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Abstract

Many forms of healthcare research, includ-
ing studies using the target trial emulation
(TTE) framework, rely on data from the
electronic health record (EHR). Because
data from multiple EHRs often cannot be
combined, studies that require multiple
data sources often collaborate by combin-
ing independent analyses via meta-analysis
(MA). However, MA can be ineffective
when there is high heterogeneity among
sites or when the outcome of interest is
rare, two common scenarios in TTE. Al-
ternatively, de-identified data from multi-
ple health systems have been aggregated in
secure enclaves. While valuable, the setup
and maintenance of these platforms present
significant administrative challenges, and
restrictions on uploading sensitive data
hinders their utility. To address these lim-
itations, federated learning (FL) methods
facilitate collaboration when MA and data
enclaves are insufficient. To illustrate the
advantages of FL, we used data in the EN-
ACT enclave from EHRs in Massachusetts
and California to empirically compare TTE
results obtained via MA and FL to refer-
ence results derived from pooled data. FL
consistently produced results closer to the
reference than MA, with a larger effect for
rarer outcomes. These findings motivate
the creation of DRIAD-FL, our platform
to expand methods for federating TTEs
across five diverse health systems located
in the US, the United Kingdom, and Israel.
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Data and Code Availability The study uses
EHR data from the Research Patient Data Reg-
istry (RPDR) in Massachusetts, the University of
California Health Data Warehouse (UCHDW) in
San Diego, INSIGHT Clinical Research Network
(ICRN) in New York, the Clinical Practice Re-
search Datalink (CPRD) in the United Kingdom,
and Clalit in Israel. Because the data contain pa-
tient information, they cannot be made available.

Institutional Review Board (IRB) This re-
search was performed under MGB IRB approval
(protocol 2023P000604).

1. Introduction

In drug repurposing research, the decades of
medical history available for millions of patients
within the EHR enable target trial emulation
(TTE), the retrospective emulation of a random-
ized controlled trial (RCT) (Hernan and Robins,
2016). To execute a TTE, potential participants
are identified using prescription records of the
treatment of interest or the control drug/drug
class. Exclusion criteria, based on prior drug
prescriptions, diagnoses, and sociodemographics,
are used to restrict the pool of patients to those
who would be eligible for the RCT. In the result-
ing cohort, follow-up times are determined using
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records indicative of the outcome(s) of interest or
their last recorded healthcare encounter.

Although RCTs remain the gold standard to
evaluate the clinical effects of a treatment, they
can be infeasible due to cost considerations, re-
cruitment challenges, or the required length of
follow-up. For instance, Alzheimer’s disease and
related dementias (ADRD) have a prodromal
phase of up to 15 years before clinical symptoms
manifest (Bateman et al., 2012). For RCTs that
measure the effect of repurposing treatment can-
didates, this extensive pre-clinical phase poses a
challenge; in such cases, TTE is a valuable tool.

However, EHR-based TTE is often limited by
the scale of the source health system, regard-
less of the total number of patients in the un-
derlying EHR. For example, Massachusetts Gen-
eral Brigham (MGB) is a reference center for the
treatment of amyotrophic lateral sclerosis (ALS)
and the associated data warehouse comprises
over 13 million patients, but has data for only
~10k patients with ALS (1991-2025). Addition-
ally, strict eligibility criteria may reduce cohort
size. For example, removing patients without a
primary care provider in the considered health
system to maximize data quality can reduce co-
hort size by one third (Sunog et al., 2025). Fur-
ther, a TTE in a single EHR may not be represen-
tative of the target population, sociodemograph-
ically or clinically, as providers in a given system
are likely to make similar clinical and charting
decisions (e.g., based on internal protocols).

To address these challenges, aggregating data
from many EHRs would be ideal. However, im-
portant concerns about patient data privacy and
security, as well as intellectual property consider-
ations, prohibit or drastically encumber the shar-
ing of data across health systems. In light of
these restrictions, meta-analysis (MA) has tra-
ditionally been a convenient method to lever-
age data from multiple EHRs without sharing
individual patient information. In MA, TTEs
are first executed independently at each site,
and the resulting estimated treatment effects are
combined (e.g., using a weighted average, with
weights inversely proportional to the variance of
the estimated effect) (Borenstein et al., 2007).

Despite the flexibility granted by minimal data
sharing requirements, MA has limited applica-
tions. For example, a traditional MA assumes
that each contributing study used the same set

of variables (Qin et al., 2022), which requires sig-
nificant data harmonization among sites a priori.
Moreover, MA is typically highly biased when
heterogeneity across sites is high or when the
event rate at a site is too small (1% is often used
as a heuristic, but the necessary event rate de-
pends on many factors and may not be evident)
(Efthimiou, 2018). While established methods
can mitigate such bias in certain cases (discussed
in Appendix A), strict constraints can limit
their utility in a drug repurposing TTE. Thus,
MA is often ineffective for TTE when the out-
come is rare or when the estimation of heteroge-
neous treatment effects requires granular strat-
ification. Further, a study with zero observed
events will generally be discarded from a MA.
TTEs with a long maximum follow-up period face
similar challenges, as the size of the risk set di-
minishes at later time points because participants
either experience the outcome(s) of interest or are
censored due to loss to follow-up.

