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ABSTRACT

Graph anomaly detection (GAD), which aims to identify nodes in a graph that sig-
nificantly deviate from normal patterns, plays a crucial role in broad application
domains. Existing GAD methods, whether supervised or unsupervised, are one-
model-for-one-dataset approaches, i.e., training a separate model for each graph
dataset. This limits their applicability in real-world scenarios where training on the
target graph data is not possible due to issues like data privacy. To overcome this
limitation, we propose a novel zero-shot generalist GAD approach UNPrompt
that trains a one-for-all detection model, requiring the training of one GAD model
on a single graph dataset and then effectively generalizing to detect anomalies in
other graph datasets without any retraining or fine-tuning. The key insight in UN-
Prompt is that i) the predictability of latent node attributes can serve as a general-
ized anomaly measure and ii) highly generalized normal and abnormal graph pat-
terns can be learned via latent node attribute prediction in a properly normalized
node attribute space. UNPrompt achieves generalist GAD through two main mod-
ules: one module aligns the dimensionality and semantics of node attributes across
different graphs via coordinate-wise normalization in a projected space, while an-
other module learns generalized neighborhood prompts that support the use of
latent node attribute predictability as an anomaly score across different datasets.
Extensive experiments on real-world GAD datasets show that UNPrompt signifi-
cantly outperforms diverse competing methods under the generalist GAD setting,
and it also has strong superiority under the one-model-for-one-dataset setting.

1 INTRODUCTION

Graph anomaly detection (GAD) aims to identify anomalous nodes that exhibit significant deviations
from the majority of nodes in a graph. GAD has attracted extensive research attention in recent years
(Ma et al., 2021; Pang et al., 2021; Qiao et al., 2024) due to the board applications in various domains
such as spam review detection in online shopping networks (McAuley & Leskovec, 2013; Rayana &
Akoglu, 2015) and malicious user detection in social networks (Yang et al., 2019). To handle high-
dimensional node attributes and complex structural relations between nodes, graph neural networks
(GNNs) (Kipf & Welling, 2016; Wu et al., 2020) have been widely exploited for GAD due to their
strong ability to integrate the node attributes and graph structures. These methods can be roughly
divided into two categories, i.e., supervised and unsupervised methods. One category formulates
GAD as a binary classification problem and aims to capture anomaly patterns under the guidance of
labels (Tang et al., 2022; Peng et al., 2018; Gao et al., 2023). By contrast, due to the difficulty of
obtaining these class labels, another category of methods takes the unsupervised approach that aims
to learn normal graph patterns, e.g., via data reconstruction or other proxy learning tasks that are
related to GAD (Qiao & Pang, 2023; Liu et al., 2021b; Ding et al., 2019; Huang et al., 2022).

Despite their remarkable detection performance, these methods need to train a dataset-specific model
for each graph dataset for GAD. This one-model-for-one-dataset paradigm limits their applicability
in real-world scenarios since training a model from scratch incurs significant computation costs and
requires even a large amount of labeled data for supervised GAD methods (Liu et al., 2024; Qiao
et al., 2024). Training on a target graph may even not be possible due to data privacy protection
and regulation. To address this limitation, a new one-for-all anomaly detection (AD) paradigm,
called generalist anomaly detection (Zhu & Pang, 2024; Zhou et al., 2024), has been proposed for
image AD with the emergence of foundation models such as CLIP (Radford et al., 2021). This new
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(a) BWGNN(b) TAM UNPromptVisualization (c) (d)

Original
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Figure 1: (a) Visualization of two popular GAD datasets: Facebook and Amazon, where the node
attributes are unified into a common semantic space via our proposed normalization compared to
the original heterogeneous raw attributes. (b)-(d) The anomaly scores of BWGNN (normal proba-
bility) (Tang et al., 2022), TAM (local affinity) (Qiao & Pang, 2023) and UNPrompt (latent attribute
predictability) on the two datasets, where the methods are all trained on Facebook and tested on
Amazon under the zero-shot setting. It is clear that BWGNN and TAM struggle to generalize from
Facebook to Amazon, while UNPrompt can learn well to generalize across the datasets.

direction aims to learn a generalist detection model on auxiliary datasets so that it can generalize to
detect anomalies effectively in diverse target datasets without any re-training or fine-tuning. This
paper explores this direction in the area of GAD.

Compared to image AD, there are some unique challenges for learning generalist models for GAD.
First, unlike image data where raw features are in the same RGB space, the node attributes in graphs
from different applications and domains can differ significantly in node attribute dimensionality and
semantics. For example, as a shopping network dataset, Amazon contains the relationships between
users and reviews, and the node attribute dimensionality is 25. Differently, Facebook, a social
network dataset, describes relationships between users with 576-dimensional attributes. Second,
generalist AD models on image data rely on the superior generalizability learned in large visual-
language models (VLMs) through pre-training on web-scale image-text-aligned data (Zhu & Pang,
2024; Zhou et al., 2024), whereas there are no such foundation models for graph data (Liu et al.,
2023a). Therefore, the key question here is: can we learn generalist models for GAD on graph data
with heterogeneous node attributes and structure without the support of foundation models?

To address these challenges, we propose UNPrompt, a novel generalist GAD approach that learns
Unified Neighborhood Prompts on a single auxiliary graph dataset and then effectively generalizes
to directly detect anomalies in other graph datasets under a zero-shot setting. The key insight in
UNPrompt is that i) the predictability of latent node attributes can serve as a generalized anomaly
measure and ii) highly generalized normal and abnormal graph patterns can be learned via latent
node attribute prediction in a properly normalized node attribute space. UNPrompt achieves this
through two main modules including coordinate-wise normalization-based node attribute unifica-
tion and neighborhood prompt learning. The former module aligns the dimensionality of node
attributes across graphs and transforms the semantics into a common space via coordinate-wise nor-
malization, as shown in Figure 1(a). In this way, the diverse distributions of node attributes are
calibrated into the same semantic space. On the other hand, the latter module learns graph-agnostic
normal and abnormal patterns via a neighborhood-based latent attribute prediction task. Specifically,
we incorporate learnable prompts into the normalized attributes of the neighbors of a target node to
predict the latent attributes of the target node. Despite being trained on a small pre-trained GNN
using a single graph, UNPrompt can effectively generalize to detect anomalous nodes in different
unseen graphs without any re-training at the inference stage, as shown in Figure 1(b)-(d).

Overall, the main contributions of this paper are summarised as follows. (1) We propose a novel
zero-shot generalist GAD approach, UNPrompt. To the best of our knowledge, this is the first
method that exhibits effective zero-shot GAD performance across various graph datasets. There is a
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concurrent work on generalist GAD (Liu et al., 2024), but it can only work under a few-shot setting.
(2) We reveal that a simple yet effective coordinate-wise normalization can be utilized to unify the
heterogeneous distributions in the node attributes across different graphs. (3) We further introduce a
novel neighborhood prompt learning module that utilizes a neighborhood-based latent node attribute
prediction task to learn generalized prompts in the normalized attribute space, enabling the zero-
shot GAD across different graphs. (4) Extensive experiments on real-world GAD datasets show
that UNPrompt significantly outperforms state-of-the-art competing methods under the zero-shot
generalist GAD. (5) We show that UNPrompt can also work in the conventional one-model-for-one-
dataset setting, outperforming state-of-the-art models in this popular GAD setting.

2 RELATED WORK

Graph Anomaly Detection. Existing GAD methods can be roughly categorized into unsupervised
and supervised approaches (Ma et al., 2021; Qiao et al., 2024). The unsupervised methods are typ-
ically built using data reconstruction, self-supervised learning, and learnable graph anomaly mea-
sures (Qiao et al., 2024; Liu et al., 2022). The reconstruction-based approaches like DOMINANT
(Ding et al., 2019) and AnomalyDAE (Fan et al., 2020) aim to capture the normal patterns in the
graph, where the reconstruction error in both graph structure and attributes is utilized as the anomaly
score. CoLA (Liu et al., 2021b) and SL-GAD (Zheng et al., 2021) are representative self-supervised
learning methods assuming that normality is reflected in the relationship between the target node and
its contextual nodes. The graph anomaly measure methods typically leverage the graph structure-
aware anomaly measures to learn intrinsic normal patterns for GAD, such as node affinity in TAM
(Qiao & Pang, 2023). In contrast to the unsupervised approaches, the supervised anomaly detection
approaches have shown substantially better detection performance in recent years due to the incor-
poration of labeled anomaly data (Liu et al., 2021a; Chai et al., 2022). Most supervised methods
concentrate on the design of propagation mechanisms and spectral feature transformations to address
the notorious over-smoothing feature representation issues (Tang et al., 2022; Gao et al., 2023; Chai
et al., 2022). Although both approaches can be adapted for zero-shot GAD by directly applying the
trained GAD models to the target datasets, they struggle to capture generalized normal and abnormal
patterns for GAD across different graph datasets. There are some studies working on cross-domain
GAD (Ding et al., 2021b; Wang et al., 2023) that aim to transfer knowledge from a labeled graph
dataset for GAD on a target dataset, but it is a fundamentally different problem from generalist GAD
since cross-domain GAD requires the training on both source and target graph datasets.

