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Abstract

Model-based offline reinforcement Learning (RL)
is a promising approach that leverages existing
data effectively in many real-world applications,
especially those involving high-dimensional in-
puts like images and videos. To alleviate the
distribution shift issue in offline RL, existing
model-based methods heavily rely on the uncer-
tainty of learned dynamics. However, the model
uncertainty estimation becomes significantly bi-
ased when observations contain complex distrac-
tors with non-trivial dynamics. To address this
challenge, we propose a new approach - Sepa-
rated Model-based Offline Policy Optimization
(SeMOPO) - decomposing latent states into en-
dogenous and exogenous parts via conservative
sampling and estimating model uncertainty on the
endogenous states only. We provide a theoret-
ical guarantee of model uncertainty and perfor-
mance bound of SeMOPO. To assess the efficacy,
we construct the Low-Quality Vision Deep Data-
Driven Datasets for RL (LQV-D4RL), where the
data are collected by non-expert policy and the
observations include moving distractors. Exper-
imental results show that our method substan-
tially outperforms all baseline methods, and fur-
ther analytical experiments validate the critical
designs in our method. The project website is
https://sites.google.com/view/semopo.
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1. Introduction
Offline reinforcement learning (RL) (Lange et al., 2012;
Levine et al., 2020), which learns policies from fixed
datasets without the need for costly interactions with online
environments, has been increasingly applied in real-world
tasks such as drug discovery (Trabucco et al., 2022) and
autonomous driving (Iroegbu & Madhavi, 2021; Diehl et al.,
2023). Offline RL saves the cost of interacting with the en-
vironment and improves sample efficiency. Real-world RL
datasets typically exhibit two main characteristics: (1) they
are often collected by non-expert or random policies (Jin
et al., 2020; Rashidinejad et al., 2021), and (2) they originate
from real environments with high-dimensional observations,
such as images or videos (Rafailov et al., 2021; Prudencio
et al., 2022), containing complex noise like moving back-
grounds (Lu et al., 2022). Learning high-quality policies
from low-quality datasets poses a significant challenge.

Concerning the first characteristic, previous research has
demonstrated the efficacy of offline RL with highly sub-
optimal or random datasets (Jin et al., 2020; Rashidinejad
et al., 2021; Kumar et al., 2022). Regarding the second
characteristic, some studies have employed model-based
RL (MBRL) methods to address the challenges of high-
dimensional inputs. MBRL learns a low-dimensional sur-
rogate model of the high-dimensional environment (Ha &
Schmidhuber, 2018; Hafner et al., 2019), allowing the agent
to interact with this model to gather additional trajectories in
the low-dimensional state space. Offline MBRL methods im-
prove sample efficiency and reduce storage costs. However,
an unavoidable gap exists between the actual environment
and the learned model from offline datasets. Offline MBRL
methods (Yu et al., 2020) mitigate the distribution shift prob-
lem by incorporating the model prediction’s uncertainty as
a penalty in the reward function.

In real-world decision-making scenarios, uncertainty arises
not only from task-relevant dynamics but also from irrel-
evant distractors in observations, such as moving back-
grounds. However, previous offline visual RL works (Yu
et al., 2020; Rafailov et al., 2021; Lu et al., 2022) do not dif-
ferentiate between these two types of uncertainty. If both are
treated as model uncertainty in offline policy training and
used as a penalty in the reward function, the learned policies
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may become overly conservative. Therefore, it is crucial to
consider task-irrelevant dynamics uncertainty during offline
model training.

To address these challenges, we propose the Separated
Model-based Offline Policy Optimization (SeMOPO)
method. We first analyze the performance lower bound
under the Exogenous Block MDP (EX-BMDP) assump-
tion (Efroni et al., 2021) in the case of offline learning from
noisy visual datasets. We find that such a lower bound is
empirically tighter than that under the POMDP assump-
tion (Kaelbling et al., 1998) commonly used in previous
offline RL research (Rafailov et al., 2021; Lu et al., 2022).
We replace the typical random sampling method in offline
MBRL (Yu et al., 2020; Rafailov et al., 2021; Lu et al.,
2022) with our proposed conservative sampling method,
training the separated model on trajectories collected by
relatively deterministic behavior policies. After obtaining
the task-relevant model from the offline dataset, we train the
policy on the endogenous states imagined by this model. To
evaluate our method, we construct the Low-Quality Vision
Datasets for Deep Data-Driven RL (LQV-D4RL), including
15 different settings from DMControl Suite (Tassa et al.,
2018) and Gym (Brockman et al., 2016) environments. Se-
MOPO achieves significantly better performance than all
baseline methods on the LQV-D4RL. Our analytical experi-
ments confirm the effectiveness of the conservative sampling
method in identifying task-relevant information and the su-
periority of estimating uncertainty estimation on it during
offline policy training.

The main contributions of our work are: (i) We propose a
new approach named Separated Model-based Offline Policy
Optimization (SeMOPO), which aims to solve offline visual
RL tasks from low-quality datasets collected by sub-optimal
policies and with complex distractors in observations. (ii)
To establish a benchmark for the practical setting, we con-
struct Low-Quality Vision Datasets for Deep Data-Driven
RL (LQV-D4RL), which offers new research opportunities
for practitioners in the field. (iii) We provide a theoreti-
cal analysis of the lower performance bound of policies
learned on the endogenous state space and the superiority
of our proposed conservative sampling method in differ-
entiating task-relevant and irrelevant information. (iv) We
show excellent performance of SeMOPO on LQV-D4RL,
with analytical experiments validating the efficacy of each
component of the method.

2. Preliminaries
In our work, we focus on learning skills from the offline
dataset consisting of image observations, actions, and re-
wards, denoted as B = {oi1:T , ai1:T , ri1:T }ni=1. The dataset
contains moving distractors within the visual observations
and is collected by policies πB with suboptimal or random

behaviors. To better model the environment, we consider the
Exogenous Block Markov Decision Process (EX-BMDP)
setting (Efroni et al., 2021), an adaptation of the Block
MDP (Du et al., 2019). A Block MDP consists of a set of
observations O; a set of latent states, Z with cardinality
Z; a finite set of actions, A with cardinality A; a transi-
tion function, T : Z × A → ∆(Z); a reward function
R : O ×A → [0, 1]; an emission function U : Z → ∆(O);
and an initial state distribution µ0 ∈ ∆(Z). The agent has
no access to the latent states but can only receive the ob-
servations. The block structure holds if the support of the
emission distributions of any two latent states are disjoint,
supp(U(·|z1)) ∩ supp(U(·|z2)) = ∅ when z1 ̸= z2, where
supp(U(·|z)) = {o ∈ O|U(o|z) > 0}, distinguishing the
BMDP from the Partially Observable MDP (Kaelbling et al.,
1998). We now restate the definition of EX-BMDP:

Definition 2.1. (Exogenous Block Markov Decision Pro-
cess). An EX-BMDP is a BMDP such that the latent
state can be decoupled into two parts z = (s+, s−) where
s+ ∈ S+ is the endogenous state and s− ∈ S− is the exoge-
nous state. For z ∈ Z the initial distribution and transition
functions are decoupled, that is: µ(z) = µ(s+)µ(s−), and
T (z′|z, a) = T (s+

′|s+, a)T (s−′|s−)

EX-BMDP decomposes the dynamics and separates the
exogenous noise from the endogenous state. This noise is
not controlled by the agent, but it may have a non-trivial
dynamic. EX-BMDP provides a natural way to characterize
this type of noise.

Model-based Offline Policy Optimization (Yu et al., 2020)
(MOPO) is a typical offline RL method, showing the effi-
cacy of model-based methods to learn policies from offline
datasets. MOPO learns the dynamics model T̂ (·|s, a) and
the reward model r̂(s, a) from the fixed dataset B, and con-
structs an uncertainty-penalized MDP whose reward func-
tion is defined as r̃(s, a) = r(s, a)− u(s, a), where u(s, a)
is the model uncertainty estimation. MOPO proves that op-
timizing the policy in the uncertainty-penalized MDP with
an admissible uncertainty estimation u(s, a) is equivalent to
optimizing it in the true MDP. We adopt a similar pipeline to
MOPO to learn the model and policy from offline datasets.

3. SeMOPO: Separated Model-based Offline
Policy Optimization

Model-based offline RL methods use model uncertainty to
address the distribution shift problem between the online
environment and the offline dataset. In Section 3.1, we first
provide a theoretical justification of the performance bound
under the Exogenous Block MDP assumption when learning
from offline datasets with visual distractors and illustrate the
inherent limitations of employing the POMDP framework in
this scenario. In Section 3.2, we propose a sampling strategy
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to help the model differentiate task-relevant and irrelevant
components and give a corresponding theoretical analysis.
In Section 3.3, we detail a practical implementation of Se-
MOPO, which integrates these advancements.

