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A APPENDIX

A EQUIVALENCE OF EQUIVALENCE CLASSES

A.1 PROOF

Let g(x), f(x) ∈ C1(D ⊂ Rn,R) be continuously differentiable functions (C1(D ⊂ Rn,R) is the
vector space of differentiable functions from D to R) and D ⊂ Rn be the data manifold which is
required to be compact and simply connected. Then H̃g = Hg = Hg+ ∪Hg− where

H̃g =
{
f(x) ∈ C1(D ⊂ Rn,R) |∃ invertible ϕ ∈ C1(R,R) : f(x) = ϕ(g(x))

}
(7)

and

Hg± =

{
f(x) ∈ C1(D ⊂ Rn,R) | ∇f(x)

∥∇f(x)∥
=

±∇g(x)

∥∇g(x)∥
∨ ∇f(x) = ∇g(x) = 0, ∀x ∈ D

}
(8)

Proof: One can see that for each function f ∈ H̃g ϕ : ∇f(x) = ϕ′(g(x))∇g(x) , hence the
gradients are parallel and thus H̃g ⊂ Hg .

It remains to be shown that for each function f ∈ Hg ∃ϕ : f(x) = ϕ(g(x)). Let us focus on
f ∈ Hg+, the proof is analogous for Hg−. Let us explicitly construct the function ϕ that maps
between f and g. Defining ϕ′ through

∇f(x) = ϕ′(g(x))∇g(x) (9)

omits the avoids the necessity of defining ϕ at locations where the gradients are zero. This definition
leads to an integrable ϕ′(g(x))∇g(x) = ∇f(x) because a) the images of f(D) and g(D) are
compact, thus ϕ′ maps between compact subsets of R and b) ϕ′ is continuous. For any simply
connected D ⊂ Rn we can define the C1-curve x : [t0, t1] → D, thus a variable transformation
within the calculation of the contour integral yields:

ϕ(g(x(t1)))− ϕ(g(x(t0))) =

∫ g(x(t1))

g(x(t0))

ϕ′(g) dg (10)

=

∫ x(t1)

x(t0)

ϕ′(g(x))∇g(x) · dx (11)

=

∫ t1

t0

ϕ′(g(x(t)))∇g(x(t)) · ẋ(t) dt (12)

eq.9
=

∫ t1

t0

∇f(x(t)) · ẋ(t) dt (13)

=

∫ x(t1)

x(t0)

∇f(x) dx (14)

=

∫ f(x(t1))

f(x(t0))

df (15)

= f(x(t1))− f(x(t0)) (16)

Similarly, one can proof the existence of ϕ̃ : ϕ̃(f(x)) = g(x) such that f(x) = ϕ(ϕ̃(f(x))) and
thus ϕ is invertible. While this proof assumes f ∈ Hg+ it is analogously possible to construct ϕ for
f ∈ Hg−. Having explicitly constructed ϕ proofs Hg = Hg+ ∪Hg− = H̃g .

A.1.1 ASSUMPTIONS

In a practical machine learning applications not all assumptions from the prior section that ensure
Hg = H̃g hold true. However, even then Hg ≈ H̃g can provide a good approximation that allows
for a retrieval of the function that a neuron encodes.
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A machine learning data set approximate the data manifold D ⊂ Rn. If there is a divergence in
the function that the machine learning model is supposed to approximate, the data set might not be
closed and thus not compact. A data manifold D might not be simply connected, especially if it is
in the form of categorical data or images.

A neural network classifier, if successfully trained, tends to approximate a categorical output, which
is neither continuous nor differentiable. However, this binary output is typically an approximation
mediated by sigmoid or softmax activation functions, which indeed are continuously differentiable.
Still, interpreting artificial neural networks with the framework introduced in this paper experiences
numerical artifacts if a gradient is taken from a network that contains sigmoid or softmax activation
functions. For this reason, I suggest avoiding these activation functions in the design of hidden layers
and removing them from the output neuron during the interpretation process (the same argument
holds true for tanh or related activation functions).

The above definitions of equivalence classes could be extended to piecewise C1(Rn,R) functions.
This function set contains many artificial neural networks that include piecewise differentiable
activation functions like ReLU(x) = max(0, x). However, this causes problems when evaluat-
ing derivatives close to ReLU (x) = 0. In practice, one can observe that piecewise C1 activa-
tion functions lead to computational artifacts when calculating gradients. Hence, I suggest using
ELU = exp(x)− 1|x ≤ 0, x|x > 0 as the preferred activation function in hidden layers.