Graph Prompt Learning. Prompt learning, initially developed in natural language processing,
seeks to adapt large-scale pre-trained models to different downstream tasks by incorporating learn-
able prompts while keeping the pre-trained models frozen (Liu et al., 2023b). Specifically, it designs
task-specific prompts capturing the knowledge of the corresponding tasks and enhances the compat-
ibility between inputs and pre-trained models to enhance the pre-trained models in downstream
tasks. Recently, prompt learning has been explored in graphs to unify multiple graph tasks (Sun
et al., 2023; Liu et al., 2023c) or improve the transferability of graph models on the datasets across
the different domains (Li et al., 2024; Zhao et al., 2024), e.g., by optimizing the prompts with labeled
data of various downstream tasks (Fang et al., 2024; Liu et al., 2023c). Although being effective in
popular graph learning tasks like node classification and link prediction, they are inapplicable to
generalist GAD due to the unsupervised nature and/or irregular distributions of anomalies.

Generalist Anomaly Detection. Generalist AD has been very recently emerging as a promising
solution to tackle sample efficiency and model generalization problems in AD. There have been a
few studies on non-graph data that have large pre-trained models to support the generalized pattern
learning, such as image generalist AD (Zhou et al., 2023; Zhu & Pang, 2024). However, it is a very
challenging task for data like graph data due to the lack of such pre-trained models. Recently a
concurrent approach, ARC (Liu et al., 2024), introduces an effective framework that leverages in-
context learning to achieve generalist GAD without relying on large pre-trained GNNs. Unlike ARC
which focuses on a few-shot GAD setting, i.e., requiring the availability of some labeled nodes in the
target testing graph dataset, we tackle a zero-shot GAD setting assuming no access to any labeled
data during inference stages.

Inductive Graph Learning. Similar to generalist setting, inductive graph learning (Hamilton
et al., 2017; Ding et al., 2021a; Li et al., 2023b; Huang et al., 2023; Fang et al., 2023) also focuses
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on inference on unseen graph data. However, these methods are not applicable to the generalist
setting. Specifically, inductive graph learning trains the model on partial data of the whole graph
dataset Hamilton et al. (2017); Ding et al. (2019); Li et al. (2023b) or the previously observed data of
dynamic graphs (Fang et al., 2023). Then, the learned model is evaluated on the unseen data of the
whole dataset or the future graph. These unseen testing data are from the same source of the training
data with the same dimensionality and semantics. In contrast, the unseen data in our method are
from different distributions/domains with significantly different dimensionality and semantics. This
cross-dataset nature, specifically referred to as a zero-shot problem (Jeong et al., 2023; Zhou et al.,
2024), makes our setting significantly different from the current inductive graph learning setting.

3 METHODOLOGY

3.1 PRELIMINARIES

Notations. Let G = (V, E) be an attributed graph with N nodes, where V = {v1, v2, . . . , vN}
represents the node set and E is the edge set. The attributes of nodes can be denoted as X =
[x1,x2, . . . ,xN ]T ∈ RN×d and the edges between nodes can be presented by an adjacency matrix
A ∈ {0, 1}N×N with Aij = 1 if there is an edge between vi and vj and Aij = 0 otherwise. For
simplicity, the graph can be represented as G = (A,X). In GAD, the node set can be divided into a
set of the normal nodes Vn and a set of anomalous nodes Va. Typically, the number of normal nodes
is significantly larger than the anomalous nodes, i.e., |Vn| ≫ |Va|. Moreover, the anomaly labels
can be denoted as y ∈ {0, 1}N with yi = 1 if vi ∈ Va and yi = 0 otherwise.

Conventional GAD. Conventional GAD typically focuses on model training and anomaly detec-
tion on the same graph. Specifically, given a graph G, an anomaly scoring model f : G → R is
optimized on G in a supervised or unsupervised manner. Then, the model is used to detect anoma-
lies within the same graph. The model is expected to generate higher anomaly scores for abnormal
nodes than normal nodes, i.e., f(vi) < f(vj) if vi ∈ Vn and vj ∈ Va.

Generalist GAD. Generalist GAD aims to learn a generalist model f on a single training graph
so that f can be directly adapted to different target graphs across diverse domains without any fine-
tuning or re-training. More specifically, the model is optimized on Gtrain with the corresponding
anomaly labels ytrain. After model optimization, the learned f is utilized to detect anomalies within
different unseen target graphs Ttest = {G(1)

test , . . . ,G
(n)
test } which has heterogeneous attributes and/or

structure to Gtrain, i.e., Gtrain ∩ Ttest = ∅. Depending on whether labeled nodes of the target graph are
provided during inference, the generalist GAD problem can be further divided into two categories,
i.e., few-shot and zero-shot settings. We focus on the zero-shot setting where the generalist models
cannot get access to any labeled data of the testing graphs during both training and inference.

3.2 OVERVIEW OF THE PROPOSED APPROACH – UNPROMPT

The framework is illustrated in Figure 2, which consists of two main modules, coordinate-wise
normalization-based node attribute unification and neighborhood prompt learning. For all graphs,
the node attribute unification aligns the dimensionality of node attributes and transforms the se-
mantics into a common space via coordinate-wise normalization in a projected space. Then, in the
normalized space, the generalized latent attribute prediction task is performed with the neighborhood
prompts to learn generalized GAD patterns at the training stage. In this prompt learning module,
UNPrompt aims to maximize the predictability of the latent attributes of normal nodes while mini-
mizing those of abnormal nodes. In this paper, we evaluate the predictability via the similarity. In
doing so, the graph-agnostic normal and abnormal patterns are incorporated into the prompts. Dur-
ing inference, the target graph is directly fed into the learned models after node attribute unification
without any re-training or labeled nodes of the graph. For each node, the predictability of latent
node attributes is directly used as the normal score for final anomaly detection.

3.3 NODE ATTRIBUTE UNIFICATION

Graphs from different distributions and domains significantly differ in the dimensionality and se-
mantics of node attributes. Therefore, the premise of developing a generalist GAD model is to unify
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Figure 2: Overview of UNPrompt. Node attribute unification is used to align the attribute dimension-
ality and semantics. During training, the neighborhood prompts are optimized to capture generalized
patterns by maximizing the predictability of the latent attributes (i.e., the embedding zi) of normal
nodes while minimizing that of abnormal nodes. During inference, the learned prompts are directly
applied to the testing nodes, and the latent attribute predictability of each node is used for GAD.

the dimensionality and semantics of node attributes into the same space. In this paper, we propose
a simple yet effective node attribute unification module to address this issue, which consists of fea-
ture projection and coordinate-wise normalization. Different from ARC (Liu et al., 2024) which
aligns the attributes based on feature reordering using feature smoothness, we calibrate the feature
distributions of diverse graphs into the same frame, resulting in a simpler yet effective alignment.

Feature Projection. To address the inconsistent attribute dimensions across graphs, various fea-
ture projection methods can be utilized, such as singular value decomposition (Stewart, 1993) (SVD)
and principal component analysis (Abdi & Williams, 2010) (PCA). Formally, given the attribute ma-
trix X(i) ∈ RN(i)×d(i)

of any graph G(i) from Gtrain ∪ Ttest, we transform it into X̃(i) ∈ RN(i)×d
′

with the common dimensionality of d
′
,

X(i) ∈ RN(i)×d(i) Feature−−−−−→
Projection

X̃(i) ∈ RN(i)×d
′

. (1)

Coordinate-wise normalization. Despite the attribute dimensionality being unified, the semantics
and distributions of each attribute dimension are still divergent across graphs, posing significant
challenges to learning a generalist GAD model. A recent study (Li et al., 2023a) has demonstrated
that semantic differences across datasets are mainly reflected in the distribution shifts and calibrating
the distributions into a common frame helps learn more generalized AD models. Inspired by this,
we propose to use coordinate-wise normalization to align the semantics and unify the distributions
across graphs. Specifically, the transformed attribute matrix X̃(i) is shifted and re-scaled to have
mean zeros and variance ones via the following equation:

X̄(i) =
X̃(i) − µ(i)

σ(i)
, (2)

where µ(i) = [µ
(i)
1 , . . . , µ

(i)

d′ ] and σ(i) = [σ
(i)
1 , . . . , σ

(i)

d′ ] are the coordinate-wise mean and variance
of X̃(i) of the graph G(i). In this way, the distributions of normalized attributes along each dimension
are the same within and across graphs, as shown in Figure 1(a). This helps to capture the generalized
normal and abnormal patterns for generalist GAD (see Table 2).

3.4 NEIGHBORHOOD PROMPT LEARNING VIA LATENT NODE ATTRIBUTE PREDICTION

Latent Node Attribute Predictability as Anomaly Score. To build a generalist GAD model, one
must capture the generalized normal and abnormal patterns across graphs. Otherwise, the model
would overfit the dataset-specific knowledge of the training graph which can be very different from
that in target graphs. In this paper, we reveal that the predictability of latent node attributes can
serve as a generalized anomaly measure, and thus, highly generalized normal and abnormal graph
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patterns can be learned via latent node attribute prediction in the normalized node attribute space
with the neighborhood prompts. The key intuition of this anomaly measure is that normal nodes
tend to have more connections with normal nodes of similar attributes due to prevalent graph ho-
mophily relations, resulting in a more homogeneous neighborhood in the normal nodes (Qiao &
Pang, 2023); by contrast, the presence of anomalous connections and/or attributes makes abnormal
nodes deviate significantly from their neighbors. Therefore, for a target node, its latent attributes
(i.e., node embedding) is more predictable based on the latent attributes of its neighbors if the node
is normal node, compared to abnormal nodes. The neighborhood-based latent attribute prediction is
thus used to measure the normality for GAD. As shown in our experiments (see Figures 1(b)-(d) and
Tables 1 and 3), it is a generalized anomaly scoring method that works effectively across graphs.
However, due to the existence of irrelevant and noisy attribute information in the original attribute
space, the attribute prediction is not as effective as expected in the simply projected space after at-
tribute unification. To address this issue, we propose to learn discriminative prompts via the latent
attribute prediction task to enhance the effectiveness of this anomaly measure.