Beyond statistical innovation, the construction
of enclaves — secure, centralized databases of co-
horts aggregated from many health systems — al-
lows for the implementation of TTEs using the
gold standard of pooled EHR data. Despite this
attractive feature, setting up enclaves is often
administratively burdensome. In fact, adding a
single site to an existing enclave requires com-
plying with their security protocols and draft-
ing new data use agreements with all currently
participating institutions. These steps become
increasingly demanding as more sites join (par-
ticularly international partners), thereby limiting
the scalability of enclaves. Enclaves are also lim-
ited by the de-identification process, which typ-
ically involves removing sensitive data such as
zip codes and provider notes. Although such in-
formation is not strictly necessary for TTE, it
can enhance emulation quality; zip codes can re-
duce unmeasured confounding via mapping to
socioeconomic status, and provider notes can
complement structured data to refine the tim-
ing and ascertainment of clinical events. Fur-
ther, the variety of EHR data schemas (e.g., i2b2,
OMOP, and PCORnet), coding systems (e.g.,
ICD9, ICD10, SNOMED), and site-specific im-
plementations can disrupt data aggregation and
increase the extent of missing data within an en-
clave (Cook et al., 2022). Despite these limita-
tions, enclaves uniquely enable pooling EHR data
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and are a critical tool to assess the utility of col-
laborative strategies through the comparison of
methods using pooled data with distributed ones.

More recently, federated learning (FL) has
been proposed as an alternative strategy to lever-
age multiple EHRs in TTE. In FL, each site
trains a model locally and distributes model sum-
mary data (e.g., gradients) to others to learn a
shared model incorporating information from all
sites. Because the shared data are not patient-
level information, FL has fewer barriers to entry
than enclave participation. It also does not re-
strict the use of sensitive attributes. Infrastruc-
ture needs vary, but all FL. methods require har-
monizing trial specifications (e.g., exclusion crite-
ria, outcome definition) and at least one round of
communication during model training (i.e., shar-
ing gradients). However, harmonization require-
ments can be less restrictive in FL than in MA
(Zeng et al., 2024) (Han et al., 2023).

In contrast to MA, FL approaches allow the
inclusion of studies with zero events (Schuemie
et al., 2021). Moreover, in simulation studies,
FL treatment effect estimates are closer to those
from pooled data than from MA, especially in the
presence of high heterogeneity or rare outcomes.
An evaluation of federated ODACoR methods
(One-shot Distributed Algorithms for Compet-
ing Risk) found that the bias of the subdistribu-
tion HR estimate, relative to that obtained using
pooled data, was much lower (.2% to 8.5%) than
with MA (39.7%) when the outcome incidence
rate was set to .5% (Zhang et al., 2024). These
results promote FL for TTEs with rare outcomes
(e.g., ALS, which affects only .0052% of the US
population (Mehta et al., 2021)).

To address this clinical reality, our team with
access to structurally diverse EHRs located in
Massachusetts, New York, California, the United
Kingdom, and Israel, developed Drug Repurpos-
ing in AD-Federated Learning (DRIAD-FL), a
platform for TTE federation. To demonstrate
the utility of our platform, a pilot TTE was per-
formed using data from two of these health sys-
tems: MGB in Massachusetts and the University
of California Health Data Warehouse (UCHDW)
in San Diego. Datasets were compiled in the
ENACT enclave to compare a reference pooled
analysis with MA and FL. Although this study
is limited to the two participating sites with data

in ENACT, it illustrates the importance of FL for
future collaborative TTEs in the full group.

2. Methods

We compared the effect of the antidiabetic drugs
metformin and sulfonylureas on ADRD onset, ac-
counting for the competing risk of death. Our
TTE specification followed Charpignon et al.
(2022), with deviations caused by limitations of
the enclave (full details in Appendix B).

The federated TTE was executed using a mod-
ified version of ODACoR-O (Zhang et al., 2024).
In this few-shot method, each site initially exe-
cutes a local TTE to produce a Cox proportional
hazards model for the subdistribution hazard ra-
tio. Then, every site shares the set of local time-
to-event values for patients with the primary out-
come, as well as point estimates and variances for
coefficients of outcome models, which are used to
calculate the corresponding MA estimates. Next,
each site calculates and shares summary-level
statistics characterizing their local risk sets at all
times represented in the pooled set of time-to-
event values. These statistics are collectively suf-
ficient to produce the first and second derivatives
of the pooled likelihood. Finally, these deriva-
tives are applied to produce the final, federated
coefficients, via the Newton method.

In this study, we introduced two modifications
tailored to our causal setting. First, we altered
the definition of the risk set. In ODACOR, it
is defined at a given time ¢ as the union of two
groups: (1) participants ¢ with time-to-event val-
ues t; > t and (2) participants who experienced
the competing event. The use of this risk set
produces a subdistribution hazard; alternatively,
estimating the causal effect of treatment on out-
come incidence requires using the cause-specific
hazard instead. This entails defining the risk set
as only the former group (1) in the initial local
TTEs, as well as in calculations of summary-
level statistics and pooled likelihood gradients.
Next, we introduced inverse propensity of treat-
ment weighting to emulate the randomization
characteristic of a RCT and isolate the causal
effect of treatment. Logistic regression models
for the propensity score were trained separately
at each site and stabilized average treatment ef-
fect weights were derived accordingly. These
weights were used in both initial local TTEs
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and summary-level statistic calculations, requir-
ing the shared sets of time-to-event values to be
augmented with corresponding sets of weights.
With this modified federation method, the
TTE was executed analogously as a pooled TTE
to produce a gold standard HR. The pooled HR
was used to evaluate the accuracy of HRs gener-
ated via MA of local TTEs and federated TTE.

3. Results

Table 1: Abridged summary table stratified
by cohort (A-MGB, B-UCHDW) and
treatment arm. Full table in Ap-
pendix C. HTN: hypertension, CVD:
cardiovascular disease. Comorbidities
identified via diagnosis records.

