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ABSTRACT

Q-learning is widely used algorithm in reinforcement learning community. Under
the lookup table setting, its convergence is well established. However, its behavior
is known to be unstable with the linear function approximation case. This paper
develops a new Q-learning algorithm, called RegQ, that converges when linear
function approximation is used. We prove that simply adding an appropriate regu-
larization term ensures convergence of the algorithm. We prove its stability using
a recent analysis tool based on switching system models. Moreover, we experi-
mentally show that RegQ converges in environments where Q-learning with linear
function approximation has known to diverge. We also provide an error bound on
the solution where the algorithm converges.

1 INTRODUCTION

Recently, reinforcement learning has shown great success in various fields. For instance, Mnih et al.,
2015 achieved human level performance in several video games in the Atari benchmark (Bellemare
et al., 2013). Since then, researches on deep reinforcement learning algorithms have shown signifi-
cant progresses (Lan et al., 2020; Chen et al., 2021). For example, Badia et al., 2020 performs better
than standard human performance in all 57 Atari games. Schrittwieser et al., 2020 solves Go, chess,
Shogi, and Atari without prior knowledge about the rules. Although great success has been achieved
in practice, there is still gap between theory and the practical success. Especially when off-policy,
function approximation, and bootstrapping are used together, the algorithm may diverge or show
unstable behaviors. This phenomenon is called the deadly triad (Sutton & Barto, 2018). Famous
counter-examples are given in Baird, 1995; Tsitsiklis & Van Roy, 1997.

For policy evaluation, especially for temporal-difference (TD) learning algorithm, there has been
several algorithms to resolve the deadly triad issue. Bradtke & Barto, 1996 uses the least-square
method to compute a solution of TD-learning, but it suffers from O(h2) time complexity, where h is
number of features. Maei, 2011; Sutton et al., 2009 developed gradient descent based methods which
minimize the mean square projected Bellman error. Ghiassian et al., 2020 added regularization
term to TD Correction (TDC) algorithm, which uses single time scale step-size. Lee et al., 2021
introduced several variants of the gradient TD (GTD) algorithm under control theoretic frameworks.
Sutton et al., 2016 re-weights some states to match on-policy distribution to stabilize the off-policy
TD-learning. Diddigi et al., 2019 uses l2 regularization to propose a new convergent off-policy TD-
learning algorithm. Mahadevan et al., 2014 studied regularization on off-policy TD-learning through
the lens of primal dual method.

First presented by Watkins & Dayan, 1992, Q-learning also suffers from divergence issues under
the deadly triad. While there are convergence results under the look-up table setting (Watkins &
Dayan, 1992; Jaakkola et al., 1994; Borkar & Meyn, 2000; Lee & He, 2019), even with simple
linear function approximation, the convergence is only guaranteed under strong assumptions (Melo
et al., 2008; Lee & He, 2019; Yang & Wang, 2019). Melo et al., 2008 adopts an assumption on
relation between behavior policy and target policy to guarantee convergence, which is not practical in
general. Lee & He, 2019 assumes a strong assumption to ensure the convergence with the so-called
switching system approach. Yang & Wang, 2019 has a stringent assumption on anchor state-action
pairs. Devraj & Meyn, 2017 proposes a Q-learning algorithm that minimizes asymptotic variance.
However, it requires the assumption that number of changes of policy are finite, and involves matrix
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inversion at each iteration. There are few works, (Agarwal et al., 2021; Carvalho et al., 2020; Zhang
et al., 2021; Maei et al., 2010), that guarantee convergence under more general assumptions.

The main goal of this paper is to propose a practical Q-learning algorithm, called regularized Q-
learning (RegQ), that guarantees convergence under linear function approximation. We prove its
convergence using the ordinary differential equation (O.D.E) analysis framework in (Borkar &
Meyn, 2000) together with the switching system approach developed in Lee & He, 2019. As in Lee
& He, 2019, we construct upper and lower comparison systems, and prove its global asymptotic
stability based on switching system theories. Compared to the standard Q-learning in (Watkins &
Dayan, 1992), the only difference is the additional l2 regularization term, which makes the algo-
rithm relevantly simple. Compared to the previous works in Carvalho et al. (2020); Maei et al.
(2010), our algorithm is single time-scale, and hence, shows faster convergence rates experimen-
tally. Our algorithm directly uses bootstrapping rather than circumventing the issue in the deadly
triad. Therefore, it could give a new insight into training reinforcement learning algorithms without
using the so-called target network technique introduced in Mnih et al., 2015. The main contributions
of this paper are summarized as follows:

1. A new single time-scale Q-learning algorithm with linear function approximation is pro-
posed.

2. We prove the convergence of the proposed algorithm based on the O.D.E approach together
with the switching system model in Lee & He, 2019.

