Mirror, Mirror on the Wall: Automating Dental Smile
Analysis in Smart Mirrors with CNN and Diffusion Model

Mariia Baidachna’ Haneen Fatima' Rahaf Omran? Muhammad Ali Imran' Ahmad Taha' Lina Mohjazi’

"University of Glasgow
%Clinical Specialist at Align Technology

Sensing

A smart diagnostic framework for dental smile analysis.

Introduction Methodology

e Advancements in loT and ML, particularly within e Sequential CNN model trained on 2 classes:

connectivity and CV, are increasingly being gummy & normal
applied in the medical field e The same architecture on 3 datasets:
e Few digital applications in the dental sector all real all generated 1:1 real:generated
e Many CV-related tasks in healthcare are limited by |e Generated data from Adobe Firefly’s diffusion
small datasets model with consistent prompts for portraits
e Uniform preprocessing with augmentation
Background: o No user face data is stored other than cropped
e Smile analysis, the combination of factors making mouth images
up the “perfect” smile, is diagnosed by a dentist o T ——
affects a person’s mental and physical health
e Excessive gingival display or “gummy smile” is a | | e
key factor in smile esthetics > I 4
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e Novel diagnostic smile analysis tool: a CNN
model trained on different proportions of real and
generated images to detect excessive gingival

display
e Dental smile dataset: a dataset of 512 labeled e Best performing model: 1:1 real:generated
dental smile images; 256 real images and 256 at 81.61% average accuracy (p-value>0.01); F1=0.82
diffusion model generated e Mixed dataset model performs significantly better
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e Internet-of-Mirrors integration vision: a 1
visionary system of interconnected smart mirrors —

True Label

% Accurac

Goal: resolve traditional smile analysis limitations | .
with an end-to-end assistive diagnostic application.
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Conclusion and Extension

Takeaway 1: we can use a CNN for automatic dental
diagnosis and connecting patients with professionals.
Takeaway 2: scarce dental smile data can be

{rlofessionals successfully augmented by adding generated images
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B\ to the dataset to achieve higher performance.
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