3.1. Uncertainty Estimation and Performance Bound
under Exogenous Block MDP

In this section, we theoretically analyze the lower bound of
policy performance under EX-BMDP. We also provide em-
pirical evidence that, in some specific cases, the uncertainty
under EX-BMDP is lower than that under POMDP, resulting
in a tighter lower performance bound. We start our analysis
by extending the well-known telescoping lemma (Luo et al.,
2019) from the state space S to the endogenous state space
S+:

Lemma 3.1. (Telescoping lemma in the endogenous state
space). Let M and M̃ be two MDPs with the same re-
ward function r, but different dynamics T and T̃ respec-
tively. Let Gπ

M̃
(s+, a) := E

s+′∼T̃ (s+,a)

[
V π
M

(
s+

′
)]

−

E
s+′∼T (s+,a)

[
V π
M

(
s+

′
)]

. Then,

η
M̃
(π)− ηM (π) = γ E

(s+,a)∼ρπ
T̃

[
Gπ

M̃
(s+, a)

]
Note that if F is a set of functions mapping S+ to R that
contains V π

M for all π, then,

|Gπ
M̃
(s+, a)|

≤ sup
f∈F

∣∣∣Es+′∼T̃ (s+,a)[f(s
+′
)]− Es+′∼T (s+,a)[f(s

+′
)]
∣∣∣

=:dF (T̃ (s
+, a), T (s+, a))

where dF is the integral probability metric (IPM) defined
by F . The telescoping lemma provides a way to measure
the performance gap between policies in the true dynamics
T and the estimated dynamics T̃ .

Assumption 3.2. Let S+ be the endogenous state space un-
der the EX-BMDP. We say ũ : S+×A → R is an admissible
error estimator for T̃ if dF (T̃ (s+, a), T (s+, a)) ≤ ũ(s+, a)
for all s ∈ S+, a ∈ A.

Theorem 3.3. Under Assumption 3.2, we can define the un-
certainty estimation ϵũ(π) under the EX-BMDP as ϵũ(π) :=

Ē
(s+,a)∼ρπ

T̃

[ũ(s+, a)]. Let π̃ denote the learned optimal pol-

icy under the endogenous MDP, then,

ηM (π̃) ≥ sup
π
{ηM (π)− 2λϵũ(π)}

Theorem 3.3 suggests that the performance under the true
MDP M can be bounded by learning a policy in the en-
dogenous state space using the reward penalized by the

corresponding model uncertainty, which provides a theoreti-
cal guarantee on the performance of SeMOPO. The proof is
in Appendix A.1.

Remarks. The Partially Observable MDP used in prior
works like LOMPO (Rafailov et al., 2021) and Offline
DV2 (Lu et al., 2022) will give a biased model uncer-
tainty estimation when learning from offline datasets con-
taining task-irrelevant distractors in observations. These
methods assume that u : Z × A → R can serve as an
admissible error estimator for T̂ if dF (T̂ (z, a), T (z, a)) ≤
u(z, a) for all z and a, where z represents the belief state
of the true state s within the latent space Z . However,
in addition to task-relevant information, there are task-
irrelevant components in image observations that are be-
yond the agent’s control. Without excluding them dur-
ing model learning, these components will be absorbed
into z, leading to biased uncertainty estimation based on
dF (T̂ (z, a), T (z, a)). Taking LOMPO as an example, the
model uncertainty is estimated as the variance of the pre-
dicted probability of the next state given the current state
and action, i.e., Var{log T̂θi(zt+1|zt, at)}, which is larger
than the model uncertainty Var{log T̃θi(s

+
t+1|s

+
t , at)} under

the EX-BMDP using the same calculation method. LOMPO
then uses this model uncertainty as a reward penalty, leading
to a loser lower performance bound than the EX-BMDP.

3.2. Model Training with Conservative Sampling

In Section 3.1, we know that a separated model under the
EX-BMDP assumption benefits policy learning. In the fol-
lowing, we focus on how to learn such a separated model.
Under the EX-BMDP assumption, the log-likelihood for the
trajectory τ = {o1, a1, · · · , oT , aT } can be decomposed as:

ln p(τ) =

T∑
t=1

[
ln p(ot|s+t , s−t ) + ln p(at|s+t )

+ ln p(s+t |s+t−1, at−1) + ln p(s−t |s−t−1)
]
,

(1)

We omit the terms of the initial distribution of s+1 and s−1
for convenience. The detailed derivation is in Appendix B.

From the last three terms in Equation (1), we can find that
the agent’s action is the key factor to help the model dis-
tinguish the task-relevant and irrelevant components. An
intuitive insight is that the separated model should be up-
dated using relatively deterministic actions. Excessively
random action distributions can weaken the influence of
agent actions on the endogenous transition, causing it to col-
lapse into p(s+t+1|s

+
t ), making it indistinguishable from the

exogenous transition. It naturally raises a question: how to
sample the offline data to help decompose the endogenous
and exogenous dynamics? Consider two kinds of training
processes, the first is maximizing the likelihood where the
data is sampled from all the mixed trajectories without re-
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Figure 1. The SeMOPO framework encompasses two parts: model learning and policy optimization. In the model learning phase,
SeMOPO employs conservative sampling to select trajectories, which are then used to train models for endogenous and exogenous
dynamics, each implemented as an ensemble of Gaussian distributions. During policy optimization, SeMOPO trains a policy πθ(at|s+t )
and a value model Vθ(s

+
t ) based on the endogenous states generated by a sampled endogenous dynamics model T̃ j . SeMOPO uses the

reward penalized by the variance of the endogenous dynamics models’ predictions to train the value model.

placing (Random Sampling), and the second is maximizing
the likelihood where data is sampled trajectory by trajec-
tory (Conservative Sampling). To formulate the relationship
between these two likelihoods, we introduce Theorem 3.4.

Theorem 3.4. Consider the likelihood optimization problem
on the same offline dataset B but with two different sampling
methods. let Bπi

be the dataset collected by the behavior
policy πi, where i = 1, 2, · · · , n. Bπmix

= Bπ1
∪ Bπ1

∪
· · · ∪ Bπn is the mixture of the datasets of all policies. Then
we have

Eτ∈Bπmix
ln p(τ) ≤ 1

n

n∑
i=1

Eτ∈Bπi
ln p(τ),

where p(τ) is the true density of τ .

Theorem 3.4 suggests that the total likelihood estimated on
the sampled offline trajectory of a certain policy is larger
than on the mixture dataset of all policies. The proof is
in Appendix A.2. Maximizing the likelihood will make the
estimated distribution toward the true distribution in Equa-
tion (1), which helps distinguish the endogenous and exoge-
nous transitions. Notably, Theorem 3.4 does not guarantee
that we can obtain the maximum likelihood via the con-
servative sampling method. Even so, we empirically show
that the model can separate the task-relevant and irrelevant
components well compared to the random sampling method.

3.3. Practical Implementation of SeMOPO

Based on the above analysis, we present a practical imple-
mentation of Separated Model-based Offline Policy Opti-
mization. The overall method of SeMOPO is shown in Fig-
ure 1 and summarized in Algorithm 1.

Separated Model Learning. Theorem 3.3 allows us to
achieve a significantly improved lower bound of the total
return if we can learn a separate model and train the policy
in the endogenous state space. By bifurcating the latent
state z into endogenous (s+) and exogenous (s−) parts, we
obtain the following Evidence Lower Bound (ELBO):

max
θ

E
[ T∑

t=1

lnUθ(ot|s+t , s−t )

− DKL

(
q̄θ(s

−
t |o≤t)||T θ(s

−
t |s−t−1)

)
− DKL

(
q̃θ(s

+
t |o≤t, a<t)||T̃θ(s

+
t |s+t−1, at−1)

)]
.

where q̃θ and q̄θ represent the inference models for the en-
dogenous and exogenous states, respectively. Likewise, T̃θ

and T denote the corresponding transition dynamics models,
and Uθ is the observation model which reconstructs the ob-
servation jointly from the endogenous and exogenous states.
The derivation of the ELBO is detailed in Appendix B, with
the implementation specifics of each model described in Ap-
pendix D.

For the conservative sampling strategy outlined in Sec-
tion 3.2, we design a simple but effective implementation.
In the m-th training epoch, the SeMOPO’s model is only
trained on the sampled trajectory τj generated by a cer-
tain policy, where j ≤ min(m,n) and n is the number
of trajectories in the offline dataset. We provide an intu-
itive interpretation for this implementation: it forces the
model to separate the task-relevant and irrelevant dynamics
in the early training stages (m ≤ n); as training progresses
(m > n), the model is trained on the trajectories sampled
from the entire dataset to enhance the coverage of transi-
tions.
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Table 1. Normalized test returns of SeMOPO and compared baselines on the LQV-D4RL benchmark. Mean scores (higher is better) with
standard deviation are recorded across 4 seeds for each task. The original returns are shown in Table 5.

