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A Appendix

A.1 Experiments based on KG datasets

Datasets. We conduct extensive experiments on two new real-world KG datasets, i.e., Freebase 2 and
FB15K-237 3. Freebase contains a graph of books, films, sports, and locations. The nodes and edges
are extracted according to [5]. A large portion of books are labeled into eight genres of literature.
Each labeled book has only one label. FB15K-237 is a standard dataset in the knowledge graph
community, which contains 310,116 triples with 14,541 entities and 237 relation types. Since we did
not manually label the nodes, we only predicted whether a triple is correct or not on this dataset. We
matched the entities with Wikidata entities and obtained metadata from Wikidata, and constructed a
rough attribute graph dataset by using the names and descriptions of the nodes as textualized features
of the nodes, and directly applying their original relationship text as the edge textualized attributes.

Node Classification. As shown in Table 1, our proposed WalkLM has superior performance,
indicating the importance of leveraging both semantic and structural information in attributed graphs.
WalkLM achieves 40.24% performance gains on Freebase over the second-best performance on
average. Specifically, as a text-based Knowledge graph completion method, SimKGC can effectively
employ text-based contrastive learning to capture a rich set of semantic information. Compared with
SimKGC, WalkLM can effectively combine the complex semantic and graph structure information of
attributed graphs, so as to accurately model the complex attributes of nodes.

Link Prediction. We evaluate WalkLM with AUC and MRR. As shown in Table 1, our fine-tuned
WalkLM demonstrates outstanding performance in uncovering latent associations among nodes in
attributed graphs. In general, WalkLM outperforms all ten baselines with an average of 2.05%
performance gain over the second-best performance, showing that our proposed framework can
learn accurate edge representation for link prediction. Complex and ConvE consistently demonstrate
promising performance by effectively capturing generic node representations. However, as a text-
based Knowledge graph completion method, SimKGC can sometimes outperform others in terms of
the MRR metric, where SimKGC can enhance semantic similarity between nodes through contrastive
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2http://www.freebase.com/
3https://paperswithcode.com/dataset/fb15k-237
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Table 1: Different downstream task results (%) with the corresponding std (±) on two KG datasets.
The best performances are in bold and the second runners are shaded in gray, where * denotes a
significant improvement according to the Wilcoxon signed-rank significance test.

Task Node Classification Link Prediction

Dataset Freebase Freebase FB15K-237

Metric Macro-F1 Micro-F1 AUC MRR AUC MRR

M2V 25.74±1.12 50.25±2.57 80.68±1.81 88.97±0.93 90.35±0.50 96.78±0.19
HIN2Vec 15.56±1.07 43.67±2.12 80.04±3.01 90.90 ±0.87 79.68±0.83 92.85±0.40
ConvE 25.13±1.83 49.31±3.45 88.14±1.03 93.57±0.42 92.88±0.42 97.57±0.15
ComplEx 20.25±1.62 49.43±3.57 84.01±1.43 91.46±0.56 95.03±0.35 97.88±0.22
SimKGC 35.88±0.87 56.12±0.45 87.33±1.51 94.21±0.34 93.80±0.31 97.62±0.30
RGCN 15.37±1.54 45.86±1.03 82.75±0.89 91.52±0.64 85.88±0.35 89.84±0.19
HAN 14.25±1.77 39.30±2.18 80.73±1.37 91.61±0.34 82.06±0.53 89.31±0.89
HGT 19.97±1.34 47.99±2.56 81.94±1.84 89.65±0.43 87.41±0.69 94.62±0.34
HeCo 23.95±1.45 48.62±1.13 79.32±0.86 87.40±0.32 78.82±0.37 90.41±0.23
SHGP 13.83±1.27 39.07±1.39 78.37±1.77 85.52±0.69 78.56±0.33 89.84±0.21

XRoBERTa 48.10±2.01 67.95±0.97 73.94±1.62 88.17±0.91 75.62±0.72 91.10±0.71
GPT-2 49.24±2.12 68.28±1.37 60.45±2.43 83.29±1.87 68.87±1.21 85.23±1.73
DRoBERTa 51.76±1.24 69.51±0.73 79.22±1.85 91.21±1.17 84.15±0.63 93.39±0.39
LM+RGCN 28.38±0.63 53.37±2.27 83.63±1.81 96.38±0.67 87.72±0.50 94.47±0.46
LM+HGT 20.79±0.67 48.73±3.13 83.09±1.23 89.79±0.35 88.18±0.61 94.85±0.27

WalkLM 55.01±2.67* 71.36±1.53* 92.11±2.24* 96.54±0.56* 95.65±0.18* 98.45±0.33*

Table 2: Accuracy results (%) of graph-level classification on MUTAG.

