the “Ground Truth” (GT) of the dataset
whereas the y-axis depicts the methods. TabUnite methods are faithful in generating high-quality
samples that match the ground truth in a short period of sampling duration. (b) The x-axis illustrates
the training iterations whereas the y-axis depicts the accuracy of the generated categorical columns.
Training TabUnite methods are stable and converge to a higher accuracy than TabDDPM.

Figure 5 illustrates a ground truth assessment of faithfulness using synthetic toy Examples. Details
regarding how the dataset is curated can be found in Appendix C.1. A complete figure with all
methods can be found in Figure 6.

Qualitative Results. We further demonstrate the effectiveness of our method in identifying ground
truth relevance for data synthesis. We created a synthetic “Olympic” tabular dataset and visualized it
qualitatively in terms of its structure (shape and sharpness of Olympic rings) and color. Our goal is
to illustrate the integrity of our encoding method and sampling speed by mimicking the qualitative
ground truth attributes of the real dataset. Our primary predefined model for comparison is TabDDPM.
We also introduce TabFlow, a replica of TabDDPM except that we replace DDPM/Multinomial
Diffusion with Flow Matching/Discrete Flow Models (Campbell et al., 2024).

Figure 5a displays the synthesized samples for TabUnite(psk)-Flow, TabFlow, TabUnite(psk)-DDPM,
TabDDPM, and TabDDIM (Song et al., 2022b) across various sampling steps. As early as 10
steps, TabUnite(psk)-Flow converges, achieving high-quality structure and color in relation to the
ideal “Ground Truth” (GT) visualization. However, there is no apparent “Olympic” structure for
TabUnite(psk)-DDPM, TabDDPM, and TabDDIM. Although TabFlow presents an “Olympic” struc-
ture, it is difficult to identify the colors. TabFlow requires approximately 100 steps to differentiate
between the colors clearly. Even at 500 steps, TabDDIM is underperforming in terms of its color
whereas TabDDPM is lacking in its structure where the rings are visually less precise when compared
to the GT. Therefore, the experiment highlights TabUnite(psk)-Flow’s faithfulness and integrity in
generating high-quality samples that match the ground truth in a short period of sampling duration.

Quantitative Results. In addition to our qualitative results, we further demonstrate quantitatively
that our methods are faithful to the model’s decision-making process by creating an additional
synthetic toy dataset. In this dataset, categorical columns are created through an injective mapping
from the numerical columns. We evaluate the synthesis of these categorical variables by taking the
absolute value of the difference between the real value and the synthesized value. Our result in
Figure 5b depicts the accuracy of the generated categorical columns over the number of training
iterations. The models’ accuracy ranking from high to low at 100k training iteration is as follows:
TabUnite(psk)-DDPM, TabUnite(dic)-Flow, TabUnite(psk)-Flow, TabUnite(dic)-DDPM, TabFlow,
TabUnite(i2b)-Flow, TabUnite(i2b)-DDPM, TabDDIM, TabDDPM, oheDDPM, oheFlow. It illus-
trates that training TabUnite models is stable and converges at a higher accuracy compared to their
counterparts. Furthermore, the one-hot methods collapse, achieving very poor generalizations.
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GROUND TRUTH ASSESSMENT ADDITIONAL COMPLETE RESULTS
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(a) Qualitative Synthetic Toy Dataset.
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(b) Quantitative Synthetic Toy Dataset.

Figure 6: (a) The x-axis illustrates the sampling steps and the “Ground Truth” (GT) of the dataset
whereas the y-axis depicts the methods. TabUnite methods are faithful in generating high-quality
samples that match the ground truth in a short period of sampling duration. (b) The x-axis illustrates
the training iterations whereas the y-axis depicts the accuracy of the generated categorical columns.
Training TabUnite methods are stable and converge at a higher accuracy than TabDDPM.
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D.4 LOW-ORDER STATISTICS: COLUMN-WISE DENSITY ESTIMATION AND PAIR-WISE
COLUMN CORRELATION

For reference, we also include supplementary results on the column-wise densities and pair-wise
correlations achieved by baseline methods. The results are provided by TabSYN (Zhang et al., 2023).

The results for can be found in Tables 11 and 12.

Table 11: Comparison of column-wise density estimation scores (%). Values bolded in red is the best
performing model for each dataset.