To achieve this, we first design a simple graph neural network g, a neighborhood aggregation net-
work, to generate the aggregated neighborhood embedding of each target node. Specifically, given a
graph G = (A, X̄), the aggregated neighborhood embeddings for each node are obtained as follows:

Z̃ = g(G) = ÃX̄W , (3)

where Z̃ is the aggregated representation of neighbors, Ã = (D)−1A is the normalized adjacency
matrix with D being a diagonal matrix and its elements Dkk =

∑
j Akj , and W is the learnable

parameters. Compared to conventional GNNs such as GCN (Kipf & Welling, 2016) and SGC (Wu
et al., 2019), we do not require Ã to be self-looped and symmetrically normalized as we aim to
obtain the aggregated representation of all the neighbors for each node. To design the latent node
attribute prediction task, we further obtain the latent attributes of each node as follows:

Z = X̄W , (4)

where Z serves as the prediction ground truth for the latent attribute prediction task. The adjacency
matrix A is discarded to avoid carrying neighborhood-based attribute information into Z which
would lead to ground truth leakage in this prediction task. We further propose to utilize the cosine
similarity to measure this neighborhood-based latent attribute predictability for each node:

si = sim(zi, z̃i) =
zi(z̃i)

T

∥zi∥∥z̃i∥
, (5)

where z and z̃i are the i-th node embeddings in Z and Z̃ respectively. A higher similarity denotes
the target node can be well predicted by its neighbors and indicates the target is normal with a higher
probability. Therefore, we directly utilize the similarity to measure the normal score of the nodes.

GNN Pre-training. To build generalist models, pre-training is required. Here we pre-train the
above neighborhood aggregation network via graph contrastive learning due to the ability to obtain
robust and transferable models (You et al., 2020; Zhu et al., 2020) across graphs (see Appendix B for
the details). Without pre-training, the dataset-specific knowledge would be captured by the model
if it is directly optimized based on the neighborhood-based latent attribute prediction of normal and
abnormal nodes, limiting the generalizability of the model to other graphs (see Table 2).

Neighborhood Prompting via Latent Attribute Prediction. After the pre-training, we aim to
further learn more generalized normal and abnormal patterns via prompt tuning in the normalized
space. Thus, we devise learnable prompts appending to the attributes of the neighboring nodes of
the target nodes, namely neighborhood prompts, for learning robust and discriminative patterns that
can detect anomalous nodes in different unseen graphs without any re-training during inference.

Specifically, neighborhood prompting aims to learn some prompt tokens that help maximize the
neighborhood-based latent prediction of normal nodes while minimizing that of abnormal nodes si-
multaneously. To this end, the prompt is designed as a set of shared and learnable tokens that can
be incorporated into the normalized node attributes. Formally, the neighborhood prompts are repre-
sented as P = [p1, . . . ,pk]

T ∈ RK×d
′

where K is the number of vector-based tokens pi. For each
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node in G = (A, X̄), the node attributes in the unified feature space are augmented by the weighted
combination of these tokens, with the weights obtained from K learnable linear projections:

x̂i = x̄i +

K∑
j

αjpj , αj =
e(wj)

Txt
i∑K

l e(wl)Txt
i

, (6)

where αj denotes the importance score of the token pj in the prompt and wj is a learnable projec-
tion. For convenience, we denote the graph modified by the graph prompt as G̃ = (A, X̄+P ). Then,
G̃ is fed into the frozen pre-trained model g to obtain the corresponding aggregated embeddings Z̃
and node latent attributes Z via Eq.(3) and Eq.(4) respectively to measure the attribute predictabil-
ity. To further enhance the representation discrimination, a transformation layer h is applied on the
learned Z̃ and Z to transform them into a more anomaly-discriminative feature space,

Z̃ = h(Z̃) , Z = h(Z) . (7)
The transformed representations are then used to measure the latent node attribute predictability
with Eq.(5). To optimize P and h, we employ the following training objective,

min
P,h

∑
ℓ(zi, z̃i) , (8)

where ℓ(zi, z̃i) = −sim(zi, z̃i) if yi = 0, and ℓ(zi, z̃i) = sim(zi, z̃i) if yi = 1.

3.5 TRAINING AND INFERENCE OF UNPROMPT

Training. The training process of UNPrompt can be divided into two parts. First, given Gtrain, a
neighborhood aggregation network g is optimized via graph contrastive learning. Then, the neigh-
borhood prompts P and the transformation layer h are optimized to capture the graph-agnostic
normal and abnormal patterns while keeping the pre-trained model g frozen. In this way, the trans-
ferable knowledge of the pre-trained g is maintained, while the neighborhood prompt learning helps
learn the generalized normal and abnormal patterns.

Inference. During inference, given G(i)
test ∈ Ttest, the node attributes are first aligned. Then, the test

graph G(i)
test is augmented with the learned neighborhood prompt P and fed into the model g and the

transformation layer h to obtain the neighborhood aggregated representations and the latent node
attributes. Finally, the similarity (Eq.(5)) is used as the normal score for the test nodes for anomaly
detection. Note that the inference does not require any further re-training and labeled nodes of G(i)

test.
The algorithms of the training and inference of UNPrompt are provided in Appendix C.

4 EXPERIMENTS

4.1 PERFORMANCE ON ZERO-SHOT GENERALIST GAD

Datasets. We evaluate the proposed UNPrompt on seven real-world GAD datasets from diverse
social networks and online shopping co-review networks. Specifically, the social networks include
Facebook (Xu et al., 2022), Reddit (Kumar et al., 2019) and Weibo (Kumar et al., 2019). The co-
review networks consist of Amazon (McAuley & Leskovec, 2013), YelpChi (Rayana & Akoglu,
2015), Amazon-all (McAuley & Leskovec, 2013) and YelpChi-all (Rayana & Akoglu, 2015).

Competing Methods. Since there is no zero-shot generalist GAD method, a set of eight state-
of-the-art (SotA) unsupervised and supervised competing methods are employed for comparison
in our experiments. The unsupervised methods comprise reconstruction-based AnomalyDAE (Fan
et al., 2020), contrastive learning-based CoLA (Liu et al., 2021b), hop prediction-based HCM-A
(Huang et al., 2022), local affinity-based TAM (Qiao & Pang, 2023) and GADAM (Chen et al.,
2024). Supervised methods include two conventional GNNs – GCN (Kipf & Welling, 2016) and
GAT (Veličković et al., 2017) – and three SotA GAD GNNs – BWGNN (Tang et al., 2022), GHRN
(Gao et al., 2023) and XGBGraph (Tang et al., 2023).

Following (Liu et al., 2024; Qiao & Pang, 2023; Qiao et al., 2024), two widely-used metrics, AU-
ROC and AUPRC, are used to evaluate the performance of all methods. For both metrics, the higher
value denotes the better performance. Moreover, for each method, we report the average perfor-
mance with standard deviations after 5 independent runs with different random seeds.
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Table 1: AUROC and AUPRC results on six real-world GAD datasets with the models trained on
Facebook only. For each dataset, the best performance per column within each metric is boldfaced,
with the second-best underlined. “Avg” denotes the averaged performance of each method.

Metric Method Dataset
Amazon Reddit Weibo YelpChi Aamzon-all YelpChi-all Avg.

AUROC

Unsupervised Methods
AnomalyDAE 0.5818±0.039 0.5016±0.032 0.7785±0.058 0.4837±0.094 0.7228±0.023 0.5002±0.018 0.5948

CoLA 0.4580±0.054 0.4623±0.005 0.3924±0.041 0.4907±0.017 0.4091±0.052 0.4879±0.010 0.4501
HCM-A 0.4784±0.005 0.5387±0.041 0.5782±0.048 0.5000±0.000 0.5056±0.059 0.5023±0.005 0.5172
GADAM 0.6646±0.063 0.4532±0.024 0.3652±0.052 0.3376±0.012 0.5959±0.080 0.4829±0.016 0.4832

TAM 0.4720±0.005 0.5725±0.004 0.4867±0.028 0.5035±0.014 0.7543±0.002 0.4216±0.002 0.5351
Supervised Methods

GCN 0.5988±0.016 0.5645±0.000 0.2232±0.074 0.5366±0.019 0.7195±0.002 0.5486±0.001 0.5319
GAT 0.4981±0.008 0.5000±0.025 0.4521±0.101 0.5871±0.016 0.5005±0.012 0.4802±0.004 0.5030

BWGNN 0.4769±0.020 0.5208±0.016 0.4815±0.108 0.5538±0.027 0.3648±0.050 0.5282±0.015 0.4877
GHRN 0.4560±0.033 0.5253±0.006 0.5318±0.038 0.5524±0.020 0.3382±0.085 0.5125±0.016 0.4860

XGBGraph 0.4179±0.000 0.4601±0.000 0.5373±0.000 0.5722±0.000 0.7950±0.000 0.4945±0.000 0.5462
UNPrompt (Ours) 0.7525±0.016 0.5337±0.002 0.8860±0.007 0.5875±0.016 0.7962±0.022 0.5558±0.012 0.6853

AUPRC

Unsupervised Methods
AnomalyDAE 0.0833±0.015 0.0327±0.004 0.6064±0.031 0.0624±0.017 0.1921±0.026 0.1484±0.009 0.1876

CoLA 0.0669±0.002 0.0391±0.004 0.1189±0.014 0.0511±0.000 0.0861±0.019 0.1466±0.003 0.0848
HCM-A 0.0669±0.002 0.0391±0.004 0.1189±0.014 0.0511±0.000 0.0861±0.019 0.1466±0.003 0.0848
GADAM 0.1562±0.103 0.0293±0.001 0.0830±0.005 0.0352±0.001 0.1595±0.121 0.1371±0.006 0.1001