Dataset SeMOPO Offline DV2 LOMPO DrQ+BC DrQ+CQL BC InfoGating

Walker Walk
random 0.77 ± 0.06 0.27 ± 0.05 0.22 ± 0.06 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.07 ± 0.00
medrep 0.87 ± 0.06 0.29 ± 0.04 0.36 ± 0.11 0.04 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.09 ± 0.03
medium 0.45 ± 0.07 0.11 ± 0.04 0.10 ± 0.02 0.65 ± 0.06 0.03 ± 0.01 0.69 ± 0.05 0.16 ± 0.06

Cheetah Run
random 0.63 ± 0.07 0.10 ± 0.03 0.16 ± 0.04 0.23 ± 0.08 0.00 ± 0.00 0.05 ± 0.05 0.14 ± 0.03
medrep 0.64 ± 0.07 0.16 ± 0.07 0.19 ± 0.08 0.41 ± 0.23 0.00 ± 0.00 0.05 ± 0.05 0.66 ± 0.12
medium 0.73 ± 0.08 0.20 ± 0.14 0.13 ± 0.09 0.64 ± 0.07 0.00 ± 0.00 0.62 ± 0.10 0.71 ± 0.09

Hopper Hop
random 0.68 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.08 ± 0.10 0.00 ± 0.00 0.06 ± 0.08 0.79 ± 0.13
medrep 0.91 ± 0.07 0.00 ± 0.00 0.00 ± 0.00 0.25 ± 0.18 0.00 ± 0.00 0.04 ± 0.02 0.53 ± 0.16
medium 1.24 ± 0.16 0.02 ± 0.05 0.01 ± 0.04 0.81 ± 0.19 0.00 ± 0.00 0.42 ± 0.07 0.58 ± 0.09

Humanoid Walk
random 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
medrep 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.00 ± 0.00
medium 0.01 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

Car Racing
random 0.93 ± 0.16 0.51 ± 0.18 0.86 ± 0.18 -0.05 ± 0.05 -0.23 ± 0.02 -0.15 ± 0.01 -0.20 ± 0.01
medrep 0.80 ± 0.17 0.39 ± 0.18 0.72 ± 0.40 -0.18 ± -0.01 -0.23 ± 0.02 -0.21 ± 0.02 -0.20 ± 0.01
medium 0.90 ± 0.34 0.62 ± 0.32 0.69 ± 0.22 0.39 ± 0.21 -0.21 ± 0.02 -0.18 ± 0.00 -0.18 ± 0.01

Endogenous Model-based Offline Policy Optimization.
We train a policy πθ and a value model Vθ in the en-
dogenous state space of the learned model, following
the standard training algorithm in DreamerV2 (Hafner
et al., 2021). To address the distribution shift issue, we
estimate the model uncertainty through the discrepancy
dF (T̃ (s

+, a), T (s+, a)). Since we can not access the true
dynamics T , we adopt a widely-used approach based on
the model disagreements (Pathak et al., 2019), which is
implemented as a penalty term:

r̃(s+, a) = r(s+, a)− λ

K∑
i=1

(µi(s+, a)− µ̄(s+, a))2 (2)

Here, λ is a coefficient for adjusting the penalty weight, and
µ̄(s+, a) = 1

K

∑K
i=1 µ

i(s+, a) is the average prediction
across an ensemble of K endogenous dynamics models.

4. Experiments
We conduct several experiments to answer the following sci-
entific questions: (1) Can SeMOPO outperform the existing
methods with low-quality offline visual datasets? (2) Can
SeMOPO give a reasonable model uncertainty estimation?
(3) How does the sampling strategy for policy data affect
the separated model training? (4) Can SeMOPO generalize
to online environments with different distractors?

Datasets. To evaluate the efficacy of SeMOPO in the sce-
nario of learning with low-quality offline visual datasets,
we construct a dataset named LQV-D4RL (Low-Quality
Vision Datasets for Deep Data-Driven RL). A “low-quality”
dataset, in this context, refers to one where the data col-
lection policy is either sub-optimal or randomly initialized,

and the observations contain complex distractors with non-
trivial dynamics. With these considerations in mind, we
create nine distinct subsets for evaluation. We select four lo-
comotion tasks — Walker Walk, Cheetah Run, Hopper Hop,
and Humanoid Walk — from the DMControl Suite (Tassa
et al., 2018), and the Car Racing task from Gym (Brockman
et al., 2016). Each task is represented across three different
levels of policy performance:

• random: Trajectories collected by randomly initialized
policies.

• medium replay (medrep): Trajectories drawn from
the replay buffer accumulated during the training of a
policy with medium performance.

• medium: Trajectories collected by a fixed policy of
medium performance.

The backgrounds of each locomotion task’s observations are
replaced with videos from the “driving car” category of the
Kinetics dataset (Kay et al., 2017), as used in DBC (Zhang
et al., 2021). The size of image observation is 64× 64× 3.
To mimic the real data collection process in natural settings,
we train policies and then collect trajectories based on image
observations with the aforementioned distractors. Further
details about the dataset can be found in Appendix C.

Baselines. We compare several representative methods
in offline visual RL literature, dividing them into model-
based and model-free categories. Model-based methods like
LOMPO (Rafailov et al., 2021) introduce a penalty term
in the reward function based on model disagreements and
optimize the policy in its constructed latent MDP, while Of-
fline DV2 (Lu et al., 2022) adapts the DreamerV2 method
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with a similar penalty for offline settings. Both of these two
methods show great performance in offline visual RL tasks.
In model-free approaches, Behavioral Cloning (BC) (Bain
& Sammut, 1995; Bratko et al., 1995) learns by imitating the
behavior of the policy that collected the data, and Conserva-
tive Q-Learning (CQL) (Kumar et al., 2020) samples actions
from a broad distribution while penalizing those that fall
outside the support region of the offline data. Remarkably,
both BC and CQL are not originally tailored for scenar-
ios involving high-dimensional image inputs. To address
this, DrQ-v2’s regularization techniques (Yarats et al., 2022)
are applied to BC and CQL in (Lu et al., 2022), creating
DrQ+BC and DrQ+CQL methods. These modified meth-
ods, alongside the original BC, are compared in our study
to evaluate their effectiveness in offline visual RL tasks with
low-quality datasets. Additionally, we compare the offline
version of the InfoGating method (Tomar et al., 2024), a
visual reinforcement learning approach that removes task-
irrelevant noise by minimizing the information required for
the task. We run all experiments on four seeds and report
the normalized test return after training. The normalized
return is obtained by normalizing the original return with
the maximum and minimum values of the three levels of
datasets for each task. The detailed calculation procedure is
in Appendix D.2.

4.1. Evaluation on the LQV-D4RL Benchmark

We evaluate SeMOPO against various baselines in nine
scenarios within the LQV-D4RL benchmark. The results
in Table 1 consistently demonstrate SeMOPO’s superior per-
formance across diverse datasets, confirming the effective-
ness of uncertainty estimation in the endogenous state space,
especially in low-quality visual datasets. Significantly, Se-
MOPO outperforms model-free approaches in nearly all
environments. However, BC-based approaches also per-
form well when the behavior policy of the dataset is rea-
sonably effective. Model-based methods, Offline DV2 and
LOMPO, show improved results when trained on random
and medium replay datasets compared to medium datasets.
This indicates that trajectories with random behaviors may
provide a wider range of transitions, which benefits mitigat-
ing the distribution shift problem. This phenomenon aligns
with previous research (Jin et al., 2020; Rashidinejad et al.,
2021; Kumar et al., 2022) and holds even in environments
with complex noise in image inputs. Moreover, our findings
highlight that the DrQ+BC and BC methods outperform
Offline DV2 and LOMPO in several settings. This implies
that inaccuracies in model uncertainty estimations can lead
to worse performance of model-based methods than direct
policy imitation. SeMOPO and all baseline methods have
failed in the humanoid walk task. The visual reconstruction
on our project website demonstrates that SeMOPO can ef-
fectively extract task information. Thus, task failure may
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Figure 2. The model uncertainty estimation of SeMOPO and Of-
fline DV2 on the LQV-D4RL dataset. We randomly select 1000
states and report the mean and standard deviation of uncertainty
on them.

Obs.

U(�+)
U(�−)

0.088 0.088 0.089
0.445 0.300 0.358

0.131 0.132 0.131
0.413 0.208 0.445

Obs.