B PRELIMINARIES

B.1 MATRIX INVARIANTS

B.1.1 INVARIANTS OF RANK-TWO TENSORS UNDER SIMILARITY TRANSFORMATIONS

For any n × n matrix A, we can compute the similarity transform B = CAC−1, where C is any
invertible matrix. Using the cyclic property of trace,

tr(B) = tr(CAC−1) = tr(AC−1M) = tr(A).

Furthermore,

det(B) = det(CAC−1) = det(C) det(A)
1

det(C)
= det(A).

Hence, both the trace and determinant are invariant under this basis change. It is straightforward to
see that the following expression, called the sum of principle minors, is also basis-invariant:

tr(tr(A)2 − tr(A2)).

Together, these three comprise the principal invariants of rank-two tensors:

I1 = tr(A), (17)

I2 = tr(tr(A)2 − tr(A2)), (18)
I3 = det(A). (19)

In this case, the placeholder operator M is M(A) = CAC−1.

B.1.2 3× 3 ANTISYMMETRIC MATRICES

In the case of antisymmetric n× n matrices of odd size, the number of principal invariants reduces
to one. The trace of an antisymmetric matrix is 0, so I1 = tr(A) = 0, and any antisymmetric square
matrix of odd size n must have at least one zero-eigenvalue, so I3 = det(A) = 0. We treat the case
of a 3× 3 antisymmetric matrix, in which case I2 can be written in terms of its entries as,

I2 = A11A22 +A22A33 +A11A33 −A12A21 −A23A32 −A13A31.

Since the diagonal elements of A are 0 and Aij = −Aji, the expression for I2 is simplified:

I2 = A2
12 +A2

23 +A2
13. (20)

15
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B.1.3 INVARIANTS OF THE FIELD STRENGTH TENSOR UNDER THE LORENTZ
TRANSFORMATION

Under Lorentz transformations, the invariants of the electromagnetic field strength tensor Fµν are
preserved. The tensor Fµν is antisymmetric, meaning Fµν = −Fνµ. Its invariants include the scalar
B ·E and the quantity 1

2FµνF
µν . Specifically,

B ·E = det(Fµν)

and
|B|2 − |E|2 =

1

2
FµνF

µν .

These invariants highlight the consistency of electromagnetic properties across different inertial
frames. The placeholder operator implements M(A) = ΛAΛ⊤, where Λ is the Lorentz trans-
formation.

B.2 SPACE-TIME INTERVAL

In special relativity, Minkowski spacetime is a four-dimensional continuum that combines three spa-
tial dimensions with one time dimension. This framework allows for a unified description of space
and time, where events are described by four coordinates (t, x, y, z), and the separation between
events is invariant under Lorentz transformations. The distance between events in this spacetime is
determined by the Minkowski metric, which is defined by the metric tensor,

ηµν = diag(−1, 1, 1, 1)

This metric defines a scalar product for any two four-vectors x and y as,

⟨x, y⟩ = ηµνx
µyν = xµyµ

where xµ and yµ are the components of the four-vectors x and y. The spacetime interval s, which
remains constant under Lorentz transformations, is given by,

⟨x, x⟩ = −t2 + x2 + y2 + z2 = s2

The Lorentz group, which consists of transformations that preserve this scalar product in Minkowski
spacetime, is denoted as,

O(3, 1) =
{
Λ ∈ M(R4) | ⟨Λx,Λy⟩ = ⟨x, y⟩,∀x, y ∈ R4

}
In this case, the placeholder operator performs M(A) = ΛA, where Λ is the Lorentz transformation.

B.3 DYNAMICAL SYSTEMS

In dynamical systems involving motion in a potential, conservation principles are fundamental. In
one-dimensional systems, energy is invariant, meaning the total energy—comprising both kinetic
and potential components—remains constant in an isolated system. In two-dimensional systems,
both energy and angular momentum are conserved, provided the potential is central (i.e., depends
only on the radial distance). These invariants are crucial for understanding and modeling dynamical
behaviors in both 1D and 2D contexts. The operator M evolves the system by mapping a state vector
x to its time-evolved counterpart, M(x), representing the system’s state at a later time.

C IMPLEMENTATION DETAILS

C.1 SYMBOLIC REGRESSION HYPERPARAMETERS

To reproduce this experiment, the SymbolicRegression.jl library was used to perform symbolic
search with a custom loss function targeting gradient alignment. The model was configured with bi-
nary operators (+, -, *, /, ,̂ div) and unary operators (sqrt, square, sin, exp).
Complexity penalties were assigned as follows: constants had a complexity of 3, while operators
had complexities of sqrt => 4, square => 4, sin => 5, and exp => 5. The training
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process involved niterations=200, batch size=25, early stop condition=1e-10,
and a maxsize=25 constraint on the equation size. Simplification of equations, optimization of
constants, and automatic differentiation were enabled to improve the accuracy and interpretability
of the resulting expressions.