Feature Met-A  Sulf-A  Met-B  Sulf-B
Total 43655 5240 4491 372
% of Site  89.3% 10.7% 924% 7.6%
ADRD 6.9% 9.0% 5.6% 7.0%
Death 6.8% 15.9% 5.8% 10.2%
Age 65.7 70.4 66.1 68.6
Sex F 49.8% 45.9% 522% 49.2%
HTN 53.9% 455% 39.6% 37.9%
Obesity 16.3% 6.1% 7.4% 5.4%
CVD 16.8% 16.9% 11.4% 12.9%
Cancer 17.7%  17.8% 17.5% 13.2%

The cohorts sourced from the MGB and
UCHDW databases had important differences
(Table 1). After applying eligibility criteria, the
MGB and UCHDW cohorts comprised 47,895
and 4,863 patients, respectively. While the rel-
ative proportions of treatment arms were simi-
lar, the cumulative incidence rates of ADRD and
ACM by the end of follow-up were higher in the
MGB cohort (ADRD: 7.2%, ACM: 7.8%) than
in the UCHDW cohort (ADRD: 5.7%, ACM:
6.1%). Notably, at baseline, MGB patients had
a 30.7% longer history in the EHR system than
their UCHDW counterparts, on average, allow-
ing a more complete capture of conditions in the
patient’s EHR. This difference may have con-
tributed to the higher baseline prevalence rates
of each comorbidity and to the lower share of
patients with missing HbA1C and BMI values in

the MGB cohort (Appendix C). However, these
contrasts could also reflect differences in the com-
position of the distinct underlying populations,
which may ultimately result in a heterogeneous
baseline risk of ADRD between the two systems.

Pooled 0905  (0.8-1.02) [ ]
MGB 0906  (0.8-1.02) ]
ucsp 1029 (0.63-1.68) [ ]
Meta-Analysis 0912 (0.81 - 1.03) [ |
Federated 0911 (0.82-1.01) [ ]

Figure 1: HR of initiating metformin vs. sulfony-
lureas on ADRD using pooled data, MA,
and FL. Point estimates and 95% Cls.

The estimated HRs resulting from every anal-
ysis revealed a similar nearly significant protec-
tive effect of metformin, except for the single-
site UCHDW trial (1.029; CI: .63-1.68), which
yielded a very wide CI due to a small cohort size
(Figure 1). The MGB trial produced a HR (.906;
.8-1.02) within the CI in Charpignon et al. (2022)
(.81; .69-.94), although the effect size was affected
by the modified trial specification. The FL HR
(.911; .82-1.01) was very close to that of the ref-
erence pooled analysis (.905; .79-1.02). MA also
produced a HR (.912; .81-1.03) close to the refer-
ence, albeit less precise and slightly less accurate.

To evaluate more challenging scenarios, three
sensitivity analyses were conducted, resulting in
increasingly lower outcome incidence rates: (1)
memory loss diagnoses removed from the out-
come definition (4.4% outcome incidence), (2)
only dementia diagnoses kept in the outcome
(3.3%), and (3) outcome defined as in (2) and
patients aged 70+ at baseline excluded (1.6%).
(2) and (3) also excluded the BMI and HbA1C
covariates. Results appear in Appendix D.

MA produced more accurate HRs in (1); be-
cause the diagnosis of memory loss is handled
differently across health systems, removing such
diagnoses from the outcome definition may have
reduced heterogeneity. Otherwise, the relative
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Figure 2: Bias of MA and FL HRs of initiating met-
formin vs. sulfonylureas on ADRD, rela-
tive to pooled analysis (100 - [Pooled HR-
Aggregated HR]/[Pooled HR]), in primary
and sensitivity analyses.

bias was inversely related to cumulative outcome
incidence, as expected. However, the bias of FL
HRs was smaller in sensitivity analyses, espe-
cially when considering fewer covariates. Even
in (3), FL produced 86.8% less bias than MA.

4. Discussion

This study compared two approaches to a TTE
conducted jointly in two health systems. FL con-
sistently produced an accurate HR, while MA
generally resulted in more bias when cumulative
outcome incidence was lower, suggesting that FL
may be especially useful in TTE for rare diseases.

While the MGB and UCHDW health systems
serve distinct populations and exhibit varying
clinical practices, health systems located in coun-
tries with national health systems are likely to
differ even further, and may result in MAs with
more bias than we could test in ENACT. In the
future, we plan to introduce data from additional
sites into ENACT, which will enable evaluations
of FL in a more heterogeneous data environment,
closer to that of our international team.

In follow-up studies, we will test FL in a
range of scenarios to characterize how study pa-
rameters (e.g., outcome rarity, imbalance be-
tween treatment arms, missing data patterns)
impact the reduction in bias, relative to MA. This
large-scale assessment of FL’s comparative per-
formance across data settings will help determine

when FL benefits outweigh the additional costs
incurred, including in terms of logistics (e.g., set-
ting up data use agreements, elaborating joint
study protocols, updating IRB language) and
computational time. Using a computer with an
8-core 2.5GHz CPU and 32GB of RAM, training
both single-site models and generating the MA
estimate took 12s, while the overall federation
took 3,168s. Such a 264-fold increase in compu-
tational time may be a bottleneck for studies with
very large datasets. Moreover, real-world appli-
cations require extensive communication among
sites, which may incur additional delays.

This study aimed to emulate a real-world use
of federation, but the enclave environment pre-
cluded an exact replication of a federated TTE
using local data from multiple EHRs. The de-
identification of UCHDW data prevented the in-
clusion of zip codes used to adjust for social
vulnerability, yielding residual unmeasured con-
founding. The MGB data did not contain a
comprehensive list of healthcare encounter dates,
which may have altered some participants’ cen-
soring times. Beyond these known sources of
divergence, data transfer often carries a risk of
degradation. Further, the conversion of encod-
ings used in the OMOP schema into their equiv-
alents in the i2b2 schema was required to align
UCHDW and MGB data but may have been im-
perfect. Nonetheless, these costs are necessary to
evaluate FL in real-world healthcare data.