U(Z) 0.172 0.173 0.175 0.230 0.231 0.234

SeMOPO

Offline
DV2

Figure 3. Examples of uncertainty estimated by SeMOPO and Of-
fline DV2. U(s+), U(s−), and U(Z) represent uncertainty es-
timations for the endogenous state, the exogenous state, and the
belief latent state, respectively.

be attributed to the inherently complex nature of the hu-
manoid task, which involves controlling a high-dimensional
action space of up to 21 dimensions. Particularly in our
experiments, the challenge is further compounded by the
high-dimensional image inputs and complex moving dis-
tractors in the background, significantly increasing learning
difficulty. We anticipate that future researchers will focus
on learning a high-performance policy for this task within
noisy visual inputs. In addition, we assess these methods on
the V-D4RL benchmark, as detailed in Appendix F.2, where
observations do not include distractors.

4.2. Can SeMOPO give a reasonable model uncertainty
estimation?

To answer the question, we compare the model uncertainty
of SeMOPO and Offline DV2 on randomly selected states,
as shown in Figure 2. We find that SeMOPO exhibits lower
model uncertainty than Offline DV2 across nine datasets,
confirming the conclusion of Theorem 3.3. Given that Se-
MOPO and Offline DV2 employ the same method for un-
certainty calculation, the reduced uncertainty observed in
SeMOPO can be ascribed to the endogenous state transition
it introduced. We also show the uncertainty of exogenous
state transitions in Appendix F.1.

To further illustrate the uncertainty estimation on unique

6



Learning High-quality Model and Policy from Low-quality Offline Visual Datasets

0.40.50.60.70.80.91.0
P(X > Y)

Se+RS
Se+RS+DRP
Se+RS+DRP

Se+CS (SeMOPO)
Se+CS (SeMOPO)
Se+CS (SeMOPO)

Algorithm X

Offline DV2+RS
Offline DV2+RS
Se+RS
Offline DV2+RS
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Figure 4. The performance comparison for ablated methods. Each
row represents the comparative performance probabilities, com-
plete with 95% bootstrap confidence intervals, suggesting that
Algorithm X is superior to Algorithm Y (Agarwal et al., 2021).
These probabilities are derived from 50 runs of 4 seeds for every
task to ensure robustness in the evaluation. We show the aggre-
gated results for all nine tasks.

states, we capture frames from the Cheetah Run task and
record the corresponding estimated uncertainty of SeMOPO
and Offline DV2 in Figure 3. SeMOPO displays lower
model uncertainty on normal states as opposed to unpre-
dictable abnormal states and shows different uncertainty of
the exogenous states based on background disturbances. Of-
fline DV2 provides similar uncertainty estimates for states
with comparable background distractors but significantly
different agent movements (illustrated in the three frames
at the lower left corner of Figure 3). This occurs because
Offline DV2 does not distinctly differentiate between en-
dogenous and exogenous states, instead directly estimating
model uncertainty on the latent states. The analysis of spe-
cific states reveals that SeMOPO can achieve reasonable
model uncertainty estimation.

4.3. How does the sampling strategy for policy data
affect the separated model training?

To validate the efficacy of our proposed sampling method
for training the separated model, we conduct a comparison
involving several ablated methods: 1) Random sampling
of all policy trajectories (Se + RS); 2) Random sampling
combined with additional dissociated prediction loss1 to
hinder predicting the true reward from the exogenous state
(Se + RS + DRP), as used in (Fu et al., 2021); 3) Our con-
servative sampling method (Se + CS (SeMOPO)). The “Se”
indicates the application of these methods to the training of
the separated model. We also compare these with the origi-
nal Offline DV2 method trained under the random sampling
(Offline DV2 + RS).

1More information about dissociated reward prediction loss is
in Appendix D.3.

medrep

random

Se+RS Se+CSSe+RS+DRP

Eds.

Eds.

Obs.

Obs.

Figure 5. Original observations (Obs.) and image reconstructions
from the endogenous states (Eds.) of different ablated methods in
the medium replay and random datasets of the Cheetah Run task.
SeMOPO (Se+CS) can preserve task-relevant information well,
while others can not.

As illustrated in Figure 4, SeMOPO demonstrates supe-
rior performances over other ablated methods, with a high
probability (> 0.8). There is no significant difference in
performance between Se+RS and Se+RS+DRP (≈ 0.4),
suggesting that the model trained by dissociated reward
prediction may not benefit offline policy learning. Both
methods, however, outperform the original Offline DV2, in-
dicating the effectiveness of the separated model in address-
ing offline visual RL challenges with noisy observations.
To further analyze these sampling strategies, we visualize
the observation reconstruction of the endogenous state for
each training method in Figure 5. The model trained with
random sampling does not guarantee comprehensive task-
related information in the endogenous state, especially in the
medium replay dataset. While adding dissociated reward
prediction loss to random sampling enriches task informa-
tion in the endogenous state, it also introduces considerable
distraction. Our conservative sampling method effectively
reconstructs task-related information, ensuring the endoge-
nous state contains only task-relevant details.

To corroborate the theoretical claims made in Section 3.2,
we compute the action entropy for the first 30 epochs using
both RS and CS methods across all nine datasets. As shown
in Figure 6, the CS method consistently results in lower ac-
tion entropy compared to RS across different environments
and datasets. Lower action entropy implies more determin-
istic policy behavior, aiding in distinguishing endogenous
states from exogenous noise. Due to little action variations
among different policies in the medium dataset, the differ-
ence in action entropy between RS and CS is less than the
random and medium replay datasets. It explains why Se-
MOPO shows a greater advantage in the latter datasets, as
described in Table 1.
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Figure 6. Action entropy of sampled data by random sampling
(RS) and conservative sampling (CS). We record values of the
first 30 training epochs across nine datasets of LQV-D4RL. The
conservative sampling yields data with significantly lower action
entropy than random sampling.

Table 2. Normalized test returns on tasks with different online
distractions from offline datasets.

Dataset SeMOPO Offline DV2 DrQ+BC

Walker Walk random 0.78 ± 0.14 0.33 ± 0.05 0.05 ± 0.01
medrep 0.50 ± 0.02 0.30 ± 0.05 0.05 ± 0.02

Cheetah Run random 0.65 ± 0.05 0.16 ± 0.04 0.45 ± 0.05
medrep 0.59 ± 0.06 0.17 ± 0.06 0.49 ± 0.14

4.4. Can SeMOPO generalize to online environments
with different distractors?

In this section, we evaluate the effectiveness of SeMOPO in
addressing the “offline-to-online distraction gap” challenge.
We alter the online testing environment by introducing an
RGB background, starkly contrasting with the grayscale
background of the LQV-D4RL dataset. To assess the meth-
ods’ adaptability to distinct online visual distractions, we
compared SeMOPO with Offline DV2 and DrQ+BC in two
distinct environments: Walker Walk and Cheetah Run, each
with two datasets - “random” and “medrep”. As shown
in Table 2, Offline DV2 performs better than DrQ+BC in
the Walker Walk task, but the reverse is true for the Cheetah
Run task. However, both are outperformed by SeMOPO,
demonstrating SeMOPO’s clear advantage in managing the
distraction gap.

5. Related Work
Offline RL. Offline RL (Lange et al., 2012; Levine et al.,
2020) aims to learn a policy from an offline dataset of tra-
jectories for deployment in an online environment. It has
been applied to various domains, such as robotic grasp-
ing (Kalashnikov et al., 2018; 2021), healthcare (Short-
reed et al., 2010; Wang et al., 2018), and autonomous driv-
ing (Iroegbu & Madhavi, 2021; Diehl et al., 2023). The
primary challenge in offline RL is the distribution shift (Fu-
jimoto et al., 2018; Kumar et al., 2019), where the behavioral
policy’s data diverges from the data distribution in the ac-

tual online environment. Methods to address distribution
shift broadly fall into two categories: (1) policy-constraints
methods that restrict the learned policy to align closely
with the behavior policy generating the dataset (Fujimoto
et al., 2018; Kumar et al., 2019; Liu et al., 2019; Nachum
et al., 2019; Peng et al., 2019; Siegel et al., 2020; Fuji-
moto & Gu, 2021), thus avoiding unexpected actions; (2)
conservative methods (Kumar et al., 2020; Kidambi et al.,
2020; Kostrikov et al., 2021; Yu et al., 2020) that construct
a conservative return estimate, enhancing the learned pol-
icy’s robustness against distribution shift. Previous stud-
ies have shown offline RL’s efficacy even with random or
sub-optimal datasets (Jin et al., 2020; Zanette, 2020; Wang
et al., 2020; Rashidinejad et al., 2021). However, there is
limited research on the performance of offline RL in scenar-
ios where the observation data is noisy, particularly when
learning from high-dimensional image inputs with complex
distractors. Our work focuses on learning a policy from
such low-quality offline visual RL datasets to effectively
tackle related tasks.