To reproduce this experiment, the SymbolicRegression.jl library was used to perform symbolic
search with a custom loss function targeting gradient alignment. The model was configured with bi-
nary operators (+, -, *, /, ,̂ div) and unary operators (sqrt, square, sin, exp).
Complexity penalties were assigned as follows: constants had a complexity of 3, while operators
had complexities of sqrt => 4, square => 4, sin => 5, and exp => 5. The training
process involved niterations=200, batch size=25, early stop condition=1e-10,
and a maxsize=25 constraint on the equation size. Simplification of equations, optimization of
constants, and automatic differentiation were enabled to improve the accuracy and interpretability
of the resulting expressions.

C.2 TRAINING HYPERPARAMETERS

All experiments use the Adam optimizer and the scheduler class ReduceLROnPlateau from the
PyTorch library. For all experiments, the sub-network f is a fully-connected feedforward network
designed as follows:

• An input layer
• Two hidden layers
• An output layer with a single neuron

The layer sizes for each experiment are given in Table 4. A ReLU activation is used at the output of
each neuron, except for the final one. Furthermore, the margin for the triplet loss is α = 1.

Figure 5: A visual depiction of the architecture we use for each sub-network f . The input layer
has the same number of neurons as the dimensionality of the input. We use two hidden layers with,
followed by an output layer with a single neuron. This final neuron is the latent space neuron that
we interpret in our examples.

D DATASET GENERATION

We retrieve the invariants of matrices and various physical systems using our method. We consider
invariants of matrices under similarity and Lorentz transformations. Additionally, we investigate
dynamical systems characterized by a variety of potentials, as well as the invariants in Minkowski
spacetime. We choose the mass m = 1 and spring constant k = 1 where applicable.
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Table 4: Training Hyperparameters
Exp. No. Learning Rate Weight Decay Batch Size Input Size Hidden Size Output Size Epochs Factor Patience
1 0.001 0.000002 256 4 256 1 200 0.2 10
2 0.001 0.00001 256 4 256 1 300 0.2 10
3 0.001 0.00001 256 9 256 1 200 0.2 10
4 0.0001 0.0005 256 9 512 1 300 0.2 10
5 0.001 0.00001 256 16 256 1 200 0.2 10
6 0.0001 0.00005 256 6 256 1 300 0.2 10
7 0.0001 0.00005 256 2 256 1 500 0.2 10
8 0.0001 0.00005 256 2 256 1 500 0.2 10
9 0.0001 0.00005 256 2 256 1 500 0.2 10
10 0.0001 0.00005 256 2 256 1 500 0.2 10
11 0.0001 0.00005 256 4 256 1 500 0.2 10
12 0.0001 0.00005 256 4 256 1 300 0.2 10

D.1 DATASETS AND TRAINING

D.1.1 INVARIANTS UNDER THE SIMILARITY TRANSFORMATION

In experiments 1-3, 5 in Table 1, we search for the trace and determinant of matrices under the
similarity transformation. Each data point is a triplet consisting of three matrices of dimension n:
an anchor matrix A, a positive example P , and a negative example N . The anchor is sampled by
generating a random matrix. Each entry is sampled from a uniform distribution between [α, β]. We
try [0, 1], and [−4, 4]. Neither choice affects the model’s ability to learn the invariant.

The positive example shares one or more invariants with the anchor. In the case of the similarity
transformation, these invariants are the trace and determinant. To this end, we sample a n × n
invertible matrix M and apply the similarity transformation P = MAM−1. The negative example
should not share invariants with the anchor, which is trivially achieved by sampling another matrix
N , which is almost certainly characterized by different invariants.

In practice, we find that the neural network prefers to learn the trace. To discover a second invariant,
such as the determinant, we sample triplets in which all matrices have the same trace. The network
can no longer rely on the trace to identify similar matrices, or to distinguish between dissimilar
ones, as the trace no longer provides any useful information for this task. Instead, an alternative
invariant must be learned, which in this case is the determinant. This can be done for any number of
invariants: upon discovery of the first one, it can be made constant across the entire dataset to force
the neural network to learn another.

We generate 50000 triplets for the training set, 5000 for the validation set, and 10000 points for the
test set.