Among the additional sites in the FL platform,
two comprise records from closed health care sys-
tems covering different populations. Preliminary
data suggest greater heterogeneity between these
two sites and MGB and UCHDW (Appendix
E). Overall ADRD outcome incidence rates range
from 8.3% to 17.5%. Further, one cohort has 60%
more ADRD events among sulfonylurea initia-
tors, while another cohort has 10% fewer. The
distributions of covariates such as obesity and
stroke also vary widely across cohorts. These dif-
ferences indicate that FL will be critical for TTEs
in which the full consortium contributes data. In
future work, DRIAD-FL will replicate this TTE
with FL and MA, as well as a TTE with a rare
outcome (i.e., ALS) to evaluate the benefits of
FL when addressing other limitations of MA.
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Appendix A. Meta-analysis
Methods for
Addressing
Heterogeneity and
Rare Outcomes

To reduce the bias of meta-analysis for studies
with rare outcomes and enable meta-analysis in-
volving single-zero or double-zero studies (those
were one or both treatment arms have zero event
occurrences), a number of methods have been de-
veloped with different applications. Still, many
TTEs are unable to utilize any of these meth-
ods because of their various limitations. Here we
discuss three such methods:

Continuity correction can be used to include
single-zero and double-zero studies by adding a
small constant to the recorded count of each
treatment-outcome pair. This correction is sim-
ple to implement and enables the computation
of meta-analysis, but it often yields results that
are highly biased (Efthimiou, 2018). Therefore,
it is preferable to avoid continuity correction if
possible.

Peto’s method consists in performing meta-
analysis with a modified odds ratio as the esti-
mand, which can allow for the inclusion of single-
zero studies (but not double-zero studies) and
produces less biased results than a meta-analysis
of the classical odds ratio (Yusuf et al., 1985).
However, this method cannot benefit a study
using any other estimand such as a hazard ra-
tio, which is often the desired metric in TTE.
Also, the reduction in bias is only effective in
settings where the treatment effect is not large
and the sizes of all treatment arms are similar
(Efthimiou, 2018). For many TTEs, the size of
the trial arms at any given health system are sig-
nificantly unbalanced because national guidelines
and/or hospital-wide practices will tend to favor
one treatment for the relevant indication.

Bayesian meta-analysis is a more flexible
method in which individual studies do not pro-
duce independent results, but rather are used to
the prior estimands. This strategy can target var-
ious metrics, including hazard ratios, and it does
not disregard single-zero or double-zero results.
By design, its implementation requires access to
prior estimates of the target metrics (Efthimiou,
2018); however, TTE for drug discovery or repur-
posing frequently investigates treatment effects

for which there are no published data, and there-
fore these analysis are unsuitable for Bayesian
meta-analysis.

The established method for performing meta-
analysis when there is heterogeneity among stud-
ies is to substitute the FE model (which weights
the results of each study inversely to the study’s
variance) with an RE model (which weights the
results of each study inversely to the study’s vari-
ance and to the variance between studies). RE
meta-analysis typically performs better than FE
meta-analysis in such settings and it can be suf-
ficient in certain cases, but it isn’t always prefer-
able. In general, the results of RE meta-analysis
have less precision than FE meta-analysis, so the
meta-analysis of studies with low heterogeneity
are better suited by a FE model. When hetero-
geneity is very high, the variance between stud-
ies can dominate the in-study variance, inducing
disproportionately high weights for small stud-
ies that can make meta-analysis results difficult
to interpret. Given these risks, it is critical to
understand the extent of heterogeneity when de-
ciding between FE and RE, but such an assess-
ment can be challenging and may require statisti-
cal techniques in conjunction with a careful eval-
uation of potential differences in design across
studies (Imrey, 2020).

Appendix B. TTE Specifications

Patients from Site 1 and Site 2 were selecting via
queries requiring that they had:

1. A record of a metformin or sulfonylurea pre-
scription at age 50 or older

2. No record of a metformin or sulfonylurea
prescription before age 50

For all patients meeting these criteria, de-
mographic, prescription, diagnosis, and proce-
dure data were uploaded into ENACT. With
these data, the trial was executed as specified
by Charpignon et al. (2022) with the following
modifications:

1. The follow-up time was extended to Decem-
ber 2024 to utilize the extent of available
data.

2. The covariates for outcome adjustment did
not include features reliant on sensitive data
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or lab results (e.g., socioeconomic variables)
because the data were not available for
UCHDW patients in the enclave.

3. The eligibility criterion requiring a visit
within the 18 months prior to baseline was
removed because the dates for all visits were
not available for MGB patients in the en-
clave. Instead, a criterion that patients have
at least 18 months of history in the EHR
prior to baseline was used as a substitute.

To identify ADRD outcomes, we used a set of
ICD codes and medication RxNorm codes that
construct a broad definition including not only
dementia diagnoses, but memory loss and mild
cognitive impairment diagnoses as well. The in-
clusion of these codes is informed by expert con-
sultation, and attempts to account for 1) the
common, severe delays in ADRD diagnosis, as
well as 2) the widespread practice among primary
care physicians and other clinicians not special-
ized in neurology to use memory loss broadly for
patients with progressed symptoms.

The covariates were also selected based on ex-
pert consultation. In both the propensity and
outcome models, the following covariates were
used: Age at baseline, Sex at birth, Hypertension
diagnosis prior to baseline, Stroke diagnosis prior
to baseline, Chronic obstructive pulmonary dis-
ease diagnosis prior to baseline, Obesity diagno-
sis prior to baseline, Cardiovascular disease diag-
nosis prior to baseline, Cancer (broad definition)
diagnosis prior to baseline, Cancer (selective defi-
nition) diagnosis prior to baseline, HbA1C record
prior to baseline (categorical: missing, |7, 7-10,
.10), BMI record prior to baseline (categorical:
missing, 25, 25-i30, > 30)

ADRD indication codes:

Memory Loss:

F04, 780.93, R41.2, R41.3, 169.211, 169.311,
169.811, 169.911, 294.0, G30, G31.0, G31.8,
F01.5, F02.8, R41.81, 797, 797.0

Mild cognitive impairment and general neu-
rodegeneration:

G31.1, G31.9, 331.2, 331.8, 331.9, 438.0,
G31.84, G31.81, G31.85, G31.89, 331.89, 331.83,
331, 290.9, 290.8, 294.9, 294.8, 294, FO01.A,
F01.B, F01.C, F02.A, F02.B, F02.C, F03.A,
F03.B, F03.C

Dementia:

F03.9, 331.1, F02.80, F03.90, G31.83, F01.50,
F03.91, F02.81, G31.09, G31.01, F03, F01.50,
FO1.51, 331.19, 331.11, 331.82, G30.8, G30.9,
G30.0, G30.1, 290.0, 290.20, 290.40, 290.3,
290.43, 290.10, 290.41, 290.21, 290.12, 290.13,
290.11, 290, 290.42, 290.4, 290.2, 290.1, 294.10,
294.20, 294.21, 294.11, 294.1, 331.0, 331.00, F02,
294.2, F01

RxNorms:

135446, 1602583, 2597448, 1858971, 1858970,
135447, 1430990, 236559, 1100187, 1602588,
1602594, 1805422, 1805427, 2597453, 2597459,
997224, 997230, 1602584, 1602593, 1805421
1805426, 2597449, 2597458, 997221, 997227,
998582, 1602585, 2597452, 367663, 2654337,
1170743, 1170744, 1602586, 1602587, 2597450,
2597451, 1100184, 1599803, 1599805, 1805420,
1805425, 2597446, 2597456, 997216, 997220,

997223, 997226, 997229, 2597442, 2597455,
997215, 997219, 997225, 998579, 1599802,
2597445, 371957, 483068, 483071, 1160637,

1160638, 1160639, 1295290, 1599800, 1599801
2597443, 2597444, 583099, 4637, 860693,
602734, 602737, 860697, 860709, 860717, 583133,
602732, 860696, 860708, 860716, 583101, 602733,
2654831, 1178299, 1178300, 310436, 310437,
579148, 860695, 860707, 860715, 860901, 330343,
330344, 330345, 860694, 860706, 860714, 860900,
384641, 384642, 583097, 1163353, 1163354,
1163355, 405206, 996633, 996634, 996572,
996624, 6719, 236685, 996563, 996574, 996597,
996605, 996611, 996617, 996742, 996562, 996573,
996595, 996604, 996610, 996616, 996741, 406108,
607609, 996596, 2655351, 2658253, 2658795,
1178753, 1178754, 1178755, 996561, 996571
996594, 996603, 996609, 996615, 996740,
996752, 996560, 996570, 996592, 996602, 996608,
996614, 996739, 996751, 372757, 577156, 996593,

1159791, 1159792, 1159793, 225807, 183379,
994808, 1308571, 226665, 226666, 226667,
226668, 725105, 751302, 1308570, 574012,
574013, 574014, 574015, 725104, 751301,

1805980, 366553, 1173232, 1173233, 1173234,
1296125, 1308569, 312834, 312835, 312836,
314214, 314215, 725021, 725023, 1308568,
331507, 331508, 331509, 331510, 331511, 725019,
725022, 1805978, 373797, 374628, 1157970,
1157971, 1157972, 1157973, 1295358, 997218,
997222, 997228, 998581, 998584, 998585, 998586,
1599804, 1599806, 1602589, 1602595, 429251
602736, 860698, 860699, 860710, 860711, 860718,
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860719, 860903, 413274, 996598, 996599, 996606,
996607, 996612, 996613, 996618, 996619, 996748,
996750, 996754, 1359577, 1359895, 1360107,
1360122, 1360267, 1360423, 285017

To identify covariates, we used the following
ICD9 and ICD10 codes as indications:

Hypertension:
127.24, 187.323, 187.322, 187.329, 187.393,
187.333, 187.313, 187.312, 1I87.319, I87.303,

187.309, T10, 115.2, T15.1, 115.8, 127.29, 127.22,
127.23, 115.0, 127.21, 459.31, 459.33, 459.30, 401,
d401.9.3, 405.99, 572.3, 416.0, 401.9, 405.91,
401.1, 642.03, 642.01, 401.0, 405.01, 405.09

Stroke:

G46.4, G46.3, 167.89, 167.848, 167.81, 168.8,
G46.8, G45.8, 997.02, 437.1, 437.9

COPD:

J44.1, J44.0, J84.17, J84.89

Obesity:

E66.01, E66.2, E66.8, E66.09, E66.1, 278.01,
278, 278.03

CVD:

150.41, 150.31, 150.43, 150.33, 150.813, 150.23,
150.21, 125.760, 125.812, 125.758, 125.759,
125.750, 125.811, 125.111, 125.118, 125.119,

125.110, 125.10, 150.82, 150.42, 150.32, 150.812,
150.22, 748.21, 150.84, T86.23, T86.21, Z94.1,
111.0, 111.9, T'86.298, 124.8, 125.89, Q24.8, 145.5,
127.89, 109.89, 197.130, Z95.812, 795.811, 795.4,
795.2, 795.3, 127.22, 109.81, MO05.30, 150.814,
150.40, T86.20, 150.30, 150.20, 150.811, I50.83,
M05.312, M05.39, B57.0, 125.768, 125.769, B57.2,
139, T86.32, T86.31, T86.22, T86G.39, 197.131,
125.751, A18.84, 415, 414.1, 414.10, 402.11,
996.83, 861.11, 861.01, 414.07, 414.06, V42.1,
V43.3, V42.2, 429.82, 428.1, 402.01, 996.02,
411.89, 414.19, 416.8, 996.71, 426.6, 429.89,
398.99, 746.89, 414.8, V13.65, 398.91, 746.9,
402.91, 402.90, 416, 416.1, 391.8, 398.9, 086.0,
746.86, V43.21, V43.22, V43.2, 402.00, 164.1,
392.0, 392.9, 402.9, 746.7

Cancer:

V10.83, Z85.048, V10.06, 238.2, V10.46, 239.0,
162.9, C34.90, D49.0, 238.0, 189.0, C64.9, D43.2,
D37.5, V10.3, 153.9, D49.7, C50.919, C77.0,
785.79, V10.79, 785.238, (C50.411, C50.811,
C02.1, 191.9, C08.9, C79.51, 785.528, D37.9,
D44.0, 174.9, C79.31, C54.1, C56.1, C77.4, 162.5,
162.3, C34.11, C34.31, C67.9, C67.8, 153.6,
197.5, 153.0, 157.9, 197.7, C25.9, C78.7, C62.90,
C62.10, 186.9, 197.0, C78.00, C44.90, V10.47,

C50.911, 180.0, 180.9, C50.912, 182.0, C54.3,
C54.9, C54.2, 708, C77.3, C69.20, D48.9, 190.5,
C96, C64.2, C77.8, 786.008, Z85.118, 338.3,
C77.9, 786.03, C50.211, C34.91, C34.30, C53.8,
C50.119, 188.9, 198.5, C79.52, 154.1, CTL.8,
191.0, V10.87, 198.81, (34.82, D70.1, 155.0,
C80.1, 198.4, C56.9, 238.8, 199.1, C44, C34.32,
C44.99, C44.390, 173.39, (44.399, (C44.391,
C21.8, C79.9, C78.89, C78.02, C78.01, C79.00,
164.0, C50.412, 198.3, C50.011, C96.9, Z85.038,
154.0, 174.4, C34, C34.92, C34.00, C50, 159.9,
C26.9, 156.0, C15.8, V10.81, C34.10, Z86.000,
C04.9, 144.9, C49.4, C49.9, 171.5, 171.9, 196.3,
D49.6, €69.02, 196.2, V10.51, C67.2, V10.11,
191.1, 785.9, D49.4, C67.1, 197.6, V10.07,
155.2, 173.90, V10.43, 183.0, C09.9, C02.8,
C22.8, C75.9, C69.31, 155.1, C24.1, Z85.09,
V10.05, D49.2, 239.2, D44.3, 239.6, 188.8,
785.068, 785.07, V10.09, D49.9, DA47.9, 239.9,
238.79, 173.30, (44.301, C44.309, C44.300,
196.9, C64.1, C67.0, C50.512, 785.89, Z85.831,
V10.89, C34.12, 145.9, 785.028, D37.6, D44.2,
237.4, D44.9, V10.52, D49.89, D48.3, C18.1,
239.7, D37.4, 198.82, 151.9, 156.2, 162.8, C34.80,
785.818, 161.9, C44.602, 170.7, C40.20, C41.9,
D44.4, C50.111, 189.2, C66.9, C66.2, C50.112,
174.8, 195.5, C76.51, 239.89, 173.60, C44.601,
C68.9, C04.1, C74.02, C74.90, C44.599, 174.1,
184.4, D48.4, 235.4, 238.9, 160.2, 160.9, D44.10,
198.89, C67.4, 188.4, C49.0, D49.5, 239.5,
D49.1, 239.1, 142.0, 238.1, C49.21, Z86.001,
C79.70, 157.0, 198.7, 196.0, D37.8, C50.812,
785.819, 190.0, C69.40, 152.9, 152.3, 195.2,
C79.71, C50.212, C74.00, 194.0, 195.0, 158.9,
C50.929, V10.04, C39.9, 157.1, 153.4, C24.0,
156.1, C44.40, C69.30, C47.9, D43.0, 146.0,
189.8, C65.2, 239.4, 170.4, C40.00, C72.9, 171.6,
C49.6, 171.7, C49.5, V10.01, D47.Z9, R97.21,
153.5, 161.0, C80.0, 199.0, 171.3, C49.20, V10.44,
C34.81, C34.01, 145.3, 148.9, D41.00, C16.8,
146.8, 173.8, 152.0, 188.2, C50.219, D44.7, 197.8,
150.9, 151.0, 147.9, V10.03, C60.9, C79.72,
151.5, C56.2, 197.1, 196.1, 154.3, 196.8, V10.85,
162.0, 149.0, C79.01, C50.012, C50.819, C79.32,
V10.42, D43.4, C25.4, €24.9, C65.9, 189.1,
C65.1, 153.3, V10.02, 236.5, 150.4, (C49.22,
170.9, 192.0, C72.50, C50.311, 174.3, 237.3,
D44.6, C41.4, 170.6, D42.0, 202.90, C96.Z,
141.9, C40.22, C40.21, C78.4, C79.11, 173.9,
C69.01, 190.3, 141.4, C14.8, 173.3, C49.3, 142.9,
C25.7, 161.1, D38.5, 235.9, D38.6, D48.60,



SUNOG ET AL.