Control with Noisy Observations. Real-world control
tasks often involve observations that contain irrelevant noise.
Recent studies that focused on learning policies from noisy
image observations, can be categorized into four types: (1)
separating task-relevant and irrelevant information based on
key factors (actions, rewards, etc.) (Fu et al., 2021; Wang
et al., 2022; Pan et al., 2022; Liu et al., 2023b); (2) learn-
ing task-related representations through bisimulation met-
rics (Zhang et al., 2021; Liu et al., 2023a); (3) mitigating ex-
ogenous noises via data augmentation methods (Kostrikov
et al., 2020; Hansen et al., 2021; Fan & Li, 2021; Yuan
et al., 2022; Bertoin et al., 2022; Huang et al., 2022); (4)
extracting task-related features using auxiliary prediction
tasks (Yang et al., 2015; Badia et al., 2020; Baker et al.,
2022; Efroni et al., 2022; Lamb et al., 2022). These meth-
ods primarily target training policies in online environments,
where additional data can be gathered to differentiate be-
tween task-relevant and irrelevant information. However,
this issue has been less explored in offline visual RL. The
V-D4RL benchmark dataset (Lu et al., 2022) involves only
two related subtasks and does not offer a specific approach
for handling noisy observations. Our method distinctively
trains a separated state-space model from offline noisy data
using a conservative sampling method and learns a high-
performance policy.

Sampling Strategy in Offline RL. Sampling strategies in
offline RL aim to improve the performance of the learning
agent by optimally selecting data from the dataset. One ap-
proach involves using uncertainty estimation of the Q-Value
function to guide sampling (Kumar & Kuzovkin, 2022),
which allows for a better exploration-exploitation balance.
Another strategy is Offline Prioritized Experience Replay
(OPER) (Hong et al., 2023), which assigns weights to transi-
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tions based on their normalized advantage, prioritizing those
with higher rewards. Rank-Based Sampling (RBS) (Shen
et al., 2021) adopts a similar way, sampling transitions with
high returns more frequently. Policy Regularization with
Dataset Constraint (PRDC) (Ran et al., 2023) limits the
policy towards the closest state-action pair in the dataset,
avoiding out-of-distribution actions. To address the imbal-
ance dataset issue, RB-CQL (Jiang et al., 2023) utilizes
a retrieval process to use related experiences effectively.
Unlike these methods, which directly target policy perfor-
mance improvement, our proposed conservative sampling
strategy focuses on helping the model distinguish between
task-relevant and irrelevant information.

6. Conclusion
In this paper, we consider the problem of learning a policy
from offline visual datasets where the observations con-
tain non-trivial distractors and the behavior policies that
generate the dataset are either random or sub-optimal. To
simulate this scenario, we construct the LQV-D4RL bench-
mark. We provide a theoretical analysis of the lower per-
formance bound under the EX-BMDP assumption which is
tighter than that under the POMDP in some specific cases.
We propose a conservative sampling method to facilitate
the decomposition of endogenous and exogenous states.
Guided by this theoretical framework, we introduce the Sep-
arated Model-based Offline Policy Optimization (SeMOPO)
method. Experimental results on the LQV-D4RL dataset
indicate that SeMOPO outperforms other offline visual RL
methods. Further experiments validate the theory’s appli-
cability and highlight the significance of each component
within our method. Generalization experiments show Se-
MOPO’s ability to handle variations between online and
offline environmental disturbances.

Limitations and Future Work. Our study adopts the in-
dependence assumption under the EX-BMDP for the tran-
sitions of endogenous and exogenous states. However, po-
tential interactions between these states in real-world tasks
may present a promising avenue for future research.
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A. Proof
A.1. Proof of Theorem 3.3

Lemma A.1. (Lemma 3.1) (Telescoping lemma in the endogenous state space). Let M and M̃ be two MDPs with the
same reward function r, but different dynamics T and T̃ respectively. Let Gπ

M̃
(s+, a) := E

s+′∼T̃ (s+,a)

[
V π
M

(
s+

′
)]

−

E
s+′∼T (s+,a)

[
V π
M

(
s+

′
)]

. Then,

η
M̃
(π)− ηM (π) = γ E

(s+,a)∼ρπ
T̃

[
Gπ

M̃
(s+, a)

]
Proof. We adopt the same proof as (Luo et al., 2019; Yu et al., 2020) to prove the telescoping lemma in the endogenous
state space. Let Wj be the expected return when executing π on T̃ for the first j steps, then switching to T for the remainder.
That is,

Wj = E
t<j:s+t+1∼T̃(s+t ,at)
t≥j:s+t+1∼T(s+t ,at)

[ ∞∑
t=0

γtr
(
s+t , at

)]

Note that W0 = ηM (π) and W∞ = η
M̃
(π), so

η
M̃
(π)− ηM (π) =

∞∑
j=0

(Wj+1 −Wj)

Write

Wj = Rj + E
s+j ,aj∼π,T̃

[
E

s+j+1∼T(s+t ,at)

[
γj+1V π

M

(
s+j+1

)]]

Wj+1 = Rj + E
s+j ,aj∼π,T̃

[
E

s+j+1∼T̃(s+t ,at)

[
γj+1V π

M

(
s+j+1

)]]
where Rj is the expected return of the first j time steps, which are taken with respect to T̃ . Then

Wj+1 −Wj = γj+1 E
s+j ,aj∼π,T̃

[
E

s+′∼T̃(s+j ,aj)

[
V π
M

(
s+

′
)]

− E
s+′∼T(s+j ,aj)

[
V π
M

(
s+

′
)]]

= γj+1 E
s+j ,aj∼π,T̃

[
Gπ

M̃

(
s+j , aj

)]

Thus

η
M̃
(π)− ηM (π) =

∞∑
j=0

(Wj+1 −Wj)

=

∞∑
j=0

γj+1 E
s+j ,aj∼π,T̃

[
Gπ

M̃

(
s+j , aj

)]
= γE

(s+,a)∼ρπ
T̃

[
Gπ

M̃
(s+, a)

]

Theorem A.2. (Theorem 3.3) Under Assumption 3.2, we can define the uncertainty estimation ϵũ(π) under the EX-BMDP
as ϵũ(π) := Ē

(s+,a)∼ρπ
T̃

[ũ(s+, a)]. Let π̃ denote the learned optimal policy under reward-penalized the endogenous MDP,

then,
ηM (π̃) ≥ sup

π
{ηM (π)− 2λϵũ(π)}
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Proof. With Lemma 3.1, we can get the corollary that:

ηM (π) = Ē(s+,a)∼ρπ
T̃

[
r(s+, a)− γGπ

M̃
(s+, a)

]
≥ Ē(s+,a)∼ρπ

T̃

[
r(s+, a)− γ|Gπ

M̃
(s+, a)|

]
With Assumption 3.2, we know that |Gπ

M̃
(s+, a)| ≤ ũ(s+, a). Thus, we define the penalized reward function as r̃(s+, a) =

r(s+, a) − λu(s+, a), where λ = γc and c is the scalar that satisfies |G
M̃π (s

+, a)| ≤ cdF (T̃ (s
+, a), T (s+, a)). We can

obtain the relationship between the policy performance under the true MDP and the reward-penalized endogenous MDP
M̃r̃ = (S,A, T̃ , r̃, µ0, γ):

ηM (π) ≥ Ē(s+,a)∼ρπ
T̃

[
r(s+, a)− γ|Gπ

M̃
(s+, a)|

]
≥ Ē(s+,a)∼ρπ

T̃

[
r(s+, a)− λũ(s+, a)

]
≥ Ē(s+,a)∼ρπ

T̃

[
r̃(s+, a)

]
= η

M̃r̃
(π)

(3)

From Assumption 3.2 We can easily get the two-sided bound that:

|ηM (π)− η
M̃
(π)| ≤ Ē(s+,a)∼ρπ

T̃
|γGπ

M̃
(s+, a)| ≤ λĒ(s+,a)∼ρπ

T̃
[ũ(s+, a)] = λϵũ(π) (4)

With the help of Equation (3) and Equation (4), we can get the performance lower bound of the learned optimal policy π̃ in
the reward-penalized endogenous MDP:

ηM (π̃) ≥ η
M̃r̃

(π̃) ≥ η
M̃r̃

(π) = η
M̃
(π)− λϵũ(π) ≥ ηM (π)− 2λϵũ(π)

⇒ ηM (π̃) ≥ sup
π
{ηM (π)− 2λϵũ(π)}

A.2. Proof of Theorem 3.4

Assumption A.3. There exists an underlying function f : S+×S− → Z satisfying that for any s+1 , s
+
2 ∈ S+, s−1 , s

−
2 ∈ S−,

if f(s+1 , s
−
1 ) = f(s+2 , s

−
2 ), then

p(ot|s+1 , s
−
1 ) = p(ot|s+2 , s

−
2 ) (5)

This assumption is intuitive because the block structure indicates that each context o uniquely determines its generating
state z. However, z can have multiple different partitions of s+ and s− based on specific semantics, such as task-related
information, viewpoint, etc.