Method Adult Default Shoppers Magic Beijing News

SMOTE 98.40±0.23 98.52±0.15 97.32±0.19 99.09±0.05 98.15±0.21 94.69±0.46

CTGAN 83.16±0.03 83.17±0.04 78.85±0.10 90.19±0.08 78.61±0.05 83.91±0.02

TVAE 85.78±0.08 89.83±0.05 75.49±0.06 91.75±0.06 80.84±0.06 83.38±0.03

GOGGLE 83.03 82.98 77.67 98.10±0.00 83.07 74.68
GReaT 87.88±0.04 80.06±0.06 85.49±0.12 83.84±0.09 91.75±0.12 OOM
STaSy 88.71±0.06 94.23±0.06 90.63±0.09 93.71±0.13 93.29±0.03 93.11±0.03

CoDi 78.62±0.06 84.23±0.07 68.16±0.05 88.44±0.26 83.06±0.02 67.73±0.04

TabSYN 96.04±0.08 97.10±0.04 97.44±0.07 97.35±0.12 97.76±0.04 94.26±0.05

Table 12: Comparison of pair-wise column correlation scores (%). Values bolded in red is the best
performing model for each dataset.

Method Adult Default Shoppers Magic Beijing News

SMOTE 96.72±0.29 91.59±0.38 96.44±0.22 96.84±0.41 97.61±0.35 94.62±0.76

CTGAN 79.77±1.20 73.05±0.93 86.92±0.16 93.00±0.19 77.05±0.08 94.63±0.05

TVAE 85.85±0.88 80.50±0.95 81.33±0.38 94.18±0.49 81.99±0.08 93.83±0.09

GOGGLE 54.71 78.06 76.10 90.53 54.06 76.81
GReaT 82.41±0.22 29.98±0.12 54.84±0.18 89.77±0.40 40.40±0.55 OOM
STaSy 85.49±0.25 94.04±0.26 91.51±0.15 93.39±0.53 92.00±0.10 96.93±0.04

CoDi 77.51±0.08 31.59±0.05 82.22±0.11 93.47±0.25 92.93±0.15 88.90±0.01

TabSYN 93.36±0.15 87.56±1.02 93.55±0.08 96.81±0.12 94.20±0.13 95.84±0.03
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D.5 HIGH-ORDER METRICS: α-PRECISION AND β-RECALL

For reference, we also include supplementary results on the alpha-precision and beta-recall values
achieved by baseline methods. The results are provided by TabSYN (Zhang et al., 2023).

The results for can be found in Tables 13 and 14.

Note that similar to the results obtained in TabSYN’s paper, TabDDPM also collapses on the News
dataset in our experiments.

Table 13: Comparison of α-Precision scores. Higher values indicate superior results. Values bolded
in red is the best performing model for each dataset.

Methods Adult Default Shoppers Magic Beijing News

CTGAN 77.74±0.15 62.08±0.08 76.97±0.39 86.90±0.22 96.27±0.14 96.96±0.17

TVAE 98.17±0.17 85.57±0.34 58.19±0.26 86.19±0.48 97.20±0.10 86.41±0.17

GOGGLE 50.68 68.89 86.95 90.88 88.81 86.41
GReaT 55.79±0.03 85.90±0.17 78.88±0.13 85.46±0.54 98.32±0.22 -
STaSy 82.87±0.26 90.48±0.11 89.65±0.25 86.56±0.19 89.16±0.12 94.76±0.33

CoDi 77.58±0.45 82.38±0.15 94.95±0.35 85.01±0.36 98.13±0.38 87.15±0.12

TabDDPM 94.79±0.27 98.27±0.34 98.33±0.40 93.35±0.53 0.01±0.73 0.00±0.00

TabSYN 98.51±0.31 98.73±0.20 98.80±0.36 98.01±0.30 97.30±0.30 97.98±0.08

Table 14: Comparison of β-Recall scores. Higher values indicate superior results. Values bolded in
red is the best performing model for each dataset.

Methods Adult Default Shoppers Magic Beijing News

CTGAN 30.80±0.20 18.22±0.17 31.80±0.350 11.75±0.20 34.80±0.10 24.97±0.29

TVAE 38.87±0.31 23.13±0.11 19.78±0.10 32.44±0.35 28.45±0.08 29.66±0.21

GOGGLE 8.80 14.38 9.79 9.88 19.87 2.03
GReaT 49.12±0.18 42.04±0.19 44.90±0.17 34.91±0.28 43.34±0.31 -
STaSy 29.21±0.34 39.31±0.39 37.24±0.45 53.97±0.57 54.79±0.18 39.42±0.32

CoDi 9.20±0.15 19.94±0.22 20.82±0.23 50.56±0.31 52.19±0.12 34.40±0.31

TabDDPM 50.74±0.37 46.90±0.35 53.32±0.52 46.26±0.35 0.02±0.68 0.00±0.00

TabSYN 45.13±0.23 44.30±0.29 48.68±0.57 45.28±0.40 55.50±0.21 35.70±0.18
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D.6 DETECTION METRIC: CLASSIFIER TWO-SAMPLE TEST (C2ST)

The results for our C2ST tests can be found in Table 15. The majority of TabUnite methods outperform
the baselines.