238.3, D49.81, 239.81, 153.7, 191.2, C24.8, 237.0,
C50.312, 174.0, 151.4, 785.59, 163.9, 163.8,
D37.01, 237.5, D43.8, D37.1, D37.2, 235.2, 157.2,
194.4, 173.40, 146.9, 785.00, C66.1, C69.42,
C44.9, C18.8, D37.09, V10.21, C50.419, 184.0,
C10.8, 192.2, C50.511, C32.8, 141.0, C41.0,
C44.299, D42.9, 237.6, D42.1, 235.3, 162.2,
C34.02, 197.4, C09.1, C00.2, 140.9, C30.0, 160.0,
173.0, C44.0, 238.6, C57.00, C44.509, C25.8,
157.8, C44.609, D39.11, 173.5, 141.2, D43.9,
D43.3, 237.9, C44.49, D37.05, D37.030, 198.2,
174.5, C50.519, 197.2, V10.22, 173.2, C44.101,
V10.41, C79.62, C79.60, C79.61, 203.80, V10.90,
C44.709, 198.1, 170.2, C41.2, 235.1, V10.84,
190.6, 170.1, V58.42, C76.40, Z85.858, C44.702,
C44.209, C40.10, 170.5, C44.202, D41.01, D39.8,
145.5, 145.2, C62.92, 196.6, C69.32, 189.9, 235.5,
C50.611, 162.4, D38.1, C50.319, 191.7, 196.5,
235.6, 147.8, C11.8, C57.7, C72.42, V10.88,
C50.922, D40.9, 236.6, C63.9, 191.8, C50.019,
154.8, C21.2, 183.2, 141.6, D49.3, (C44.590,
173.59, C44.591, 161.2, C41.3, 170.3, 174.2,
D41.02, C50.122, 154.2, 192.1, C70.9, 158.0,
785.53, 173.79, C44.791, C69.90, 190.9, C49.11,
171.2, 191.6, 173.00, D39.10, D48.62, 142.8,
D37.3, D48.2, 143.9, 187.9, C54.8, 182.8, C00.1,
V10.29, 148.1, C44.699, 156.9, 188.3, C67.3,
198.6, 188.1, C00.9, C50.021, 180.8, C10.1,
C51.8, C51.1, 152.8, C44.500, 173.50, C44.501,
C50.921, 180.1, C79.40, D48.61, C49.10, 171.4,
171.0, 235.7, C17.8, D38.2, 153.2, 236.7, 173.10,
C64, C50.612, 174.6, C44.201, 173.20, 7Z85.848,
151.8, C69.00, 236.91, D41.20, 173.99, 159.0,
170.0, 148.8, C13.8, (C44.80, D47.09, C62.11,
D37.03, 236.3, D39.9, C76.50, D43.1, C57.9,
194.3, 173.4, 188.0, C54, 145.0, C74.91, 150.5,
D40.8, 236.2, (C44.80, 173.89, 153.8, C54.0,
182.1, 173.7, 152.1, 175.9, C79.10, D49.519,
157.4, 142.1, 189.3, C69.92, 184.2, 192.9, 785.54,
C04.8, C69.91, C44.4, C44.20, 187.4, D49.59,
191.3, C79.02, C50.121, C40.01, C44.292, 785.50,
V10.50, C62.12, D44.11, C48.8, C69.62, 184.8,
C72.41, 148.3, C13.2, C57.01, C69.60, C69.50,
C69.52, 190.7, 239.3, C62.02, 175.0, C50.029,
C50.022, C49.12, 153.1, 149.9, 191.5, CT7L.5,
D41.21, D38.3, 235.8, D38.4, 195.1, C50.222,
187.7, 197, C78, C76.8, 195.8, 236.0, 157.3,
238.7, C'78.80, D37.031, 235.0, D37.032, D37.039,
141.1, 236.4, D40.10, 152.2, V10.59, 182, 150.8,
237.2, D37.02, D37.04, C31.8, 144.0, C04.0,
C50.829, 151.2, Z86.007, 173.70, C44.701, 173.19,
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C68.8, D00-D09, C49.8, C74.01, C62.91, D40.11,
C44.102, 195.3, 184.9, 146.6, C69.61, C69.41,
191.4, C10.4, 198.0, HA47.42, 183.4, C40.11,
C09.8, C74.92, V10.53, 173.49, C57.8, C50.522,
C69.82, C69.10, 190.4, D39.12, 150.1, C76.52,
D44.12, 159.8, C50.619, C63.7, V10.00, C00.0,
173.69, C44.691, 238.5, C50.822, 160.1, C30.1,
377.52, C06.89, 160.8, 146.1, 173.6, 150.3, 190.1,
377.51, 144.8, C57.02, 192.3, 197.3, C74.10,
150.2, C44.109, D41.11, 183.8, C44.692, 188.5,
184.1, C51.0, C44.799, C47.0, 164.2, C44.792,
165.9, 141.8, 140.5, 173.1, (44.10, 173.09,
D41.12, 158.8, C76.42, C13.0, 148.0, 145.6,
D40.12, 190.2, C38.8, C47.21, C72.30, C00.6,
C40.31, C69.21, 187.2, C05.8, C76.41, 154,
D49.511, 147.1, 194.6, C50.821, 164.9, C72.59,
173.80, V10.40, 194.1, 141.3, 189.4, C72.21,
C40.02, 183.9, C31.3, C72.32, C50.221, 140.4,
143.1, 194.9, C44.191, 160.5, 140.1, 160.3,
C72.31, 140.8, C00.8, 147.0, 156.8, C50.421,
173.29, C44.291, 187.1, 164.1, 159.1, C72.40, 181,
D41.3, C96.20, C32.3, C62.01, C40.12, C47.8,
171.8, C60.8, C78.30, V10.49, C80.2, 236.90,
D41.9, C62.00, 143.0, C50.622, 161.8, C44.192,
151.3, C69.51, 145.1, 161.3, C40.32, C63.12,
C74.11, C44.59, C40.90, C63.11, 151.1, C47.3,
C69.22, C40.81, 165.0, 186.0, C69.12, D41.8,
202.96, C69.81, 203.81, 145.8, C06.80, V10.20,
149.8, D41.22, C69.11, C50.422, 150.0

Appendix C. Full Summary Table
for the Primary
Cohort
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Table 2: Summary table for the MGB cohort,

stratified by treatment arm. HTN:
hypertension, CVD: cardiovascular dis-
ease. HTN, Stroke, COPD, Obesity,
CVD, and Cancer identified via diag-
nosis records.

Table 3:

Summary table for the UCHDW cohort,
stratified by treatment arm. HTN:
hypertension, CVD: cardiovascular dis-
ease. HTN, Stroke, COPD, Obesity,
CVD, and Cancer identified via diag-
nosis records.