Assumption A.4. For each i, the distribution of action for trajectory τi is the same, i.e., there exist p(a) such that

Es+πi(a|s+) = p(a), i = 1, 2, · · · , n.

Theorem A.5. (Theorem 3.4) Consider the likelihood optimization problem on the same offline dataset B but with
two different sampling methods. let Bπi

be the dataset collected by the behavior policy πi, where i = 1, 2, · · · , n.
Bπmix = Bπ1 ∪ Bπ1 ∪ · · · ∪ Bπn is the mixture of the datasets of all policies. Then we have

Eτ∈Bπmix
ln p(τ) ≤ 1

n

n∑
i=1

Eτ∈Bπi
ln p(τ),

where p(τ) is the true density of τ .

Proof. For that τ generated under the guide of π, the action distribution of the policy, we maximize the log-likelihood to eval-
uate the conditional distributions p(o|s+, s−), p(a|s+), p(s+′|s+, a) and p(s−

′|s−) which also denoted as po, pa, ps+ , ps−
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respectively for convenience, i.e.,

p̂o, p̂a, p̂s+ , p̂s− = argmax
po,pa,ps+ ,ps−∈HΘ

Eτ∈Bπ
ln p(τ)

= argmax
po,pa,ps+ ,ps−∈HΘ

Eτ∈Bπ

T∑
t=1

(
ln po(ot|s+t , s−t ) + ln pa(at|s+t )

+ ln ps+(s
+
t |s+t−1, at−1) + ln ps−(s

−
t |s−t−1)

)
.

Here HΘ is the approximate space and Θ is the class of parameters. In practice, HΘ is the variational posterior space with
an encoder and decoder for each conditional distribution.

With Assumption A.3, we know that once the distribution of f(s+t , s
−
t ) is fixed, the variant of s+t and s−t has no effect on

the observation ot. Therefore, if we want to separate sub-optimal distributions for s+t and s−t from the optimal results, the
key terms in the likelihood are those involving the action at. Formally, we treat the likelihood sequentially as

Eτ∈Bπ ln p(τ) :=

T∑
t=1

l(t)π (s+t , s
−
t , a) + Eτ∈Bπ ln po(ot|s+t , s−t ),

where

l(t)π (s+t , s
−
t , a) = Ea∼π ln pa(at|s+t ) + ln ps+t

(s+t |s+t−1, at−1) + ln ps−t
(s−t |s−t−1).

Define the equivalent class for s+, s− as

Ap =
{
s+ ∼ ps+ , s

− ∼ ps− : f(s+, s−) ∼ p
}
.

Different elements in Ap means different distributions for s+ and s− that induce the same distribution for f(s+, s−).
From Assumption A.3, we know that for those s+, s− in a certain class Apf

, Eτ∈Bπ
ln po(ot|s+t , s−t ) is only related to the

distribution pf and we denote its value as lo(pf ). For t = 1, we know

l(1)π (s+, s−, a) = Eπ ln pa(a|s+) + ln ps+(s
+) + ln ps−(s

−).

Recall the conditional entropy and mutual information entropy for a and s+ such that

H(a) =

∫
− ln pa(a)dpa(a), H(a|s+) =

∫
dps+(s

+)

∫
− ln pa(a|s+)dpa(a|s+), I(a, s+) = H(a)−H(a|s+).

Under Assumption A.4, consider two different type of policy πi as the policy of i-th curve and πmix as the mixture policy of
all curves, i.e., πmix = 1

n

∑n
i=1 πi. We know that

I(a ∼ πmix, s
+ ∼ ps+) = H(a) +

∫
dps+(s

+)

∫
1

n

n∑
i=1

πi(a|s+) ln
1

n

n∑
i=1

πi(a|s+)da

≤ H(a) +

∫
dps+(s

+)

∫
1

n

n∑
i=1

πi(a|s+) lnπi(a|s+)da

=
1

n

n∑
i=1

I(a ∼ πi, s
+ ∼ ps+).

Define p⋆s+(s
+
t=1), p

⋆
s−(s

−
t=1) ∈ AP⋆

t=1
as the true distribution of s+ and s− at time t = 1. Once the class Apf

and the
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distribution of s+ is fixed, the distribution for s− is also fixed. So we know that

l(1)πmix
(s+ ∼ p⋆s+(s

+
t=1), s

− ∼ p⋆s−(s
−
t=1), a)−

1

n

n∑
i=1

l(1)πi
(s+ ∼ p⋆s+(s

+
t=1), s

− ∼ p⋆s−(s
−
t=1), a)

= I(a ∼ πmix, s
+ ∼ p⋆s+) + Eπmix ln p

⋆
s+(s

+) + ln p⋆s−(s
−)

− I(a ∼ πmix, s
+ ∼ p⋆s+)−

1

n

n∑
i=1

(
Eπi ln p

⋆
s+(s

+) + ln p⋆s−(s
−)

)
= I(a ∼ πmix, s

+ ∼ p⋆s+)−
1

n

n∑
i=1

I(a ∼ πi, s
+ ∼ p⋆s+) ≤ 0.

For t > 1, similarly define that p⋆s+(s
+
t |s+t−1, at−1), p

⋆
s−(s

−
t |s−t−1) ∈ AP⋆

t>1
as the true condition distribution of s+t

condition on s+t−1 and s−t condition on s−t−1. So

Ea∼πmix
ln p⋆s+(s

+
t |s+t−1, at−1) =

∫
πmix(at−1|s+t−1) ln p

⋆
s+(s

+
t |s+t−1, at−1)dat−1

=
1

n
Ea∼πi

ln p⋆s+(s
+
t |s+t−1, at−1).

Then we also have

l(t)πmix
(s+ ∼ p⋆s+(s

+
t |s+t−1, at−1), s

− ∼ p⋆s−(s
−
t |s−t−1), a)−

1

n

n∑
i=1

l(t)πi
(s+ ∼ p⋆s(s

+
t |s+t−1, at−1), s

− ∼ p⋆s−(s
−
t |s−t−1), a)

= I(a ∼ πmix, s
+ ∼

t∏
k=1

Es+k−1,at−1
p⋆s+(s

+
k |s

+
k−1, at−1)) + Eπmix

ln p⋆s+(s
+
t |s+t−1, at−1) + ln p⋆s−(s

−
t |s−t−1)

− 1

n

n∑
i=1

I(a ∼ πi, s
+ ∼

t∏
k=1

Es+k−1,at−1
p⋆s+(s

+
k |s

+
k−1, at−1))−

1

n

n∑
i=1

(
Eπi

ln p⋆s+(s
+
t |s+t−1, at−1) + ln p⋆s−(s

−
t |s−t−1)

)
= I(a ∼ πmix, s

+ ∼
t∏

k=1

Es+k−1,at−1
p⋆s+(s

+
k |s

+
k−1, at−1))−

1

n

n∑
i=1

I(a ∼ πi, s
+ ∼

t∏
k=1

Es+k−1,at−1
p⋆s+(s

+
k |s

+
k−1, at−1)) ≤ 0.

Then

Eτ∈Bπmix
ln p⋆(τ) =

T∑
t=1

l(t)πmix
(s+ ∼ p⋆s+(s

+
t |s+t−1), s

− ∼ p⋆s−(s
−
t |s−t−1), a) + lo(p

⋆
t )

≤ 1

n

n∑
i=1

T∑
t=1

l(t)πi
(s+ ∼ p⋆s+(s

+
t |s+t−1), s

− ∼ p⋆s−(s
−
t |s−t−1), a) + lo(p

⋆
t )

=
1

n

n∑
i=1

Eτ∈Bπi
ln p⋆(τ).

Besides, if we can select a subset C of curves i with large mutual information entropy I(a ∼ πi|s+ ∼ p⋆s+), i.e.,
1

#C
∑

i∈C I(a ∼ πi|s+ ∼ p⋆s+) > I(a ∼ πmix|s+ ∼ p⋆s+) and we know that

Eτ∈Bπmix
ln p⋆(τ) <

1

#C
∑
i∈C

Eτ∈Bπi
ln p⋆(τ).
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B. Derivation
Likelihood. For the trajectory τi = {o1, a1, · · · , oT , aT }, the log-likelihood can be expressed as:

ln p(τi) = ln p(o0, a0, · · · , oT , aT )

= ln

T∏
t=1

p(ot|zt)p(at|zt)p(zt|zt−1, at−1)

= ln

T∏
t=1

p(ot|s+t , s−t )p(at|s+t )p(s+t |s+t−1, at−1)p(s
−
t |s−t−1)

=

T∑
t=1

[
ln p(ot|s+t , s−t ) + ln p(at|s+t ) + ln p(s+t |s+t−1, at−1) + ln p(s−t |s−t−1)

]
,

The third equation comes from the decomposition of endogenous and exogenous dynamics, as assumed in the EX-BMDP
framework.