Table 15: Comparison of C2ST scores. Higher values indicate superior results. Values bolded in red
is the best performing model for each dataset.

Method Adult Default Shoppers Magic Beijing News
SMOTE 97.10 92.74 90.86 99.61 98.88 93.44
CTGAN 59.49 48.75 74.88 67.28 75.31 69.47
TVAE 63.15 65.47 29.62 77.06 86.59 40.76
GOGGLE 11.14 51.63 14.18 95.26 47.79 7.45
GReaT 53.76 47.10 42.85 43.26 68.93 −
STaSy 40.54 68.14 54.82 63.99 79.22 52.87
CoDi 20.77 45.95 27.84 72.06 71.77 2.01
TabDDPM 97.55 97.12 83.49 99.98 95.13 0.02
TabSYN 99.86 98.70 97.40 97.32 96.03 97.49

TabUnite(i2b)-DDPM 99.40 98.77 97.96 98.52 93.80 96.25
TabUnite(dic)-DDPM 96.08 97.47 91.37 100.00 99.43 95.98
TabUnite(psk)-DDPM 99.91 99.85 94.22 99.16 98.10 96.27
TabUnite(i2b)-Flow 94.52 86.26 90.00 95.77 90.42 87.12
TabUnite(dic)-Flow 88.08 92.77 89.39 93.38 93.68 88.22
TabUnite(psk)-Flow 95.31 87.02 92.36 96.75 92.26 88.29
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D.7 PRIVACY METRIC: DISTANCE TO CLOSEST RECORD

The results of our DCR tests can be found in Table 16. As observed, we remain competitive but do
not outperform TabSYN as the best method under this metric. This aligns with our hypothesis where
TabSYN leverages a latent space thus, resulting in a lossy compression, improving their DCR scores.

Table 16: Comparison of DCR. Results closer to 50% indicate better performance on the test. Values
bolded in red is the best performing model for each dataset.

Methods Adult Default Shoppers Magic Beijing News

TabDDPM 81.92±0.13 64.05±0.18 91.49±0.07 63.51±0.47 82.44±0.09 59.09±0.16

TabSYN 51.67±0.35 50.87±0.17 52.05±0.88 52.10±0.39 51.55±0.38 50.72±0.25

TabUnite(i2b)-DDPM 66.98±0.45 90.50±0.23 90.54±0.65 95.12±0.22 90.64±0.49 90.19±0.38

TabUnite(dic)-DDPM 71.10±0.25 90.75±0.44 93.15±0.45 95.37±0.17 91.99±0.53 90.46±0.26

TabUnite(psk)-DDPM 68.36±0.22 90.34±0.38 91.04±0.55 95.38±0.23 91.49±0.69 90.40±0.14

TabUnite(i2b)-Flow 53.87±0.27 52.96±0.44 59.66±0.54 83.71±0.28 54.33±0.65 55.81±0.11

TabUnite(dic)-Flow 65.35±0.04 57.79±0.26 72.16±0.65 82.90±0.46 60.97±0.25 55.76±0.51

TabUnite(psk)-Flow 68.30±0.11 90.65±0.23 91.96±0.47 95.30±0.44 91.47±0.33 90.66±0.41
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D.8 PREDICTION TASKS WITH TABUNITE ENCODING: RESULTS ON CLASSIFICATION AND
REGRESSION TASKS

The following table illustrates our results on classification and regression tasks using the Adult,
Stroke, and Cardio datasets. In this table, we use XGBoost to show that our encoding schemes work
for predictive methods too. We trained and evaluated XGBoost using 5 different seeds.

Table 17: Comparison of XGBoost methods across different datasets. Higher AUC and lower RMSE
indicate better performance. Values bolded in red is the best performing model for each dataset.

Methods Adult Stroke Cardio

Classification (AUC) Regression (RMSE) Classification (AUC) Classification (AUC)

oheXGBoost 0.913±0.0004 0.380±0.0030 0.747±0.0091 0.744±0.0048

i2bXGBoost 0.908±0.0007 0.389±0.0026 0.759±0.0078 0.765±0.0006

dicXGBoost 0.908±0.0003 0.379±0.0022 0.712±0.0089 0.762±0.0008

pskXGBoost 0.913±0.0010 0.383±0.0026 0.811±0.0034 0.768±0.0016

Although the improvements are not as significant as generation, TabUnite encoding schemes still
outperform one-hot in 3/4 of the datasets and attain the same best result as one-hot in 1/4 of the
datasets.
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