Dataset MUTAG

Model HIN2Vec ConvE ComplEx LM (DRoBERTa) WalkLM w/o. graph-ID WalkLM

Accuracy 78.72 77.64 78.69 79.23 79.77 81.39*

learning based on bi-encoder architecture and three types of negatives. Compared with ConvE,
ComplEX, and SimKGC, WalkLM can effectively capture the complex relations by providing text-
based semantic traits of characteristic graph and reconstructing network proximity of nodes that
inherit from RWs.

A.2 Graph-level Classification

Compared with node or edge classification, aggregating node embeddings for graph-level classifi-
cation needs more context information. Furthermore, graph-level classification presents its own set
of challenges, which require holistic capturing of graph structures and often do not rely much on
attributes. Therefore, it is difficult to find a universal representation learning approach that solves all
different levels of graph mining tasks. Technically, adapting our method to graph-level classification
necessitates some subtle decisions to make (such as whether to include graph ID as a virtual node).
We’ve conducted a preliminary analysis on aggregating our learned node embeddings for graph-level
tasks. Specifically, we adopt a widely-used MUTAG 4 dataset and use mean accuracy as the met-
ric [3, 6]. The results on the popular MUTAG dataset are listed in Table 2. Although the findings are
encouraging and show the potential of WalkLM, further studies are still needed to establish a clear
advantage of our approach over SOTA graph classification baselines.

A.3 Detailed Ablation Studies

From Table 3, we have the following observations: (1) Compared with the graph-based baselines, the
LM-based models (e.g., LM (XRoBERTa), LM (GPT-2), and LM (DRoBERTa)) are able to learn
accurate and rich node attributes, leading to superior performance in node classification. For the
PubMed dataset distributed on 8 classes, LM (XRoBERTa), LM (GPT-2), and LM (DRoBERTa)
achieve 63.78%, 135.04%, and 130.89% performance gains over the second-best performance on
average, respectively. For the MIMIC-III dataset on the total 19 classes, LM (XRoBERTa), LM

4https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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Table 3: The detailed ablation results (%) with the corresponding std (±) on two datasets. The best
performances are in bold and the second runners are shaded in gray, where * denotes a significant
improvement according to the Wilcoxon signed-rank significance test.

Task Node Classification Link Prediction

Dataset PubMed MIMIC-III PubMed MIMIC-III

Metric Macro-F1 Micro-F1 Macro-F1 Micro-F1 AUC MRR AUC MRR

M2V 15.35 20.27 19.69 29.24 74.53 89.58 75.05 88.32
(±1.27) (±3.01) (±0.62) (±1.57) (±3.79) (±2.05) (±0.41) (±0.23)

HIN2Vec 11.57 18.92 19.12 28.05 74.21 90.56 73.46 88.10
(±1.23) (±2.78) (±1.32) (±1.44) (±5.49) (±1.06) (±0.41) (±0.14)

ConvE 16.06 19.16 24.44 32.89 76.48 92.27 69.56 84.88
(±3.69) (±4.00) (±1.28) (±0.86) (±4.31) (±0.57) (±0.36) (±0.25)

ComplEx 13.93 18.27 9.82 21.39 79.81 91.79 63.86 81.40
(±2.59) (±4.12) (±0.56) (±3.12) (±0.97) (±0.48) (±0.42) (±0.40)

SimKGC 21.97 30.83 51.62 58.50 79.62 91.43 67.73 84.86
(±3.51) (±3.10) (±1.81) (±1.52) (±2.72) (±0.48) (±1.69) (±0.54)

RGCN 12.50 18.50 7.19 14.55 72.08 88.20 57.31 73.91
(±2.36) (±1.41) (±0.77) (±3.25) (±1.13) (±0.47) (±0.71) (±0.57)

HAN 15.29 16.95 6.98 14.73 70.57 87.89 - -
(±2.87) (±2.71) (±0.58) (±1.69) (±1.58) (±0.62) - -

HGT 11.98 20.12 8.03 17.79 77.24 89.63 64.01 81.54
(±2.23) (±3.89) (±0.87) (±0.83) (±3.50) (±0.84) (±0.36) (±0.56)

HeCo 10.32 18.01 10.78 15.26 65.04 83.29 53.13 71.81
(±1.12) (±0.87) (±0.41) (±1.52) (±1.26) (±0.72) (±0.47) (±0.35)