One-step predictive distribution. The variational bound for latent dynamics models p(o1:T , z1:T |a1:T ) =∏
t p(s

+
t |s+t−1, at−1)p(s

−
t |s−t−1)p(ot|zt) and a variational posterior q(z1:T |o1:T , a1:T ) =

∏
t q(s

+
t |o≤t, a<t)q(s

−
t |o≤t) fol-

lows from importance weighting and Jensen’s inequality as shown:

ln p(o1:T |a1:T ) ≜ lnEp(z1:T |a1:T )

[ T∏
t=1

p(ot|zt)
]

= lnEq(z1:T |o1:T ,a1:T )

[ T∏
t=1

p(ot|zt)p(zt|zt−1, at−1)

q(zt|o≤t, a<t)

]
= lnEq(s+1:T ,s−1:T |o1:T ,a1:T )

[ T∏
t=1

p(ot|s+t , s−t )p(s+t |s+t−1, at−1)p(s
−
t |s−t−1)

q(s+t |o≤t, a<t)q(s
−
t |o≤t)

]
≥Eq(s+1:T ,s−1:T |o1:T ,a1:T )

[ T∑
t=1

(
ln p(ot|s+t , s−t ) + ln p(s+t |s+t−1, at−1) + ln p(s−t |s−t−1)

− ln q(s+t |o≤t, a<t)− ln q(s−t |s−t−1)
)]

=

T∑
t=1

(
Eq(s+t |o≤t,a<t)q(s

−
t |o≤t)

[
ln p(ot|s+t , s−t )

]
− Eq(s+t−1|o≤t−1,a<t−1)

[
KL[q(s+t |o≤t, a<t)||p(s+t |s+t−1, at−1)]

]
− Eq(s−t−1|o≤t−1)

[
KL[q(s−t |o≤t)||p(s−t |s−t−1)]

])
.

C. The LQV-D4RL Benchmark
To evaluate the performance of visual RL methods with offline datasets containing noisy observations, we introduce a
benchmark named Low-Quality Vision Datasets for Deep Data-Driven RL (LQV-D4RL). This benchmark comprises four
typical environments from the DeepMind Control Suite and one environment from Gym:

• Walker Walk: A bipedal agent is trained to first stand and then walk forward as efficiently as possible.

• Cheetah Run: A cheetah-like bipedal model aims to run at high speeds on a straight track.

• Hopper Hop: The agent, with a single-legged body, must balance and hop forward, focusing on agility and stability.
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• Humanoid Walk: A simplified humanoid with 21 joints, aims to walk stably, which is extremely difficult with many
local minima.

• Car Racing: A highly challenging racing game where players must pass through checkpoints to score points. The faster
they reach the finish line within a set time, the higher their score. The observations contain numerous distractors.

Each task is represented across three different levels of policy performance:

• Random: Trajectories are collected by randomly initialized policies.

• Medium Replay (medrep): Trajectories are drawn from the replay buffer accumulated during training of a medium-
performance policy.

• Medium: Trajectories are collected by a fixed policy of medium performance.

For each locomotion task’s observations, the backgrounds are replaced with videos from the “driving car” category of the
Kinetics dataset (Kay et al., 2017), as utilized in DBC (Zhang et al., 2021). To simulate real data collection processes in
natural settings, we train policies using the TIA approach (Fu et al., 2021) and then collect trajectories based on image
observations with the aforementioned distractors. The “random” and “medium” datasets each contain 200 trajectories, while
“medium replay” comprises 400 trajectories, with each trajectory being 1000 steps long. Specific statistical details of the
LQV-D4RL benchmark are reported in Table 3. We upload the dataset in the supplementary materials.

Table 3. Full summary statistics of per-episode return in the LQV-D4RL benchmark.

Dataset Episodes Mean Std Min P25 Median P75 Max

Walker Walk
random 200 86.6 48.1 5.9 51.9 70.8 128.3 199.1
medrep 400 106.6 79.7 5.0 45.4 81.3 148.8 398.2
medium 200 513.1 54.8 401.5 471.4 516.0 559.1 598.0

Cheetah Run
random 200 77.6 57.2 3.1 14.5 71.6 118.8 198.2
medrep 400 145.4 113.3 1.7 42.9 125.1 232.6 396.5
medium 200 350.3 30.8 300.5 322.2 352.5 376.0 403.2

Hopper Hop
random 200 2.1 4.9 0.0 0.0 0.0 0.1 19.5
medrep 400 4.7 9.7 0.0 0.0 0.0 3.7 39.9
medium 200 62.0 13.9 40.3 49.8 60.8 74.5 84.9

Humanoid Walk
random 200 1.1 0.8 0.0 0.5 1.0 1.5 5.7
medrep 400 95.6 114.3 0.0 1.4 5.4 202.8 359.0
medium 200 573.0 16.8 526.5 560.6 572.9 584.9 609.4

Car Racing
random 200 10.3 65.5 -82.0 -43.3 -6.5 59.8 149.2
medrep 400 76.1 116.3 -82.0 -27.5 54.1 181.5 297.3
medium 200 372.3 42.7 302.3 335.5 370.3 408.3 449.9

D. Implementation Details
D.1. Networks

We implement the proposed algorithm using TensorFlow 2 and conduct all experiments on an NVIDIA RTX 3090, totaling
approximately 1000 GPU hours. The recurrent state-space model from DreamerV2 (Hafner et al., 2021) is employed for
both forward dynamics and the posterior encoder. The hidden sizes of deterministic and stochastic parts of the model are 200
and 32, respectively. For learning an ensemble of forward dynamics, multiple MLP networks are utilized, each outputting
the mean and standard deviation of the next state. The hidden size for each MLP is 1024. The reward predictor comprises 4
MLP layers, each of size 400. We use the convolutional encoder and decoder from TIA (Fu et al., 2021). All dense layers
have a size of 400, and the activation function used is ELU. The ADAM optimizer is employed to train the network with
batches of 64 sequences, each of length 50. The learning rate is 6e-5 for both the endogenous and exogenous models and
8e-5 for the action and value nets. We stabilize the training process by clipping gradient norms to 100 and set (λ = 10)
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for the uncertainty penalty term. The imagine horizon of 5, as used in Offline DV2 (Lu et al., 2022), is adopted for policy
optimization. We train a model comprising the dynamics and reward predictor for 25000 epochs using offline visual datasets,
followed by policy training within the model for 100000 steps. The codes and datasets are contained in the supplementary
materials.

D.2. Evaluation Metric

To compare the performance of different methods, we define the normalized return based on the statistics of the offline
dataset as follows:

Snormalize =
Sscore − Smin

Smax − Smin

Here, Sscore represents the original return obtained by the test method, while Smin and Smax denote the minimum and
maximum episodic returns of the dataset for each task across three levels (random, medium replay, medium), respectively.

D.3. Dissociated Reward Prediction

The Reward Dissociation used in TIA (Fu et al., 2021) for the exogenous model is achieved through the adversarial objective
J t
Radv .

J t
Radv = −λRadv max

q
ln q(rt|s−t )

where λRadv for Walker Walk, Cheetah Run, and Hopper Hop are 20000, 20000, and 30000, respectively. This setup involves
a minimax strategy, wherein the training of the exogenous model’s reward prediction head is interleaved with the exogenous
model’s training, occurring for multiple iterations per training step. The reward prediction head is trained to minimize the
reward prediction loss, represented by − ln q(rt|s−t ). In contrast, the exogenous model aims to maximize this objective to
prevent reward-correlated information from influencing its learned features, as outlined by Ganin & Lempitsky. At the same
time, TIA optimizes the endogenous model to maximize the log-likelihood of predicting rewards from endogenous states via
the objective J t

R = ln q(rt|s+t ). The reward prediction loss is calculated using lnN (rt; r̂t, 1), where N (·;µ, σ2) denotes
the Gaussian likelihood and r̂t represents the predicted reward. Notably, neither loss is used to update the endogenous and
exogenous models in SeMOPO. The reward prediction loss only updates the reward predictors by stopping the backward
gradients to the endogenous states.

