Mirror, Mirror on the Wall: Automating Dental Smile Analysis in Smart Mirrors with CNN and Diffusion Model

Mariia Baidachna¹

Haneen Fatima¹

Rahaf Omran²

Muhammad Ali Imran¹

Ahmad Taha¹

Lina Mohjazi¹

¹University of Glasgow ²Clinical Specialist at Align Technology Communicatio Sensing & Imagin

A smart diagnostic framework for dental smile analysis.

Introduction

Advancements in IoT and ML, particularly within connectivity and CV, are increasingly being applied in the medical field

- Few digital applications in the **dental sector**
- Many CV-related tasks in healthcare are limited by small datasets

Background:

Smile analysis, the combination of factors making up the "perfect" smile, is diagnosed by a dentist affects a person's mental and physical health
Excessive gingival display or "gummy smile" is a key factor in smile esthetics

Methodology

- Sequential CNN model trained on 2 classes: *gummy & normal*
 The same architecture on 3 datasets: *all generated 1:1 real:generated*
 Generated data from Adobe Firefly's diffusion model with consistent prompts for portraits
- Uniform preprocessing with augmentation
 - No user face data is stored other than cropped mouth images

Current Drawbacks:LatencySubjectivity

No diagnostic tool

Contributions

- Novel diagnostic smile analysis tool: a CNN model trained on different proportions of real and generated images to detect excessive gingival display
- Dental smile dataset: a dataset of 512 labeled dental smile images; 256 real images and 256 diffusion model generated

 Trained CNN with tuned hyperparameters and Adam optimizer on 28x28 preprocessed mouth images

Results

- Best performing model: 1:1 real:generated at 81.61% average accuracy (p-value>0.01); F1=0.82
- Mixed dataset model performs significantly better

Internet-of-Mirrors integration vision: a visionary system of interconnected smart mirrors

Goal: resolve traditional smile analysis limitations with an end-to-end assistive diagnostic application.

Conclusion and Extension

Takeaway 1: we can use a CNN for automatic dental diagnosis and connecting patients with professionals. **Takeaway 2:** scarce dental smile data can be successfully augmented by adding generated images to the dataset to achieve higher performance.

- Test on real data
- Compare convergence rates between datasets
- Classify more smile analysis factors (e.g. smile arc)