TAM 0.0666±0.001 0.0413±0.001 0.1240±0.014 0.0524±0.002 0.1736±0.004 0.1240±0.001 0.0970
Supervised Methods

GCN 0.0891±0.007 0.0439±0.000 0.1109±0.020 0.0648±0.009 0.1536±0.002 0.1735±0.000 0.1060
GAT 0.0688±0.002 0.0329±0.002 0.1009±0.017 0.0810±0.005 0.0696±0.001 0.1400±0.002 0.0822

BWGNN 0.0652±0.002 0.0389±0.003 0.2241±0.046 0.0708±0.018 0.0586±0.003 0.1605±0.005 0.1030
GHRN 0.0633±0.003 0.0407±0.002 0.1965±0.059 0.0661±0.010 0.0569±0.006 0.1505±0.005 0.0957

XGBGraph 0.0536±0.000 0.0330±0.000 0.2256±0.000 0.0655±0.000 0.2307±0.000 0.1449±0.000 0.1256
UNPrompt (Ours) 0.1602±0.013 0.0351±0.000 0.6406±0.026 0.0712±0.008 0.2430±0.028 0.1810±0.012 0.2219

Implementation Details. To ensure a fair comparison, the common dimensionality is set to eight
to unify the node attribute across graphs for all methods, and SVD is used for feature projection. The
number of layers in GNNs is set to one and the number of hidden units is 128. The transformation
layer is also implemented via a one-layer MLP with the same number of hidden units. The size
of the neighborhood prompt is set to one by default. For all baselines, we adopt their official code
and follow the recommended optimization and hyperparameter settings to conduct the experiments.
UNPrompt and all its competing methods are trained on Facebook and then directly tested on the
other six GAD datasets without any further training or additional knowledge of the target graphs.

Main Results. The AUROC and AUPRC results of all methods are presented in Table 1. From
the table, we can have the following observations. (1) Under the proposed generalist GAD scenario
where a model is trained on a single dataset and evaluated on six other datasets, all the compet-
ing baselines fail to work well, demonstrating that it is very challenging to build a generalist GAD
model that generalizes across different datasets under zero-shot setting. (2) For supervised methods,
the simple GCN achieves better performance than the specially designed GAD GNNs. This can be
attributed to more dataset-specific knowledge being captured in these specialized GAD models, lim-
iting their generalization capacity to the unseen testing graphs. (3) Unsupervised methods perform
more stable than supervised methods across the target graphs and generally outperform supervised
ones. This is because the unsupervised objectives are closer to the shared anomaly patterns across
graphs compared to the supervised ones, especially for TAM which employs a fairly generalized
local affinity-based objective to train the model. (4) The proposed method UNPrompt demon-
strates strong and stable generalist GAD capacity across graphs from different distributions and
domains. Specifically, UNPrompt achieves the best AUROC performance on 5 out of 6 datasets and
the average performance outperforms the best-competing method by over 9%. In terms of AUPRC,
UNPrompt outperforms all baselines on 4 out of 6 datasets and also achieves the best average per-
formance. The superiority of UNPrompt is attributed to the fact that i) the proposed coordinate-wise
normalization effectively aligns the features across graphs, and ii) the shared generalized normal
and abnormal patterns are well captured in the neighborhood prompts.

Ablation Study. To evaluate the importance of each component in UNPrompt, we design four
variants, i.e., w/o coordinate-wise normalization, w/o graph contrastive learning-based pre-training,
without neighborhood prompts, and w/o transformation layer. The results of these variants are re-
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Table 2: AUROC results of the proposed method UNPrompt and its four variants.

Method Amazon Reddit Weibo YelpChi Aamzon-all YelpChi-all Avg.
UNPrompt 0.7525 0.5337 0.8860 0.5875 0.7962 0.5558 0.6853
w/o Normalization 0.4684 0.5006 0.1889 0.5620 0.3993 0.5466 0.4443
w/o Pre-training 0.5400 0.5233 0.5658 0.4672 0.3902 0.4943 0.4968
w/o Prompt 0.5328 0.5500 0.4000 0.4520 0.4096 0.4894 0.4723
w/o Transformation 0.7331 0.5556 0.7406 0.5712 0.7691 0.5545 0.6540

ported in the Table 2. From the table, we can see that all four components contribute to the overall
superior performance of UNPrompt. More specifically, (1) without the coordinate-wise normaliza-
tion, the method fails to calibrate the distributions of diverse node attributes into a common space,
leading to large performance drop across all datasets. (2) Besides the semantics alignment, the graph
contrastive learning-based pre-training ensures our GNN network is transferable to other graphs in-
stead of overfitting to the training graph. As expected, the performance of the variant without pre-
training also drops significantly. (3) If the neighborhood prompts are removed, the learning of latent
node attribute prediction is ineffective for capturing generalized normal and abnormal patterns. (4)
The variant without the transformation layer achieves inferior performance on nearly all the datasets,
demonstrating the importance of mapping the features into a more anomaly-discriminative space.

Sensitivity w.r.t the Neighborhood Prompt Size. We evaluate the sensitivity of UNPrompt w.r.t
the size of the neighborhood prompts, i.e., the number of tokens K. We vary K in the range of [1, 9]
and report the results in Figure 3(a). It is clear that the performances on Reddit, Weibo and YelpChi-
all remain stable with varying sizes of neighborhood prompts while the other datasets show slight
fluctuation, demonstrating that the generalized normal and abnormal patterns can be effectively
captured in our neighborhood prompts even with a small size.

Prompt learning using latent attribute prediction vs. alternative graph anomaly measures.
To further justify the effectiveness of latent attribute predictability on learning generalized GAD
patterns in our prompt learning module, we compare this proposed learnable anomaly measure to the
recently proposed anomaly measure, local node affinity in TAM (Qiao & Pang, 2023). All modules
of UNPrompt are fixed with only the latent attribute prediction task replaced as the maximization of
local affinity as in TAM. The results are presented in Figure 3(b). We can see that the latent attribute
predictability consistently and significantly outperforms the local affinity-based measure across all
graphs, demonstrating its superiority in learning generalized patterns for generalist GAD.

4.2 PERFORMANCE ON CONVENTIONAL UNSUPERVISED GAD

We also evaluate the applicability of UNPrompt unsupervised GAD setting to further verify the
effectiveness of the latent note attribute prediction-based anomaly scores using our proposed neigh-
borhood prompt learning. Specifically, we adopt the same pipeline as in the generalist GAD setting,
i.e., graph contrastive-based pre-training and neighborhood prompt learning. Different from the
training process in the generalist setting, there is no label information available in unsupervised
GAD since models are trained and evaluated on the same graph data. To address this issue, we
employ the pseudo-labeling technique to provide supervision for neighborhood prompt learning. In
a nutshell, we enforce the neighborhood prompts to maximize the latent attribute predictability of
high-score nodes. More details on unsupervised GAD are provided in Appendix D.

Experimental Setup. Six datasets from different distributions and domains are used, i.e., Amazon,
Facebook, Reddit, YelpCHi, Amazon-all, and YelpChi-all. Following (Qiao & Pang, 2023), eight
SotA unsupervised baselines are used for comparison, i.e., iForest (Liu et al., 2012), ANOMALOUS
(Peng et al., 2018), CoLA (Liu et al., 2021b), SL-GAD (Zheng et al., 2021), HCM-A (Huang et al.,
2022), DOMINANT (Ding et al., 2019), ComGA (Luo et al., 2022) and TAM (Qiao & Pang, 2023).
For each method, we report the average performance with standard deviations after 5 independent
runs with different random seeds. The implementation details of UNPrompt remain the same as in
the generalist GAD setting. More experimental details on unsupervised GAD are in Appendix F.2.
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Figure 3: (a) AUROC and AUPRC results of UNPrompt w.r.t. varying neighborhood prompt size.
(b). The AUROC performance of generalist GAD with different prompt learning objectives.

Table 3: AUROC and AUPRC results of unsupervised GAD methods on six real-world GAD
datasets. The best performance per column within each metric is boldfaced, with the second-best
underlined. “Avg” denotes the averaged performance of each method.

Metric Method Dataset
Amazon Facebook Reddit YelpChi Amazon-all YelpChi-all Avg.

