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6 Experimental details347

6.1 Environment348

Here are the paramters for the 3-node example, the exact parameters for the 10-node example must349
be kept confidential.350

node ch
n

cb
n

wn w̃n demand
middle 26.7 34 170093 12465 NB(0.11, 0.0003)
right 29.5 42 127646 8025 NB(0.081, 0.00047)

replenishment qv kmax
v

kmax
v

lead time
left 4180 2 0 ARPois(6, 20, 0.98)
right 4100 2 1500 ARPois(15, 20, 0.98)

351

Both demand distributions are Negative Binomial, NB(r, p). To reflect realistic fluctuating lead352
times, we use an autoregressive variant of the Poisson distribution, ARPois(ω0, h,ε). This distribu-353
tion produces each time-step t a lead time ϑt which is drawn from the distribution Pois(ωt), where354
ωt depends on the previously h drawn lead time values ϑ according to the formula:355

ωt = max

(
0,ε ·

∑
t→→[t↑h,t] ϑ

↓
t

h
+ (1→ ε)ω0

)
(5)

This produces a time-correlated Poisson distribution which retains an expected value of 0.356

6.2 Details on PPO training357

We train feedforward neural nets with PPO. We add skip connections (He et al., 2016) every two358
layers to enable training deep networks, effectively using 2 residual blocks in both the value and359
policy networks.360

Hyper-parameter parameter value
no. of environment interactions 107

policy network width 256, depth 4
actor network width 256, depth 4
activation function ReLU
discount factor ϖ 0.99
GAE paramter 0.95
Adam learning rate 2.5 · 10↑4

batch size 64

6.3 Metastability361

The learning curves in Figure 4 highlight the difficulty of deep RL training for multi-echelon supply362
chain optimization if the reward function is not chosen carefully. Metastability effects occur as there363
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Figure 7: 3-node example, inventory during training at middle node (left) and right node (right)

are suboptimal strategies that manifest local maxima for the parameter vectors of the policy network.364
As a consequence, gradient based algorithms struggle to improve the suboptimal strategy. To explain365
what happens we plotted the inventory levels of the 3-node example during training (inventory plots366
look similar for the 10-node example). The learning curve of Figure 4 shows a sudden improvement367
after 2.5M environment interactions, preceded by a return drop. This is reflected in Figure 7. The368
agent finds quickly the suboptimal strategy to optimize the inventory at the middle node while com-369
pletely sacrificing the terminal right node, running at maximal inventory 127646. At 2.5M iterations370
the RL agent deviates from the local maximum and explores a new strategy, reducing inventory at371
the terminal node and increasing inventory at the middle node.372

7 Material requirements planning (MRP)373

The main algorithmic invention of this article is to combine off-the-shelf RL training (PPO) through374
imitation learning with rule-based heuristics from operations research (OR). There are several OR375
algorithms to solve approximately different supply chain problems. For the multi-echelon inventory376
optimization (MEIO) problem studied in the present article we use a dynamic programming inspired377
rule-based algorithm that is (with various modifications) implemented in many industry supply chain378
solutions. We now give a quick overview for the interested RL researcher.379

The rule-based algorithm implements a time-phased Material Requirements Planning (MRP I) sys-380
tem to maintain inventory levels above safety stock thresholds across all nodes in the supply chain.381
Rooted in the foundational work Orlicky (1975), the process begins by exploding dependencies from382
downstream nodes (e.g., retailers or finished goods) to upstream suppliers, following the hierarchical383
structure of the multi-echelon supply chain. Inventory projections are calculated in daily time buck-384
ets over a fixed H = 150 planning horizon. Starting from the current day t, the system computes the385
projected available balance (PAB) for each subsequent day s ↑ [t, t+H], accounting for scheduled386
receipts, planned orders, and demand forecasts. If the PAB is projected to fall below the safety stock387
level at time T , a planned order is generated to replenish the deficit. Orders are offset by lead times388
using backward scheduling: for an order requiring ϑ days of lead time, the release date is set to389
T → ϑ . If this calculated release date precedes the current day t, the order is flagged as overdue and390
scheduled for immediate release. This daily recalibration ensures alignment with the core principle391
of time-phased net requirement calculation, where material plans are dynamically adjusted to reflect392
real-time demand and supply conditions. Rule-based MRP algorithms are dynamic-programming,393
heuristic-based algorithms. It implements a safety-stock approach to managing the supply chain,394
meaning it predicts the future inventory levels of all nodes in the chain and tries to ensure inventory395
never falls below the "safety stock" that must be given to the algorithm.396

Since we use the MRP algorithm in our examples without multi-material manufacturing steps, we397
give pseudo-code for a simplified version of MRP. It should be noted that the algorithm is a very398
simple MRP variant that does not estimate demand expectations and lead times on the run. We do399
this for a fair comparison to the RL agents, otherwise demand distributions should also be included400
in the MDP state-space and not be given as part of the model.401

There are two novel ideas we add on the standard OR literature.402
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Algorithm 2 MRP Algorithm (without multi-material manufacturing steps)
Input: expected demands E(d) and lead times E(l), safety stocks Sn for all nodes, current gen-
eralized inventories Gn,t and running orders set O.
for each node n in topological order do

for each time-step s ↑ [t, t+H] do

gen(n, ϑ) ↓ amount of additional material by finished orders
Gn,s ↓ Gn,s↑1 + gen(n, s)→ E (d(n))
if Gn,s+1 < Sn then

Set number of lots L to minimal number containing at least amount Sn →Gn,s+1.
if procurement is possible then

Add to O an order from a source node. L lots, start time: max(t, s→ E(l))
else

Choose source node n↓ that maximizes Gn→,s+1

num_outgoing(n→) , where num_outgoing(n↓) de-
notes the number of nodes supplied by node n↓.
Add to O an order from node n↓ to node n. L lots and start time max(t, s→ E(l))

end if

end if

end for

end for

Output: all orders in O that start at time t. =0

• We interpret MRP(S) =: ϱ as a policy. The action (orders) in the state S (inventory level and403
current order book) are the output orders of the algorithm given above (the orders suggested by404
the algorithm to be placed at initial time t).405

• The safety stock vector S is a required input to the algorithm. We define the reward-based optimal406
safety stock vector S↔ by maximizing the expected reward R under the MRP run defined by407
the MRP algorithm: V (S) = EMRP(S)[

∑↗
t=0 ϖ

tR(st, at)]. Since S is a hyperparameter to the408
algorithm, it is natural to use a Bayesian optimization algorithm to do so.409
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