347 6 Experimental details

348 6.1 Environment

Here are the parameters for the 3-node example, the exact parameters for the 10-node example must be kept confidential.

node	c_n^h	c_n^b	w_n	\tilde{w}_n	demand
middle	26.7	34	170093	12465	NB(0.11, 0.0003)
right	29.5	42	127646	8025	NB(0.081, 0.00047)
replenishment	q_v	k_v^{\max}	k_v^{\max}		lead time
replenishment left	<i>q_v</i> 4180	$\frac{k_v^{\max}}{2}$	k_v^{\max} 0		lead time ARPois(6, 20, 0.98)

351

Both demand distributions are Negative Binomial, NB
$$(r, p)$$
. To reflect realistic fluctuating lead
times, we use an autoregressive variant of the Poisson distribution, ARPois (λ_0, h, ϕ) . This distribu-
tion produces each time-step t a lead time τ_t which is drawn from the distribution Pois (λ_t) , where

355 λ_t depends on the previously h drawn lead time values τ according to the formula:

$$\lambda_t = \max\left(0, \phi \cdot \frac{\sum_{t' \in [t-h,t]} \tau_t'}{h} + (1-\phi)\lambda_0\right)$$
(5)

356 This produces a time-correlated Poisson distribution which retains an expected value of $_0$.

357 6.2 Details on PPO training

We train feedforward neural nets with PPO. We add skip connections (He et al., 2016) every two layers to enable training deep networks, effectively using 2 residual blocks in both the value and

360 policy networks.

Hyper-parameter	parameter value
no. of environment interactions	10^{7}
policy network	width 256, depth 4
actor network	width 256, depth 4
activation function	ReLU
discount factor γ	0.99
GAE paramter	0.95
Adam learning rate	$2.5 \cdot 10^{-4}$
batch size	64

361 6.3 Metastability

The learning curves in Figure 4 highlight the difficulty of deep RL training for multi-echelon supply chain optimization if the reward function is not chosen carefully. Metastability effects occur as there

Figure 7: 3-node example, inventory during training at middle node (left) and right node (right)

364 are suboptimal strategies that manifest local maxima for the parameter vectors of the policy network. 365 As a consequence, gradient based algorithms struggle to improve the suboptimal strategy. To explain 366 what happens we plotted the inventory levels of the 3-node example during training (inventory plots 367 look similar for the 10-node example). The learning curve of Figure 4 shows a sudden improvement 368 after 2.5M environment interactions, preceded by a return drop. This is reflected in Figure 7. The 369 agent finds quickly the suboptimal strategy to optimize the inventory at the middle node while com-370 pletely sacrificing the terminal right node, running at maximal inventory 127646. At 2.5M iterations 371 the RL agent deviates from the local maximum and explores a new strategy, reducing inventory at

the terminal node and increasing inventory at the middle node.

373 7 Material requirements planning (MRP)

The main algorithmic invention of this article is to combine off-the-shelf RL training (PPO) through imitation learning with rule-based heuristics from operations research (OR). There are several OR algorithms to solve approximately different supply chain problems. For the multi-echelon inventory optimization (MEIO) problem studied in the present article we use a dynamic programming inspired rule-based algorithm that is (with various modifications) implemented in many industry supply chain solutions. We now give a quick overview for the interested RL researcher.

380 The rule-based algorithm implements a time-phased Material Requirements Planning (MRP I) sys-381 tem to maintain inventory levels above safety stock thresholds across all nodes in the supply chain. 382 Rooted in the foundational work Orlicky (1975), the process begins by exploding dependencies from 383 downstream nodes (e.g., retailers or finished goods) to upstream suppliers, following the hierarchical 384 structure of the multi-echelon supply chain. Inventory projections are calculated in daily time buck-385 ets over a fixed H = 150 planning horizon. Starting from the current day t, the system computes the 386 projected available balance (PAB) for each subsequent day $s \in [t, t + H]$, accounting for scheduled 387 receipts, planned orders, and demand forecasts. If the PAB is projected to fall below the safety stock 388 level at time T, a planned order is generated to replenish the deficit. Orders are offset by lead times 389 using backward scheduling: for an order requiring τ days of lead time, the release date is set to 390 $T-\tau$. If this calculated release date precedes the current day t, the order is flagged as overdue and 391 scheduled for immediate release. This daily recalibration ensures alignment with the core principle 392 of time-phased net requirement calculation, where material plans are dynamically adjusted to reflect 393 real-time demand and supply conditions. Rule-based MRP algorithms are dynamic-programming, 394 heuristic-based algorithms. It implements a safety-stock approach to managing the supply chain, 395 meaning it predicts the future inventory levels of all nodes in the chain and tries to ensure inventory 396 never falls below the "safety stock" that must be given to the algorithm.

Since we use the MRP algorithm in our examples without multi-material manufacturing steps, we give pseudo-code for a simplified version of MRP. It should be noted that the algorithm is a very simple MRP variant that does not estimate demand expectations and lead times on the run. We do this for a fair comparison to the RL agents, otherwise demand distributions should also be included in the MDP state-space and not be given as part of the model.

402 There are two novel ideas we add on the standard OR literature.

Algorithm 2 MRP Algorithm (without multi-material manufacturing steps)
Input: expected demands $\mathbb{E}(d)$ and lead times $\mathbb{E}(l)$, safety stocks S_n for all nodes, current gen-
eralized inventories $G_{n,t}$ and running orders set O .
for each node n in topological order do
for each time-step $s \in [t, t + H]$ do
$gen(n, \tau) \leftarrow$ amount of additional material by finished orders
$G_{n,s} \leftarrow G_{n,s-1} + gen(n,s) - \mathbb{E}\left(d(n)\right)$
if $G_{n,s+1} < S_n$ then
Set number of lots L to minimal number containing at least amount $S_n - G_{n,s+1}$.
if procurement is possible then
Add to O an order from a source node. L lots, start time: $\max(t, s - \mathbb{E}(l))$
else
Choose source node n' that maximizes $\frac{G_{n',s+1}}{\text{num outgoing}(n')}$, where num_outgoing(n') de-
notes the number of nodes supplied by node n' .
Add to O an order from node n' to node n. L lots and start time $\max(t, s - \mathbb{E}(l))$
end if
end if
end for
end for
Output: all orders in O that start at time t . =0

403 • We interpret $MRP(S) =: \pi$ as a policy. The action (orders) in the state S (inventory level and 404 current order book) are the output orders of the algorithm given above (the orders suggested by 405 the algorithm to be placed at initial time t).

• The safety stock vector S is a required input to the algorithm. We define the reward-based optimal safety stock vector S^* by maximizing the expected reward R under the MRP run defined by the MRP algorithm: $V(S) = \mathbb{E}_{MRP(S)}[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t)]$. Since S is a hyperparameter to the

409 algorithm, it is natural to use a Bayesian optimization algorithm to do so.