AUROC

iForest 0.5621±0.008 0.5382±0.015 0.4363±0.020 0.4120±0.040 0.1914±0.002 0.3617±0.001 0.4169
ANOMALOUS 0.4457±0.003 0.9021±0.005 0.5387±0.012 0.4956±0.003 0.3230±0.021 0.3474±0.018 0.5087
DOMINANT 0.5996±0.004 0.5677±0.002 0.5555±0.011 0.4133±0.010 0.6937±0.028 0.5390±0.014 0.5615

CoLA 0.5898±0.008 0.8434±0.011 0.6028±0.007 0.4636±0.001 0.2614±0.021 0.4801±0.016 0.5402
SL-GAD 0.5937±0.011 0.7936±0.005 0.5677±0.005 0.3312±0.035 0.2728±0.012 0.5551±0.015 0.5190
HCM-A 0.3956±0.014 0.7387±0.032 0.4593±0.011 0.4593±0.005 0.4191±0.011 0.5691±0.018 0.5069
ComGA 0.5895±0.008 0.6055±0.000 0.5453±0.003 0.4391±0.000 0.7154±0.014 0.5352±0.006 0.5716

TAM 0.7064±0.010 0.9144±0.008 0.6023±0.004 0.5643±0.007 0.8476±0.028 0.5818±0.033 0.7028
UNPrompt (Ours) 0.7335±0.020 0.9379±0.006 0.6067±0.006 0.6223±0.007 0.8516±0.004 0.6084±0.001 0.7267

AUPRC

iForest 0.1371±0.002 0.0316±0.003 0.0269±0.001 0.0409±0.000 0.0399±0.001 0.1092±0.001 0.0643
ANOMALOUS 0.0558±0.001 0.1898±0.004 0.0375±0.004 0.0519±0.002 0.0321±0.001 0.0361±0.005 0.0672
DOMINANT 0.1424±0.002 0.0314±0.041 0.0356±0.002 0.0395±0.020 0.1015±0.018 0.1638±0.007 0.0857

CoLA 0.0677±0.001 0.2106±0.017 0.0449±0.002 0.0448±0.002 0.0516±0.001 0.1361±0.015 0.0926
SL-GAD 0.0634±0.005 0.1316±0.020 0.0406±0.004 0.0350±0.000 0.0444±0.001 0.1711±0.011 0.0810
HCM-A 0.0527±0.015 0.0713±0.004 0.0287±0.005 0.0287±0.012 0.0565±0.003 0.1154±0.004 0.0589
ComGA 0.1153±0.005 0.0354±0.001 0.0374±0.001 0.0423±0.000 0.1854±0.003 0.1658±0.003 0.0969

TAM 0.2634±0.008 0.2233±0.016 0.0446±0.001 0.0778±0.009 0.4346±0.021 0.1886±0.017 0.2054
UNPrompt (Ours) 0.2688±0.060 0.2622±0.028 0.0450±0.001 0.0895±0.004 0.6094±0.014 0.2068±0.004 0.2470

Main Results. The AUROC and AUPRC results of all methods are presented in Table 3. De-
spite being a generalist GAD method, UNPrompt works very well as a specialized GAD model too.
UNPrompt substantially outperforms all the competing methods on all datasets in terms of both AU-
ROC and AUPRC. Particularly, the average performance of UNPrompt surpasses the best-competing
method TAM by over 2% in both metrics. Moreover, UNPrompt outperforms the best-competing
method by 2%-6% in AUROC on most of the datasets. The superior performance shows that the la-
tent node attribute predictability can be a generalized GAD measure that holds for different graphs,
and this property can be effectively learned by the proposed neighborhood prompting method.

5 CONCLUSION

In this paper, we propose a novel zero-shot generalist GAD method, UNPrompt, that trains one
detector on a single dataset and can effectively generalize to other unseen target graphs without any
further re-training or labeled nodes of target graphs during inference. The attribute inconsistency and
the absence of generalized anomaly patterns are the main obstacles for generalist GAD. To address
these issues, two main modules are proposed, i.e., coordinate-wise normalization-based attribute
unification and neighborhood prompt learning. The first module aligns node attribute dimensionality
and semantics, while the second module captures generalized normal and abnormal patterns via the
neighborhood-based latent node attribute prediction. Extensive experiments on various real-world
GAD datasets from different distributions and domains demonstrate the effectiveness of UNPrompt
for generalist GAD. Besides, the experiments conducted on the unsupervised GAD with UNPrompt
further support the rationality of the learned anomaly patterns in the generalist model.
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A GRAPH SIMILARITY

In addition to the visualization results presented in Figure 1, we further provide the distributional
similarity of various graphs in this section. Specifically, for dimension-aligned graphs across dif-
ferent distributions and domains, we measure their distributional similarity to analyze their diverse
semantics.

Given a graph G(i) = (A(i), X̃(i)), the coordinate-wise mean µ(i) = [µ
(i)
1 , . . . , µ

(i)

d′ ] and variance

σ(i) = [σ
(i)
1 , . . . , σ

(i)

d′ ] of X̃(i) are calculated and concatenated to form the distributional vector of
G(i), i.e., di = [µ(i),σ(i)]. Then, the distribution similarity between G(i) and G(j) is measured via
the cosine similarity,

sij = sim(di,dj) . (9)

The distributional similarities between graphs from different domains or distributions are shown
in Figure 4(a).. From the figure, we can see that the distributional similarities are typically small,
demonstrating the diverse semantics of node features across graphs. Noth that, for Amazon &
Amazon-all and YelpChi & YelpChi-all, their distribution similarity is one, which can be attributed
to the fact that they are from the same distributions respectively but with different numbers of nodes
and structures.

To reduce the semantic gap among graphs for generalist GAD, we propose to calibrate the distri-
butions of all graphs into the same frame with coordinate-wise normalization. The distributional
similarity with normalization is illustrated in Figure 4(b). It is clear that the node attributes share
the same distribution after the normalization. In this way, the generalist model can better capture the
shared GAD patterns and generalize to different target graphs, as demonstrated in our experimental
results.

F R W A Y A-aY-a
Distributional Similarity

Facebook
Reddit
Weibo

Amazon
YelpChi

Amazon-all
YelpChi-all

1 0.7 0.6 0.5 0.9 0.5 0.9

0.7 1 0.1 0.4 1 0.4 1

0.6 0.1 1 0.7 0.3 0.7 0.3

0.5 0.4 0.7 1 0.5 1 0.5

0.9 1 0.3 0.5 1 0.4 1

0.5 0.4 0.7 1 0.4 1 0.4

0.9 1 0.3 0.5 1 0.4 1

(a)

F R W A Y A-aY-a
Distributional Similarity

Facebook
Reddit
Weibo

Amazon
YelpChi

Amazon-all
YelpChi-all

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

(b)

Figure 4: (a) Distributional similarity between different graphs without coordinate-wise normaliza-
tion. (b) Distributional similarity between different graphs with the coordinate-wise normalization.

B DETAILS ON PRE-TRAINING OF NEIGHBORHOOD AGGREGATION
NETWORKS

We pre-train the neighborhood aggregation network g via graph contrastive learning (Zhu et al.,
2020) for subsequent graph prompt learning so that the generic normality and abnormality can be
captured in the prompts.

Specifically, given the training graph G = (A,X), to construct contrastive views for graph con-
trastive learning, two widely used graph augmentations are employed, i.e., edge removal and at-
tribute masking (Zhu et al., 2020). The edge removal randomly drops a certain portion of existing
edges in G and the attribute masking randomly masks a fraction of dimensions with zeros in node
attributes, i.e.,

Â = A ◦R , X̂ = [x1 ◦m, . . . ,xN ◦m]T , (10)
where R ∈ {0, 1}N×N is the edge masking matrix whose entry is drawn from a Bernoulli distribu-
tion controlled by the edge removal probability, m ∈ {0, 1}d is the attribute masking vector whose
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entry is independently drawn from a Bernoulli distribution with the attribute masking ratio, and ◦
denotes the Hadamard product.

By applying the graph augmentations to the original graph, the corrupted graph Ĝ = (Â, X̂) forms
the contrastive view for the original graph G = (A,X). Then, Ĝ and G are fed to the shared model
g followed by the non-linear projection to obtain the corresponding node embeddings, i.e., Ẑ ′ and
Z ′. For graph contrastive learning, the embeddings of the same node in different views are pulled
closer while the embeddings of other nodes are pushed apart. The pairwise objective for each node
pair (ẑ′i, z

′
i) can be formulated as:

ℓ(ẑ′i, z
′
i) = − log

esim(ẑ′
i,z

′
i)/τ

esim(ẑ′
i,z

′
i)/τ +

∑N
j ̸=i e

sim(ẑ′
i,z

′
j)/τ +

∑N
j ̸=i e

sim(ẑ′
i,ẑ

′
j)/τ

, (11)

where sim(·) represents the cosine similarity and τ is a temperature hyperparameter. Therefore, the
overall objective can be defined as follows:

Lcontrast =
1

2N

N∑
i=1

(ℓ(ẑ′i, z
′
i) + ℓ(z′i, ẑ

′
i)) . (12)

With the objective Eq.(12), the model g is optimized to learn transferable discriminative representa-
tions of nodes.

C ALGORITHMS

The training and inference processes of UNPrompt are summarized in Algorithms 1 and Algorithm
2, respectively.

Algorithm 1: Training of UNPrompt
1: Input: Training graph Gtrain = (A,X); training epoch E
2: Output: Neighborhood aggregation network g, graph prompts P = [p1, . . . ,pK ], and transformation h.
3: Perform feature unification of X .
4: Pre-train g on Gtrain with graph contrastive learning in Eq.( 12).
5: Keep model g frozen.
6: for e = 1, . . . , E do
7: Obtain modified node attribute with prompts via Eq.(6).
8: Obtain the neighborhood aggregated representation Z̃ via Eq.(3).
9: Obtain the node representations Z via Eq.(4).

10: Transform Z̃ and Z with h via Eq.(7).
11: Optimize P and h by minimizing Eq.(8).
12: end for

Algorithm 2: Inference of UNPrompt

1: Input: Testing graphs Ttest = {G(1)
test , . . . ,G

(n)
test }, neighborhood aggregation network g, graph prompts

P = [p1, . . . ,pK ], and transformation h.
2: Output: Normal score of testing nodes.
3: for G(i)

test = (A(i), X(i)) ∈ Ttest do
4: Perform feature unification of X(i).
5: Obtain modified node attribute with prompts via Eq.(6).
6: Obtain the neighborhood aggregated representation Z̃(i) via Eq.(3).
7: Obtain the node representations Z(i) via Eq.(4).
8: Transform Z̃(i) and Z(i) with h via Eq.(7).
9: Obtain the normal score of nodes via Eq.(5).