3. We experimentally show that our algorithm performs faster than other two time-scale Q-
learning algorithms in Carvalho et al. (2020); Maei et al. (2010).

Related works are summarized as follows: Motivated by the empirical success of the deep Q-
learning in Mnih et al., 2015, recent works in Zhang et al., 2021; Carvalho et al., 2020; Agarwal
et al., 2021 use the target network to circumvent the bootstrapping issue and guarantees conver-
gence. Carvalho et al., 2020 uses a two time-scale learning method, and has a strong assumption
on the boundedness of the feature matrix. Zhang et al., 2021 uses l2 regularization with the tar-
get network, while a projection step is involved, which makes it difficult to implement practically.
Moreover, it also uses a two time-scale learning method. Agarwal et al., 2021 additionally uses
the so-called experience replay technique with the target network, and also has a strong assumption
on the boundedness of the feature matrix. Furthermore, the optimality is only guaranteed under a
specific type of Markov Decision Process. Maei et al., 2010 suggested the so-called Greedy-GQ
(gradient Q-learning) algorithm, but due to non-convexity of the objective function, it could con-
verge to a local optima.

2 PRELIMINARIES AND NOTATIONS

2.1 MARKOV DECISION PROCESS

We consider an infinite horizon Markov Decision Process (MDP), which consists of a tupleM =
(S,A, P, r, γ), where the state space S and action space A are finite sets, P denotes the transition
probability, r : S × A × S → R is the reward, and γ ∈ (0, 1) is the discount factor. Given a
stochastic policy π : S → P(A), where P(A) is the set of probability distributions over A, agent
at the current state sk selects an action ak ∼ π(·|sk), then the agent’s state changes to the next
state sk+1 ∼ P (·|sk, ak), and receives reward rk+1 := r(sk, ak, sk+1). A deterministic policy is a
special stochastic policy, which can be defined simply as a mapping π : S → A, which maps a state
to an action.

The objective of MDP is to find a deterministic optimal policy, denoted by π∗, such that
the cumulative discounted rewards over infinite time horizons is maximized, i.e., π∗ :=
arg maxπ E

[∑∞
k=0 γ

krk
∣∣π] , where (s0, a0, s1, a1, . . .) is a state-action trajectory generated by

the Markov chain under policy π, and E[·|π] is an expectation conditioned on the policy π. The
Q-function under policy π is defined as Qπ(s, a) = E

[∑∞
k=0 γ

krk
∣∣ s0 = s, a0 = a, π

]
, s ∈

S, a ∈ A, and the optimal Q-function is defined as Q∗(s, a) = Qπ
∗
(s, a) for all s ∈ S, a ∈ A.

Once Q∗ is known, then an optimal policy can be retrieved by the greedy action, i.e., π∗(s) =
arg maxa∈AQ

∗(s, a). Throughout, we assume that the MDP is ergodic so that the stationary state
distribution exists and the MDP is well posed, which is standard in the literature.
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It is known that the optimal Q-function satisfies the so-called Bellman equation expressed as follows:

Q∗(s, a) = E
[
rk+1 + max

ak+1∈A
γQ∗(sk+1, ak+1)

∣∣∣∣ sk = s, ak = a

]
:= T Q∗ (1)

where T is called the Bellman operator.