E. Algorithm of SeMOPO
The pseudo-code of our proposed SeMOPO is provided in Algorithm 1.

Algorithm 1 Training Procedure of SeMOPO
Input: Offline datasets B
Initialize forward dynamics model T̃θ, T̄θ, posterior encoder q̃θ, q̄θ, observation decoder Ũθ, reward predictor Rθ, policy
πθ, value model Vθ.
// Offline model training
for each training epoch m = 1 · · ·M do

Sample minibatch (o1:T , a1:T−1, r1:T )1:b from the dataset B via Conservative Sampling
Update the forward dynamics model T̃θ, T̄θ and the posterior encoder q̃θ, q̄θ
Update the observation decoder Uθ and the reward predictor Rθ

end for
// Policy Optimization
for training iteration i = 1 · · · It do

Imagine the endogenous latent states s+1:H by policy π using the endogenous state model T̃θ

Estimate the endogenous model uncertainty by the model disagreement
Obtain the penalized reward r̃ with estimated uncertainty ũ via Equation (2)
Train the policy πθ and value model Vθ on the data (s+1:H−1, a1:H−1, r̃1:H−1)

end for
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Figure 7. The model uncertainty estimation of SeMOPO, Offline DV2, and LOMPO on the LQV-D4RL dataset. We randomly select 1000
states and report the mean and standard deviation of uncertainty on them. “md” and “vlp” are the short names for the mean-disagreement
and variance of logarithm prediction, denoting the calculation of uncertainty used in Offline DV2 and LOMPO, respectively.
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Figure 8. The model uncertainty estimation of SeMOPO on the LQV-D4RL dataset. We randomly select 1000 states and infer the
endogenous states s+ and exogenous states s− by SeMOPO. We report the mean and standard deviation of uncertainty on these inferred
states. “md” and “vlp” follow the same definition as in Figure 7.

F. Additional Results
F.1. The Model Uncertainty Estimation

To validate that the accuracy of model uncertainty estimation is due to the separation of endogenous and exogenous
states, rather than a specific computational approach, we employ two different uncertainty estimation methods: the mean-
disagreement of the ensemble (md) from Offline DV2, and the variance of logarithm prediction (vlp) from LOMPO. The
task-related model uncertainty across various environments and datasets is shown in Figure 7. The model uncertainty of
SeMOPO is superior under both computational methods compared to other techniques, suggesting that learning the model in
the endogenous state space can reduce the estimated uncertainty.

Figure 8 presents the estimates of model uncertainty in both endogenous and exogenous state spaces. Notably, the model
uncertainty in the exogenous state space is significantly higher than in the endogenous state space. This further implies that
the overestimation of model uncertainty in task-related components in previous work is attributable to the unfiltered noise in
the latent states.

F.2. Evaluation on the V-D4RL Benchmark

To assess the performance of our method on datasets without distractors, we compared SeMOPO with other approaches
on the V-D4RL dataset. The results in Table 4 show that SeMOPO outperforms other methods on the random datasets of
two environments, and achieves comparable performance on several other datasets. This indicates that our method is more
suitable for datasets collected using non-expert policies, and can also address certain offline visual reinforcement learning
problems without distractors.

F.3. Training Stability

The gradient norms during model training for Offline DV2 and SeMOPO are shown in Figure 9.
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Table 4. The performance of different methods on the V-D4RL benchmark. We report the mean and standard deviation of test returns of
SeMOPO over 4 seeds. The results for methods other than SeMOPO are sourced from Table 1 in (Lu et al., 2022).

Dataset SeMOPO Offline DV2 LOMPO DrQ+BC DrQ+CQL BC

Walker Walk
random 305 ± 8 287 ± 130 219 ± 81 55 ± 9 144 ± 124 20 ± 2
medrep 218 ± 21 565 ± 181 347 ± 197 287 ± 69 114 ± 124 165 ± 43
medium 406 ± 30 434 ± 111 341 ± 197 468 ± 23 148 ± 161 409 ± 31

Cheetah Run
random 330 ± 2 329 ± 2 114 ± 51 58 ± 6 59 ± 84 0 ± 0
medrep 410 ± 13 616 ± 10 363 ± 136 448 ± 36 107 ± 128 250 ± 36
medium 190 ± 22 172 ± 35 164 ± 83 530 ± 30 409 ± 51 516 ± 14
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Figure 9. Comparison of gradient norms during model training for Offline DV2 and SeMOPO across five tasks: the first three from
LQV-D4RL and the latter two from V-D4RL. Each curve represents aggregated data from three levels of datasets (random, medium replay,
medium), illustrating the mean (solid line) and standard deviation (shaded region) over four seeds. SeMOPO exhibits lower model
gradient norms than Offline DV2, regardless of distractors in observations, indicating that the separation of task-relevant information from
observations contributes to more stable model training.

F.4. The results on the LQV-D4RL benchmark

We record the original unnormalized returns for each method in Table 5.

21



Learning High-quality Model and Policy from Low-quality Offline Visual Datasets

0.0 0.5 1.0
Normalized return (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 re

tu
rn

 >
 τ cheetah_run random

0.0 0.5 1.0
Normalized return (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 re

tu
rn

 >
 τ cheetah_run medium_replay

0.0 0.5 1.0
Normalized return (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 re

tu
rn

 >
 τ cheetah_run medium

0.0 0.5 1.0
Normalized return (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 re

tu
rn

 >
 τ walker_walk random

0.0 0.5 1.0
Normalized return (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 re

tu
rn

 >
 τ walker_walk medium_replay

0.00 0.25 0.50 0.75
Normalized return (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 re

tu
rn

 >
 τ walker_walk medium

0.0 0.5
Normalized return (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 re

tu
rn

 >
 τ hopper_hop random

0.0 0.5 1.0
Normalized return (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 re

tu
rn

 >
 τ hopper_hop medium_replay

0 1 2
Normalized return (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 re

tu
rn

 >
 τ hopper_hop medium

Offline DV2+RS Se+RS Se+RS+DRP Se+CS (SeMOPO)Offline DV2+RS Se+RS Se+RS+DRP Se+CS (SeMOPO)Offline DV2+RS Se+RS Se+RS+DRP Se+CS (SeMOPO)Offline DV2+RS Se+RS Se+RS+DRP Se+CS (SeMOPO)Offline DV2+RS Se+RS Se+RS+DRP Se+CS (SeMOPO)Offline DV2+RS Se+RS Se+RS+DRP Se+CS (SeMOPO)Offline DV2+RS Se+RS Se+RS+DRP Se+CS (SeMOPO)Offline DV2+RS Se+RS Se+RS+DRP Se+CS (SeMOPO)Offline DV2+RS Se+RS Se+RS+DRP Se+CS (SeMOPO)

Figure 10. Performance evaluation results of ablated methods of SeMOPO on the LQV-D4RL benchmark for 200 test episodes. Shaded
regions represent pointwise 95% confidence bands based on percentile bootstrap with stratified sampling (Agarwal et al., 2021). Removing
any component of SeMOPO leads to a performance drop.
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Table 5. The unnormalized test returns of different methods on the LQV-D4RL benchmark. Mean scores (higher is better) with standard
deviation are recorded across 4 seeds for each task.

Dataset SeMOPO Offline DV2 LOMPO DrQ+BC DrQ+CQL BC InfoGating

Walker Walk
random 459 ± 41 167 ± 36 133 ± 40 27 ± 1 26 ± 2 25 ± 2 49 ± 7
medrep 521 ± 42 175 ± 31 218 ± 69 27 ± 3 25 ± 3 28 ± 7 58 ± 22
medium 273 ± 47 68 ± 26 63 ± 15 390 ± 36 25 ± 3 413 ± 30 98 ± 41

Cheetah Run
random 254 ± 30 40 ± 15 66 ± 18 94 ± 30 0 ± 0 22 ± 20 58 ± 16
medrep 258 ± 28 66 ± 31 78 ± 32 166 ± 93 1 ± 0 20 ± 18 267 ± 52
medium 293 ± 32 81 ± 57 52 ± 37 260 ± 28 0 ± 0 252 ± 40 288 ± 39

Hopper Hop
random 58 ± 5 0 ± 0 0 ± 0 7 ± 8 0 ± 0 5 ± 6 67 ± 11
medrep 77 ± 6 0 ± 0 0 ± 0 21 ± 15 0 ± 0 3 ± 1 45 ± 14
medium 105 ± 14 2 ± 4 1 ± 3 68 ± 16 0 ± 0 35 ± 5 49 ± 8

Humanoid Walk
random 6 ± 3 3 ± 1 2 ± 2 1 ± 1 3 ± 2 1 ± 1 3 ± 2
medrep 7 ± 4 2 ± 1 5 ± 2 2 ± 1 2 ± 2 10 ± 7 2 ± 2
medium 6 ± 5 4 ± 2 3 ± 2 14 ± 7 2 ± 1 4 ± 2 4 ± 3

Car Racing
random 418 ± 79 233 ± 44 387 ± 89 -10 ± 32 -92 ± 1 -59 ± 13 -79 ± 5
medrep 362 ± 87 181 ± 88 325 ± 184 -68 ± 8 -93 ± 1 -80 ± 3 -76 ± 4
medium 408 ± 158 285 ± 153 313 ± 108 180 ± 101 -83 ± 1 -67 ± 9 -67 ± 6
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