10: end for
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D UNSUPERVISED GAD WITH UNPROMPT

To demonstrate the wide applicability of the proposed method UNPrompt, we further perform unsu-
pervised GAD with UNPrompt which focuses on detecting anomalous nodes within one graph and
does not have access to any node labels during training. Specifically, we adopt the same pipeline
in the generalist GAD setting, i.e., graph contrastive pertaining and neighborhood prompt learning.
Since we focus on anomaly detection on each graph separately, the node attribute unification is dis-
carded for unsupervised GAD. However, the absence of node labels poses a challenge to learning
meaningful neighborhood prompts for anomaly detection. To overcome this issue, we propose to
utilize the pseudo-labeling technique to guide the prompt learning. Specifically, the normal score
of each node is calculated by the neighborhood-based latent attribute predictability after the graph
contrastive learning process:

si = sim(zi, z̃i) , (13)

where zi is the node representation learned by graph contrastive learning and z̃i is the corresponding
aggregated neighborhood representation. Higher si of node vi typically indicates a higher probabil-
ity of vi being normal nodes. Therefore, more emphasis should be put on high-score nodes when
learning neighborhood prompts. To achieve this, the normal score si is transformed into the loss
weight wi = Sigmoid(α(si − t)) where t is a threshold and α is the scaling parameter. In this way,
wi would approach 1 if si > t and 0 otherwise. Overall, the objective for unsupervised GAD using
UNPrompt can be formulated as follows:

L =

N∑
i

(−wisim(zi, z̃i) + λ

N∑
j,j ̸=i

sim(zi, z̃j)) , (14)

where the second term is a regularization term employed to prevent the node embeddings from being
collapsed into the same and λ is a trade-off hyperparameter.

Note that, we only focus on maximizing the latent attribute predictability of high-score nodes with-
out minimizing the predictability of low-score nodes in the above objective. These low-score nodes
could also be normal nodes with high probability as the score from Eq.(13) is only obtained from
the pre-trained model, resulting in the score not being fully reliable. If the predictability is also
minimized for these nodes, conflicts would be induced for neighborhood prompt learning, limiting
the performance of unsupervised GAD. After optimization, the latent attribute predictability is also
directly used as the normal score for the final unsupervised GAD.

E TIME COMPLEXITY ANALYSIS

Theoretical Analysis. In this section, we analyze the time complexity of training UNPrompt.
As discussed in the main paper, UNPrompt first pre-trains the aggregation network with graph con-
trastive learning. Then, the model remains frozen when optimizing neighborhood graph prompts and
the transformation layer to capture the generalized normal and abnormal graph patterns. In the ex-
perimental section, we employ a one-layer aggregation network, denoting the number of hidden units
as dh. The time complexity of the graph contrastive learning is O(4E1(|A|dh +Ndhd

′
+ 6Nd2h)),

where |A| returns of the number of edges of the Gtrain, N is the number of nodes, d
′

represents the
predefined dimensionality of node attributes, and E1 is the number of training epoch. After that, we
freeze the learned model and learn the learnable neighborhood prompt tokens and the transforma-
tion layer to capture the shared anomaly patterns. In our experiments, we set the size of each graph
prompt to K and implement the classification head as a single-layer MLP with the same hidden
units dh. Given the number of the training epoch E2, the time complexity of optimizing the graph
prompt and the transformation layer is O((4KNd

′
+ 2Nd2h)E2), which includes both the forward

and backward propagation. Note that, despite the neighborhood aggregation model being frozen,
the forward and backward propagations of the model are still needed to optimize the task-specific
graph prompts and the transformation layer. Therefore, the overall time complexity of UNPrompt is
O(4E1(|A|dh+Ndhd

′
+6Nd2h)+2E2(|A|dh+Ndhd

′
+2KNd

′
+Nd2h)), which is linear to the

number of nodes, the number of edges, and the number of node attributes of the training graph. Note
that, after the training, the learned generalist model is directly utilized to perform anomaly detection
on various target graphs without any further training.
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Table 4: Training time and inference time (seconds) for different methods.
Methods AnomalyDAE TAM GAT BWGNN UNPrompt (Ours)

Training Time 86.04 479.70 2.43 4.86 2.08
Inference Time 264.29 521.92 300.90 330.99 58.95

Empirical Computational Complexity Analysis. In Table 4, we report the training time and
inference time of different methods, where two representative unsupervised methods (AnomalyDAE
and TAM) and two supervised methods (GAT and BWGNN) are used for comparison to our method
UNPrompt. The results show that the proposed method requires much less training and inference
time compared to other baselines, demonstrating the efficiency of the proposed UNPrompt. Note
that, TAM has the highest time consumption, which can be attributed to that it performs multiple
graph truncation and learns multiple local affinity maximization networks.

F EXPERIMENTAL SETUP

F.1 DETAILS ON DATASETS

We conduct the experiments using seven real-world with genuine anomalies in diverse online shop-
ping services and social networks, including Facebook (Xu et al., 2022), Reddit (Kumar et al., 2019),
Weibo (Zhao et al., 2020), Amazon (McAuley & Leskovec, 2013) and YelpChi (Rayana & Akoglu,
2015) as well as two large-scale graph datasets including Amazon-all (McAuley & Leskovec, 2013)
and YelpChi-all (Rayana & Akoglu, 2015). The statistical information including the number of
nodes, edge, the dimension of the feature, and the anomaly rate of the datasets can be found in
Table 5. The more detailed description of each dataset is given as follows

• Facebook (Xu et al., 2022). Facebook is a social network where each node represents a
user, and edges signify relationships between users. Ground truth anomalies are are nodes
that either connect to randomly selected circles or exhibit abnormal attributes, as described
in (Ding et al., 2019; Liu et al., 2021b).

• Reddit (Kumar et al., 2019). Reddit is a forum-based network derived from the social
media platform Reddit, where nodes represent users, and the embeddings of post texts serve
as attributes. Users who have been banned from the platform are labeled as anomalies.

• Weibo (Kumar et al., 2019). Weibo is a social network and their associated hashtags are
obtained from the Tencent Weibo platform. Users who engaged in at least five of these
activities are labeled as anomalies while the others are classified as normal samples. Sus-
picious activities are defined as two posts made within a specific timeframe, such as 60
seconds. The attributes of each node include the location of a micro-blog post and bag-of-
words features.

• Amazon (McAuley & Leskovec, 2013). Amazon is a graph dataset that captures the re-
lations between users and product reviews. There are 25 handcrafted features used as the
node attribute (Zhang et al., 2020). The users with more than 80% helpful votes are labeled
as normal entities and users with less than 20% helpful votes as anomalies. Amazon is con-
structed by extracting the Amazon-UPU dataset that connects the users who give reviews
to at least one common product.

• YelpChi (Rayana & Akoglu, 2015). YelpChi includes hotel and restaurant reviews filtered
(spam) and recommended (legitimate) by Yelp. There are 32 handcrafted features used as
node attributes (Rayana & Akoglu, 2015). The users with more than 80% helpful votes are
labeled as benign entities and users with less than 20% helpful votes as fraudulent entities.
The YelpChi is constructed by extracting YelpChi-RUR which connects reviews posted by
the same user.

• Amazon-all (McAuley & Leskovec, 2013). Amazon-all includes three types of relations:
U-P-U (users reviewing at least one same product), U-S-U (users giving at least one same
star rating within one week), and U-V-U (users with top-5% mutual review similarities).
Amazon-all is formed by treating the different relations as a single relation following Chen
et al. (2022); Qiao & Pang (2023).
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Table 5: Key statistics of the real-world GAD datasets with real anomalies.

Data set Type Nodes Edges Attributes Anomalies(Rate)

Facebook Social Networks 1,081 55,104 576 27(2.49%)
Reddit Social Networks 10,984 168,016 64 366(3.33%)
Weibo Social Networks 8,405 407,963 400 868(10.30%)
Amazon Co-review 10,244 175,608 25 693(6.66%)
YelpChi Co-review 24,741 49,315 32 1,217(4.91%)
Amazon-all Co-review 11,944 4,398,392 25 821(6.87%)
YelpChi-all Co-review 45,941 3,846,979 32 6,674(14.52%)
Disney Co-purchase 124 335 28 6(4.84%)
Elliptic Payment Flow 203,769 234,355 166 4,545(9.76%)

• YelpChi-all (Rayana & Akoglu, 2015). Similar to Amazon-all, YelpChi-all includes three
types of edges: R-U-R (reviews posted by the same user), R-S-R (reviews for the same
product with the same star rating), and R-T-R (reviews for the same product posted in the
same month). YelpChi-all is formed by treating the different relations as a single relation
following Chen et al. (2022); Qiao & Pang (2023) .

F.2 MORE IMPLEMENTATION DETAILS

Generalist GAD. For the graph contrastive learning-based pre-training, the probabilities of edge
removal and attribute masking are by default set to 0.2 and 0.3 respectively. Besides, the learning
rate is set to 0.001 with the Adam optimizer, the training epoch is set to 200 and the temperature τ
is 0.5.

For the neighborhood prompt learning, the learning rate is also set to 0.001 with the Adam optimizer,
and the training epoch is set to 900. Note that, since we focus on generalist GAD, we do not perform
any hyperparameter search for specific target graphs. Instead, the results of all target graphs are
obtained with the same hyperparameter settings.

Unsupervised GAD. Similar to the generalist GAD setting, the hidden units of the neighborhood
aggregation network and the transformation layer are set to 128 for all graphs. The threshold t is
determined by the 40th percentile of the normal scores obtained by the pre-trained model g, and the
scaling parameter α is set to 10 for all graphs. Besides, we utilize random search to find the optimal
hyperparameters of the size of neighborhood prompts K and the trade-off parameter λ.