SHGP 10.80 19.28 11.34 17.44 68.22 85.34 54.49 72.58
(±3.03) (±0.91) (±1.29) (±1.49) (±2.71) (±0.48) (±0.33) (±0.24)

LM 40.10 44.71 54.51 61.27 60.20 84.23 51.21 74.22
(XRoBERTa) (±4.62) (±3.68) (±1.50) (±1.22) (±2.78) (±1.71) (±0.17) (±0.26)
LM 59.43 61.53 70.26 72.67 51.71 80.54 50.66 72.36
(GPT-2) (±4.73) (±3.43) (±1.43) (±0.90) (±3.67) (±2.49) (±0.74) (±0.86)
LM 58.29 60.57 66.25 70.14 60.97 83.00 51.44 75.09
(DRoBERTa) (±2.44) (±2.11) (±1.60) (±1.52) (±2.98) (±0.40) (±0.14) (±0.29)
LM 13.83 22.70 14.32 24.59 72.35 88.86 58.62 78.78
+RGCN (±0.73) (±3.25) (±0.87) (±1.17) (±4.34) (±1.46) (±0.50) (±0.10)
LM 12.81 21.79 10.49 20.57 82.97 89.98 65.01 82.28
+HGT (±1.22) (±3.54) (±0.41) (±0.97) (±3.91) (±0.88) (±0.20) (±0.30)

WalkLM 60.42* 62.33* 75.16* 77.89* 85.65* 94.16* 82.15* 92.78*
(±2.62) (±3.13) (±0.93) (±0.70) (±3.28) (±0.37) (±0.67) (±0.68)

(GPT-2), and LM (DRoBERTa) achieve 5.17%, 30.17%, and 20.12% average performance gains
compared to the second-best performance, respectively.

(2) The choice of LMs can affect the performance of fine-tuning. Due to different pre-training corpora,
LM (XRoBERTa) performs worse than LM (DRoBERTa) in most cases. Moreover, LM (GPT-2)
achieves an average of 3.30% improvement over LM (DRoBERTa) in node classification, while
LM (DRoBERTa) achieves an average of 7.08% improvement over LM (GPT-2) in link prediction.
Considering the overall performance of the above three LMs on two different tasks and the goal of
learning graph embedding, we choose LM (DRoBERTa) as our starting point for fine-tuning.

(3) Furthermore, LM can further effectively integrate with existing heterogeneous graph algorithms,
resulting in a notable performance enhancement over their individual methods. Specifically, compared
with RGCN, LM + RGCN achieves an average of 50.38% improvement in node classification, and
achieves up to 6.59% improvements in link prediction. Compared with HGT, LM + HGT achieves up
to 30.64% improvements in node classification and 7.42% improvements in link prediction.

(4) Compared with LM + RGCN and LM + HGT, our proposed graph-aware LM fine-tuning
can achieve the largest improvement gains based on the chosen LM (DRoBERTa) in both node
classification and link prediction tasks, showing the effectiveness of capturing topological information
together with semantics in modeling attributed graphs. Specifically, our WalkLM outperforms the
chosen LM (DRoBERTa) by up to 13.45% in node classification. In Particular, our WalkLM achieves
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Table 4: Different downstream task results (%) with ratio of masked samples m on PubMed.

Task Node Classification Link Prediction

Metric Macro-F1 Micro-F1 AUC MRR

m = 0.05 52.97 56.33 83.16 93.47
m = 0.15 60.42* 62.33* 85.65* 94.16*
m = 0.25 53.80 56.09 82.92 93.75
m = 0.35 52.22 55.61 82.38 92.72

up to 59.70% improvements in link prediction, which demonstrates our WalkLM can better learn
accurate edge representation for link prediction by the graph-aware LM fine-tuning.

A.4 Detailed Hyper-parameter Studies

We show the results of the model sensitivity on the number of sampled walks N and the termination
probability α on MIMIC-III in Figure 1. Overall, WalkLM is not sensitive to the two hyper-parameters,
where its performance increases slowly with N and α. Note that, setting N around 3 × 105 and α
around 0.05 seems appropriate to generate sufficient textual sequences and limit computational costs
for fine-tuning, which can achieve a good balance of performance and efficiency. Furthermore, for
the ratio of masked samples m, the specific results are listed in Table 4. Overall, WalkLM is sensitive
to m, where the optimal value across different tasks is 0.15, which is consistent with the empirical
selection in our paper and the previous work [1, 2, 4]

(b) N on link prediction(a) N on node classification (d) 𝛼𝛼 on link prediction(c) 𝛼𝛼 on node classification

Figure 1: Analysis of the number of sampled walks N and the termination probability α.
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