D.1.2 INVARIANTS OF ANTISYMMETRIC MATRICES

For antisymmetric matrices in experiment 4, we prepare our dataset in the same way as we describe
in D.1.1. We first sample an antisymmetric 3 × 3 matrix for the anchor A, followed by a similarity
transformation for the positive sample P . Finally, we sample a new antisymmetric matrix for the
negative sample N . While both the anchor and negative samples are antisymmetric, the positive
sample does not inherit this property under the transformation P = MAM−1 when M is not
orthonormal, because antisymmetry is not preserved under a general change of basis. Hence, we use
all 9 entries of the matrix as input, although we acknowledge that one could easily enforce that M
is orthonormal, in which case only 3 inputs would be needed from each of A, P , and N .

Since we use the antisymmetric anchor matrix A as input when computing ∇xf(x), we expect that
the result of symbolic search would simplify to the invariant in B.1.2, which is invariant under the
similarity transformation.

We generate 100000 triplets for the training set, 10000 for the validation set, and 20000 points for
the test set. The entries of each matrix are sampled from a normal distribution with µ = 0 and
σ = 1.
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D.1.3 INVARIANTS UNDER THE LORENTZ TRANSFORMATION

In experiment 6, we apply the Lorentz transformation to the field strength tensor Fµν , which gives
rise to the Lorentz invariants in B.1.3. Since the antisymmetry of Fµν is preserved under the Lorentz
transformation, each member of a triplet is antisymmetric, so we only use the 6 off-diagonal entries
above (or equivalently below) the main diagonal as our input to the neural network. The anchor is a
vector of these 6 entries from Fµν .

We generate 200000 triplets for the training set, 20000 for the validation set, and 40000 points for
the test set. The entries of each matrix are sampled from a uniform distribution between [0, 1].

D.1.4 POTENTIALS

The experiments in Table 2 correspond to motion in a potential, where we simulate trajectories by
randomly sampling initial positions and velocities, and subsequently evolve these systems according
to Hamilton’s equations. For each triplet (xA, xP , xN ), the anchor xA and positive sample xP are
measurements at two different points along the same trajectory, while the negative sample xN is
sampled from a different trajectory. The network must determine whether or not two measurements
belong to the same particle. See B.3 for details regarding the invariants.

The dataset is generated with mass m = 1, spring constant k = 1, and a time grid t ∈ [0, 5] with
10,001 points. Initial conditions are sampled from [0, 1]2, and trajectory points are selected using
random indices i, j from the solution. We generate 50000 samples for the training set, 5000 for the
validation set, and 10000 for the test set.

D.1.5 SPACETIME

In experiment 12 in Table 3, each triplet again consists of an anchor xA, a positive sample xP ,
and a negative sample xN . The anchor is a randomly sampled four-vector representing an event
in Minkowski spacetime. Each entry is sampled from a uniform distribution between [0, 1]. The
positive sample is generated by applying a Lorentz transformation to the anchor, ensuring that the
spacetime interval remains invariant. The negative sample, on the other hand, is another randomly
generated four-vector that does not share the same spacetime interval as the anchor, allowing the
neural network to distinguish between vectors that do and do not preserve this invariant.

We generate 100000 triplets for the training set, 10000 for the validation set, and 20000 points for
the test set.

E RESULTS OF DIRECT SYMBOLIC REGRESSION

We compare our method to direct symbolic regression, which is the only existing alternative. In this
case, we obtain latents from the trained neural network, and supply them to the standard symbolic
regression algorithm (Cranmer, 2023), which then attempts to extract a symbolic equation from the
dataset consisting of the pairs (X, latents). In Table 5, we apply direct symbolic regression on the
same experiments as in tables 1-3. We report the retrieved expression only if the correct expression
is retrieved. Notably, only 7 out of 12 experiments succeed with direct symbolic regression.
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Table 5: Results of Direct Symbolic Regression

Exp. No. Expression Retrieved? Expression
1 Yes A11+A22

−0.12
2 Yes A21A12 −A22A11

3 Yes A11 +A22 +A33 − 1.489
4 Yes 3.239−A12A12 −A23A23 −A13A13

5 Yes A11 +A22 +A33 +A44 − 1.907
6 No -
7 Yes 394.111 · x1 · x1 − (−399.431) · x2 · x2

8 No -
9 No -
10 No -
11 Yes x3x2 − x1x4

12 No -

Figure 6: Direct symbolic regression on the latents typically fails when the concept is encoded in a
non-linear manner. However, in the peculiar case of experiment 7 in Table 5, this method retrieves
the correct expression. This is likely because it is fitting to a data-dense region of the non-linear
plot, as shown in this figure. The blue line represents the equation extracted through direct symbolic
regression. It almost perfectly passes through a linear sub-region of the correlation curve.
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