For both generalist and unsupervised GAD, the code is implemented with Pytorch (version: 1.13.1),
DGL (version: 1.0.1), OGB (version: 1.3.6), and Python 3.8.19. All experiments are conducted on
a Linux server with an Intel CPU (Intel Xeon Gold 6346 3.1GHz) and a Nvidia A40 GPU.

G MORE EXPERIMENTAL RESULTS

G.1 GENERALIST PERFORMANCE WITH DIFFERENT COMMON DIMENSIONALITIES

For the results reported in the main paper, the common dimensionality is set to eight. In this subsec-
tion, we further evaluate the generalist anomaly detection with different common dimensionalities.
Specifically, the dimensionality varies in [2, 4, 6, 8, 10, 12] and the results are reported in Figure 5.

From the figure, we can see that small dimensionality leads to poor generalist anomaly detection
performance. This is attributed to the fact that much attribute information would be discarded with
a small dimensionality. By increasing the common dimensionality, more attribute information is
retained, generally resulting in much better detection performance.

G.2 RESULTS ON TWO OTHER GRAPHS FROM DIFFERENT DOMAINS

Besides the social networks and co-review graphs, we further evaluate the performance of UN-
Prompt on Disney (Liu et al., 2022) and Elliptic (Weber et al., 2019). These two datasets consist of
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Figure 5: AUROC and AUPRC results of UNPrompt w.r.t. varying common dimensionality.

Table 6: AUROC and AUPRC results on two additional real-world GAD datasets with the models
trained on Facebook only. For each dataset, the best performance per column within each metric
is boldfaced, with the second-best underlined. “Avg” denotes the averaged performance of each
method.

Metric Method Dataset
Disney Elliptic Avg.

AUROC

Unsupervised Methods
AnomalyDAE 0.4853±0.003 0.4197±0.109 0.4525

CoLA 0.4696±0.065 0.5572±0.019 0.5134
HCM-A 0.2014±0.015 0.2975±0.004 0.2495
GADAM 0.4288±0.023 0.3922±0.012 0.4105

TAM 0.4773±0.003 0.3282±0.003 0.4028
Supervised Methods

GCN 0.5000±0.000 0.7640±0.002 0.6320
GAT 0.5175±0.054 0.6588±0.019 0.5882

BWGNN 0.6073±0.026 0.5843±0.101 0.5958
GHRN 0.5336±0.030 0.5400±0.103 0.5368

XGBGraph 0.6692±0.000 0.4274±0.000 0.5483
UNPrompt (Ours) 0.6412±0.030 0.5901±0.026 0.6157

AUPRC

Unsupervised Methods
AnomalyDAE 0.0566±0.000 0.0798±0.014 0.0682

CoLA 0.0701±0.023 0.0998±0.005 0.0850
HCM-A 0.0355±0.001 0.0776±0.000 0.0566
GADAM 0.0651±0.012 0.0733±0.001 0.0692

TAM 0.0628±0.001 0.0697±0.001 0.0663
Supervised Methods

GCN 0.0484±0.000 0.1963±0.002 0.1224
GAT 0.0530±0.004 0.1366±0.010 0.0948

BWGNN 0.0624±0.003 0.1158±0.026 0.0891
GHRN 0.0519±0.003 0.1148±0.041 0.0834

XGBGraph 0.1215±0.000 0.0816±0.000 0.1016
UNPrompt (Ours) 0.1236±0.031 0.1278±0.004 0.1257

co-purchase network and financial network respectively. The statistics of them are also summarized
in Table 5. We follow exactly the same experimental settings in the main paper.

The results of all competing methods are reported in Table 6. It is clear that UNPrompt can still
achieve promising performance, demonstrating the generality of UNPrompt across different graphs.
Although GCN and XGBGraph obtain the best AUROC performance on Disney and Elliptic respec-
tively, they perform poorly on most of the other datasets. UNPrompt ranks in second in the average
AUROC performance and the best AUPRC performance here. This is consisentent with the superior
performance of UNPrompt in Table 1.

G.3 INCORPORATING COORDINATE-WISE NORMALIZATION INTO BASELINES

We further conduct experiments by incorporating the proposed coordinate-wise normalization into
the baselines to evaluate whether the normalization could facilitate the baselines. Without loss of
the generality, three unsupervised methods (AnomalyDAE, CoLA and TAM) and three supervised
methods (GCN, BWGNN and GHRN) are used and the results are reported in Table 7.

From the table, we can see that the proposed coordinate-wise normalization does not improve the
baselines consistently but downgrades most of the baselines. This can be attributed to two reasons.
First, while the proposed coordinate-wise normalization unifies the semantics of different graphs
into the common space, the discrimination between normal and abnormal patterns would also be
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Table 7: AUROC and AUPRC results of several baselines with coordinate-wise normalization (CN).

Metric Method Dataset
Amazon Reddit Weibo YelpChi Aamzon-all YelpChi-all Avg.

AUROC

Unsupervised Methods
AnomalyDAE 0.5818±0.039 0.5016±0.032 0.7785±0.058 0.4837±0.094 0.7228±0.023 0.5002±0.018 0.5948

+ CN 0.4359±0.053 0.4858±0.063 0.4526±0.074 0.5992±0.028 0.2833±0.039 0.5080±0.013 0.4608
CoLA 0.4580±0.054 0.4623±0.005 0.3924±0.041 0.4907±0.017 0.4091±0.052 0.4879±0.010 0.4501

+ CN 0.4729±0.019 0.5299±0.008 0.3401±0.026 0.3640±0.006 0.5424±0.019 0.4882±0.008 0.4563
TAM 0.4720±0.005 0.5725±0.004 0.4867±0.028 0.5035±0.014 0.7543±0.002 0.4216±0.002 0.5351

+ CN 0.4509±0.015 0.5526±0.006 0.4723±0.007 0.5189±0.006 0.7580±0.004 0.4057±0.002 0.5264
Supervised Methods

GCN 0.5988±0.016 0.5645±0.000 0.2232±0.074 0.5366±0.019 0.7195±0.002 0.5486±0.001 0.5319
+ CN 0.5694±0.014 0.5349±0.008 0.0632±0.005 0.3954±0.002 0.6798±0.009 0.5550±0.005 0.4663

BWGNN 0.4769±0.020 0.5208±0.016 0.4815±0.108 0.5538±0.027 0.3648±0.050 0.5282±0.015 0.4877
+ CN 0.4745±0.048 0.4942±0.011 0.2538±0.038 0.4727±0.016 0.6307±0.077 0.5221±0.025 0.4747

GHRN 0.4560±0.033 0.5253±0.006 0.5318±0.038 0.5524±0.020 0.3382±0.085 0.5125±0.016 0.4860
+ CN 0.4308±0.024 0.5061±0.026 0.2621±0.043 0.4781±0.018 0.5712±0.046 0.5200±0.009 0.4614

UNPrompt (Ours) 0.7525±0.016 0.5337±0.002 0.8860±0.007 0.5875±0.016 0.7962±0.022 0.5558±0.012 0.6853

AUPRC

Unsupervised Methods
AnomalyDAE 0.0833±0.015 0.0327±0.004 0.6064±0.031 0.0624±0.017 0.1921±0.026 0.1484±0.009 0.1876

+ CN 0.0596±0.009 0.0333±0.007 0.1910±0.049 0.0874±0.011 0.0495±0.006 0.1527±0.007 0.0956
CoLA 0.0669±0.002 0.0391±0.004 0.1189±0.014 0.0511±0.000 0.0861±0.019 0.1466±0.003 0.0848

+ CN 0.0669±0.002 0.0360±0.002 0.1618±0.027 0.0370±0.000 0.0934±0.017 0.1446±0.005 0.0899
TAM 0.0666±0.001 0.0413±0.001 0.1240±0.014 0.0524±0.002 0.1736±0.004 0.1240±0.001 0.0970

+ CN 0.0606±0.003 0.0394±0.001 0.1044±0.005 0.0542±0.001 0.2482±0.013 0.1213±0.001 0.1047
Supervised Methods

GCN 0.0891±0.007 0.0439±0.000 0.1109±0.020 0.0648±0.009 0.1536±0.002 0.1735±0.000 0.1060
+ CN 0.0770±0.003 0.0355±0.001 0.0548±0.000 0.0401±0.000 0.1383±0.006 0.1789±0.002 0.0874

BWGNN 0.0652±0.002 0.0389±0.003 0.2241±0.046 0.0708±0.018 0.0586±0.003 0.1605±0.005 0.1030
+ CN 0.0684±0.014 0.0320±0.001 0.2576±0.031 0.0516±0.004 0.1557±0.115 0.1585±0.010 0.1206

GHRN 0.0633±0.003 0.0407±0.002 0.1965±0.059 0.0661±0.010 0.0569±0.006 0.1505±0.005 0.0957
+ CN 0.0586±0.004 0.0330±0.002 0.2663±0.038 0.0525±0.004 0.0898±0.015 0.1570±0.007 0.1095

UNPrompt (Ours) 0.1602±0.013 0.0351±0.000 0.6406±0.026 0.0712±0.008 0.2430±0.028 0.1810±0.012 0.2219

compressed. This requires the generalist anomaly detector to capture the fine-grained differences
between normal and abnormal patterns. Second, these baselines are not designed to capture gener-
alized abnormality and normality across graphs, failing to capture and discriminate the generalized
nuance. By contrast, we reveal that the predictability of latent node attributes can serve as a gener-
alized anomaly measure and learn highly generalized normal and abnormal patterns via latent node
attribute prediction. In this way, the graph-agnostic anomaly measure can be well generalized across
graphs.