Feature Met Sulf
Total 43655 5240
% of Site 89.3% 10.7%
ADRD 6.9% 9.0%
Death 6.8% 15.9%
Age 65.7 70.4
Sex F 49.8%  45.9%
HTN 53.9% 45.5%
Stroke 0.7%  0.5%
COPD 2.3% 2.4%
Obesity 16.3% 6.1%
CVD 16.8% 16.9%
Cancer 17.7%  17.8%
HbA1IC 7 35.3% 14.1%
7-10 14.9% 20.8%
> 10 2.5% 2.8%
Missing 47.3% 62.3%
BMI 25 0.7% 0.9%
25-29 20% 1.1%
> 30 16.5% 5.9%
Missing 80.8% 92.1%
Years in EHR 5.8 4.7

Feature Met Sulf
Total 4491 372
% of Site 10.7% 92.4% 7.6%
ADRD 5.6% 7.0%
Death 5.8% 10.2%

Age 66.1 68.6
Sex F 52.2% 49.2%
HTN 39.6% 37.9%
Stroke 04%  0.3%
COPD 1.2% 1.1%
Obesity 74%  5.4%
CVD 11.4% 12.9%
Cancer 17.5% 13.2%
HbA1C 7 30.4% 11.0%
7-10 13.0% 13.7%
> 10 2.7%  2.4%
Missing 53.9% 72.9%
BMI 25 0.5% 0.3%
25-29 2% 0.3%
> 30 13.0% 5.1%
Missing 84.5% 94.4%
Years in EHR 4.4 3.6
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Appendix D. Hazard Ratios Comparison for Sensitivity Analyses

Metformin vs. Sulfonylureas on ADRD

Pooled 087  (0.76-1) B
MGB 0.882 (0.77 - 1.02) B
ucsD 0747 (0.42-1.32) B
Meta-Analysis  0.874 (0.76 - 1) B
Federated 0.873  (0.77-0.99) B
[ T I T T 1
0.4 0.6 0.8 1 1.2 14

HR

Figure 3: Sensitivity analysis 1: HR of initiating metformin vs. sulfonylureas on ADRD using pooled data,
MA, and FL (excluding memory loss diagnoses) using pooled data, MA, and FL.
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Metformin vs. Sulfonylureas on ADRD

Pooled 0.875 (0.76 - 1) B
MGB 0.895 (0.78 - 1.03) B
ucsD 0.657  (0.33-1.3) B
Meta-Analysis  0.884 (0.77 - 1.01) B
Federated 0.874 (0.75-1.02) B
[ T T I T I 1
0.2 0.4 0.6 0.8 1 1.2 14

HR

Figure 4: Sensitivity analysis 2: HR of initiating metformin vs. sulfonylureas on ADRD using pooled data,
MA, and FL (excluding memory loss, mild cognitive impairment, and general neurodegeneration
diagnoses) using pooled data, MA, and FL.
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Metformin vs. Sulfonylureas on ADRD

Pooled 0.856 (0.65-1.12) B
MGB 0.883  (0.67 - 1.16) B
ucsD 0512 (0.1-2.58) B
Meta-Analysis  0.869  (0.66 - 1.14) B
Federated 0.858 (0.63- 1.16) B
[ I T T T I T T T 1
0.1 04 0.7 1 1.3 1.6 1.9 22 25 2.8

Figure 5: Sensitivity analysis 3: comparison of the HR on ADRD (excluding memory loss, mild cognitive
impairment, and general neurodegeneration diagnoses) among patients initiating metformin vs.
sulfonylureas at ages 50-70 using pooled data, MA, and FL.
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Appendix E. Summary Statistics for Cohorts from Additional Sites in
DRIAD-FL

Site 3 (INSIGHT CRN) is an EHR database containing healthcare data from multiple neighboring
health systems within New York City for over 20,000,000 patients. In preparation for a real-world
federated trial across all five sites, we have built the framework for and executed a single-site TTE
at INSIGHT CRN. The estimated HR of initiating metformin vs. sulfonylureas on ADRD was .955,
with 95% CT .914 - .997.

Table 4: Summary table for INSIGHT CRN, stratified by treatment arm. FuT is follow-up time,
HTN is hypertension, and CVD is cardiovascular disease.

Feature Met, Sulf
Total 124,830 31,263
Trt 78.0% 20.0%
ADRD 7.9% 10.0%
Death 2.3% 3.8%

Mean Age  64.7 66.1
Sex Female 58.2% 54.0%
HTN Dx 58.1% 69.5%
Stroke Dx  0.8% 0.9%
COPD Dx 1.5% 1.5%
Obesity Dx  19.5% 19.9%
CVD Dx 18.7% 22.4%
Cancer Dx  14.6% 14.6%

Site 4 (CPRD) is an EHR primary care database in the United Kingdom. The database includes
EHR data from across the country and contains records for over 10,000,000 patients.

Table 5: Summary table for site 4, stratified by treatment arm. HTN is hypertension and CVD is
cardiovascular disease.

Feature Met Sulf

Total 141,136 28,786
Trt 83.1% 16.9%
ADRD 17.8% 16.1%
Death 31.2% 54.3%

Mean Age  65.3 69.6
Sex Female 42.4% 43.0%
HTN Dx 51.6% 44.2%
Stroke Dx  25% 25.2%
COPD Dx 5.4% 5.7%
Cancer Dx  10.5% 15.7%
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Site 5 (Clalit) is an EHR database in Israel, containing three decades of data for over 5,000,000
patients in a closed healthcare system. In preparation for a real-world federated trial across all five
sites, we have built the framework for and executed a single-site TTE at Clalit. The estimated HR
of initiating metformin vs. sulfonylureas on ADRD was .880, with 95% CI .860 - .900.

Table 6: Summary table for site 5, stratified by treatment arm. HTN is hypertension.

Feature Met Sulf
Total 468,227 48,376
Trt 88.4% 11.6%
ADRD 14.6% 23.6%
Death 33.1% 66%

Age 50-59 32.6% 28.7%
Age 60-69 35.1% 30.7%
Age 70-79 23.3% 26.8%
Age 80-89 8.0% 11.9%
Age 90+ 1.0% 2.0%

Sex Female 51.1% 50.9%
HTN Dx 57.3% 46.2%
BMI > 30 42.7% 31.8%
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