G.4 GENERALIST PERFORMANCE WITH DIFFERENT TRAINING GRAPH

In the main paper, we report the generalist performance of UNPrompt by using Facebook as the
training graph. To further demonstrate the generalizability of UNPrompt, we conduct additional
experiments by using Amazon as the training graph and testing the learned generalist model on the
rest graphs. Note that, Facebook and Amazon are from different domains, which are the social
network and co-review network respectively.

The AUROC and AUPRC results of all methods are reported in Table 8. Similar to the observations
when taking Facebook as the training graph, UNPrompt achieves the best average performance in
terms of both AUROC and AUPRC when training on Amazon, demonstrating the generalizability
and effectiveness of UNPrompt with different training graphs. Note that, the training graph Ama-
zon and the target graph Amazon-all come from the same distribution but have different numbers
of nodes and graph structures. Intuitively, all the methods should achieve promising performance
on Amazon-all. However, only a few methods achieve this goal, including BWGNN, GHRN, and
our method. The failures of other baselines can be attributed to the more complex graph structure
of Amazon-all hinders the generalizability of these methods. Moreover, compared to BWGNN and
GHRN, our method performs more stably across different datasets. This demonstrates the impor-
tance of capturing intrinsic normal and abnormal patterns for graph anomaly detection.
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Table 8: AUROC and AUPRC results on six real-world GAD datasets with the generalist model
trained on Amazon. For each dataset and metric, the best performance per column is boldfaced,
with the second-best underlined. “Avg” denotes the averaged performance of each method.

Metric Method Dataset
Facebook Reddit Weibo YelpChi Aamzon-all YelpChi-all Avg.

AUROC

Unsupervised Methods
AnomalyDAE 0.6123±0.141 0.5799±0.035 0.7884±0.031 0.4788±0.046 0.6233±0.070 0.4912±0.009 0.5957

CoLA 0.5427±0.109 0.4962±0.025 0.3987±0.017 0.3358±0.012 0.4751±0.014 0.4937±0.003 0.4570
HCM-A 0.5044±0.047 0.4993±0.057 0.4937±0.056 0.5000±0.000 0.4785±0.016 0.4958±0.003 0.4953
GADAM 0.6024±0.033 0.4720±0.062 0.4324±0.047 0.4299±0.023 0.5199±0.072 0.5289±0.017 0.4976

TAM 0.5496±0.038 0.5764±0.003 0.4876±0.029 0.5091±0.014 0.7525±0.002 0.4268±0.002 0.5503
Supervised Methods

GCN 0.6892±0.004 0.5658±0.000 0.2355±0.019 0.5277±0.002 0.7503±0.002 0.5565±0.000 0.5542
GAT 0.3886±0.118 0.4997±0.012 0.3897±0.134 0.5051±0.019 0.5007±0.006 0.4977±0.006 0.4636

BWGNN 0.5441±0.020 0.4026±0.028 0.4214±0.039 0.4908±0.013 0.9684±0.005 0.5841±0.062 0.5686
GHRN 0.5242±0.013 0.4096±0.021 0.4783±0.021 0.5036±0.016 0.9601±0.018 0.6045±0.022 0.5800

XGBGraph 0.4869±0.069 0.4869±0.069 0.7843±0.090 0.4773±0.022 0.9815±0.000 0.5869±0.014 0.6340
Our 0.7917±0.021 0.5356±0.005 0.8192±0.015 0.5362±0.007 0.9289±0.007 0.5448±0.009 0.6927

AUPRC

Unsupervised Methods
AnomalyDAE 0.0675±0.028 0.0413±0.005 0.6172±0.015 0.0647±0.016 0.1025±0.026 0.1479±0.006 0.1735

CoLA 0.0468±0.026 0.0327±0.002 0.0956±0.005 0.0361±0.001 0.0678±0.005 0.1474±0.001 0.0711
HCM-A 0.0249±0.003 0.0374±0.008 0.0979±0.011 0.0511±0.000 0.0727±0.006 0.1453±0.000 0.0716
GADAM 0.0461±0.014 0.0299±0.004 0.0917±0.007 0.0428±0.002 0.0773±0.024 0.1602±0.010 0.0747

TAM 0.0243±0.002 0.0417±0.001 0.1266±0.015 0.0532±0.002 0.1771±0.002 0.1271±0.001 0.0917
Supervised Methods

GCN 0.0437±0.001 0.0449±0.000 0.2527±0.026 0.0763±0.001 0.1738±0.002 0.1759±0.000 0.1279
GAT 0.0445±0.039 0.0327±0.001 0.0892±0.016 0.0595±0.003 0.0697±0.001 0.1478±0.003 0.0739

BWGNN 0.0289±0.003 0.0263±0.002 0.2735±0.026 0.0543±0.004 0.8406±0.012 0.1975±0.031 0.2369
GHRN 0.0254±0.001 0.0265±0.002 0.3103±0.013 0.0541±0.005 0.8142±0.045 0.2015±0.015 0.2387

XGBGraph 0.0268±0.006 0.0315±0.000 0.4116±0.040 0.0500±0.003 0.8673±0.000 0.1994±0.012 0.2644
Our 0.2291±0.023 0.0340±0.001 0.4746±0.033 0.0610±0.003 0.7329±0.042 0.1767±0.004 0.2847

H INDUCTIVE LEARNING VS. ZERO-SHOT GENERALIST LEARNING

Despite our method and inductive graph learning (Hamilton et al., 2017; Xu et al., 2018) are both
focused on evaluating the learned models on unseen graph data during inference, there are funda-
mental differences between our zero-shot learning and the inductive graph learning. We clarify the
differences as follows:

• For inductive graph learning, the training dataset and testing dataset come from the same
graph source. For example, for the graph classification task in Xu et al. (2018), 20 graphs
of protein-protein interaction (PPI) datasets are used for training, and 2 other graphs are
used for testing. These graphs both belong to the same protein-protein interaction graph
dataset with the same attribute distribution and semantics. Therefore, the learned model
can be easily generalized to the test graphs.

• In our zero-shot setting, the training dataset and testing dataset are from different domains
and distributions. They differ in the dimensionality of node attributes and graph semantics.
For example, as a shopping network dataset, Amazon contains the relationships between
users and reviews, and the node attribute dimensionality is 25. Differently, Facebook, a so-
cial network dataset, describes relationships between users with 576-dimensional attributes.
This is one fundamental difference between the inductive setting and our zero-shot setting.
Moreover, our zero-shot setting requires the learned models to be directly applied to other
graphs from different domains without any further tuning/training or labeled nodes of the
target graphs. This requires the learned model to capture the more generalized patterns
for anomaly detection based on only one training graph, resulting in a task being more
challenging than the mentioned inductive learning.

• There are also studies (Ding et al., 2021a) on inductive graph anomaly detection, but the
problem setting is also fundamentally different from our setting. In particular, to allow the
evaluation of inductive detection, Ding et al. (2021a) samples nodes from the same graph
to construct two graph datasets, with one graph used for training and another used for
testing, leading to the fact that the training and test datasets are essentially from the same
distribution. This is fundamentally different from our settings, where training and testing
datasets are separately from highly heterogeneous distributions and domains.
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Table 9: AUROC and AUPRC results on six real-world GAD datasets with the generalist model
trained on Facebook. For each dataset and metric, the best performance per column is boldfaced,
with the second-best underlined. “Avg” denotes the averaged performance of each method.

Metric Method Dataset
Amazon Reddit Weibo YelpChi Aamzon-all YelpChi-all Avg.

AUROC
GraphSAGE 0.4276±0.156 0.5275±0.011 0.0975±0.002 0.4593±0.000 0.3276±0.074 0.4720±0.006 0.3853

AEGIS 0.4664±0.030 0.3530±0.016 0.4979±0.048 0.5267±0.016 0.4375±0.149 0.5116±0.022 0.4655
Ours 0.7525±0.016 0.5337±0.002 0.8860±0.007 0.5875±0.016 0.7962±0.022 0.5558±0.012 0.6853

AUPRC
GraphSAGE 0.0601±0.015 0.0361±0.001 0.0858±0.000 0.0468±0.001 0.0493±0.006 0.1358±0.001 0.0690

AEGIS 0.0600±0.003 0.0233±0.001 0.2158±0.028 0.0677±0.007 0.0928±0.057 0.1628±0.010 0.1037
Ours 0.1602±0.013 0.0351±0.000 0.6406±0.026 0.0712±0.008 0.2430±0.028 0.1810±0.012 0.2219

Moreover, our problem setting is the same as existing work on zero-shot image anomaly detection
(Jeong et al., 2023; Zhou et al., 2024), with the only difference in the data type used. Considering
all these factors, we think ”zero-shot” is more suitable for characterizing the nature of the problem
complexity and more consistent with the terms/concepts used in the anomaly detection community.

To further demonstrate the difference between inductive learning and zero-shot generalist learning,
we adopt the inductive learning methods to the zero-shot setting. Specifically, two representative
inductive methods, GraphSAGE (Hamilton et al., 2017) and AEGIS (Ding et al., 2021a) are used
and we follow the experimental setup in the main paper to unify the node attribute dimensionality
with SVD. The results of GraphSAGE and AEGIS are reported in Table 9.

From the table, we can see whether the general inductive learning method or the inductive anomaly
detection method does not achieve promising performance for the zero-shot generalist anomaly de-
tection. This highlights the difference and incompatibility between inductive learning and the prob-
lem studied in this paper.
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