2.2 NOTATIONS

In this paper, we will use an O.D.E. model (Borkar & Meyn, 2000) of Q-learning to analyze its
convergence. To this end, it is useful to introduce some notations in order to simplify the overall
expressions. Throughout the paper, ea and es denote a-th and s-th canonical basis vectors in R|A|
and R|S|, respectively. Moreover,⊗ stands for the Kronecker product. Let us introduce the following
notations:

P :=

 P1

...
P|A|

 ∈ R|S||A|×|S|, R :=

 R1

...
R|A|

 ∈ R|S||A|, Q :=

 Q1

...
Q|A|

 ∈ R|S||A|,

Da :=

d(1, a)
. . .

d(|S|, a)

 ∈ R|S|×|S|, D :=

D1

. . .
D|A|

 ∈ R|S||A|×|S||A|,

where Pa ∈ R|S|×|S|, a ∈ A is the state transition matrix whose i-th row and j-th column
component denotes the probability of transition to state j when action a is taken at state i,
Pπ ∈ R|S||A|×|S||A| represents the state-action transition matrix under policy π, i.e.,

(es ⊗ ea)TPπ(es′ ⊗ ea′) = P[sk+1 = s′, ak+1 = a′|sk = s, ak = a, π],

Qa = Q(·, a) ∈ R|S|, a ∈ A and Ra(s) := E[r(s, a, s′)|s, a], s ∈ S. Moreover, d(·, ·) is the state-
action visit distribution, where i.i.d random variables {(sk, ak)}∞k=0 are sampled, i.e., d(s, a) =
P[sk = s, ak = a], a ∈ A, s ∈ S . With a slight abuse of notation, d will be also used to denote the
vector d ∈ R|S||A| such that dT (es ⊗ ea) = d(s, a), ∀s ∈ S, a ∈ A. In this paper, we represent
a policy in a matrix form in order to formulate a switching system model. In particular, for a given
policy π, define the matrix

Ππ :=
[
(eπ(1) ⊗ e1)T · · · (eπ(|S|) ⊗ e|S|)T

]T ∈ R|S|×|S||A|. (2)

Then, we can prove that for any deterministic policy, π, we have ΠπQ =[
Q(1, π(1))

T
Q(2, π(2))

T · · · Q(|S|, π(|S|))T
]T

. For simplicity, let ΠQ := Ππ when
π(s) = arg maxa∈AQ(s, a). Moreover, we can prove that for any deterministic policy
π, Pπ = PΠπ ∈ R| S ||A |×| S ||A |, where Pπ is the state-action transition probability
matrix. Using the notations introduced, the Bellman equation in (1) can be compactly
written as Q∗ = γPΠQ∗Q

∗ + R =: T Q∗, where πQ∗ is the greedy policy defined as
πQ∗(s) = arg maxa∈AQ

∗(s, a).

2.3 Q-LEARNING WITH LINEAR FUNCTION APPROXIMATION

Q-learning is widely used model-free learning to find Q∗, whose updates are given as

Qk+1(sk, ak)← Qk(sk, ak) + αkδk, (3)

where δk = rk+1 +γmaxa∈AQk(sk+1, a)−Qk(sk, ak) is called the TD error. Each update uses an
i.i.d. sample (sk, ak, rk+1, sk+1), where (sk, ak) is sampled from a state-action distribution d(·, ·).

Here, we assume that the step-size is chosen to satisfy the so-called the Robbins-Monro con-

dition (Robbins & Monro, 1951), αk > 0,
∞∑
k=0

αk = ∞,
∞∑
k=0

α2
k < ∞. When the state-

spaces and action-spaces are too large, then the memory and computational complexities usu-
ally become intractable. In such cases, function approximation is commonly used to approxi-
mate Q-function (Mnih et al., 2015; Schrittwieser et al., 2020; Hessel et al., 2018; Lan et al.,
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2020). Linear function approximation is one of the simplest function approximation approaches.
In particular, we use the feature matrix X ∈ R| S ||A |×h and parameter vector θ ∈ Rh
to approximate Q-function, i.e., Q ' Xθ, where the feature matrix is expressed as X :=[
x(1, 1)T · · · x(1, |A|)T · · · x(|S|, |A|)T

]T ∈ R| S ||A |×h. Here, x(·, ·) ∈ Rh is called the
feature vector, and h is a positive integer with h << |S||A|. The corresponding greedy policy be-
comes πXθ(s) = arg maxa∈A x(s, a)T θ. Note that the number of policies characterized by the
greedy policy is finite. This is because the policy is invariant under constant multiplications, and
there are a finite number of sectors on which the policy is invariant. This is also common in the
literature (Maei et al., 2010; Zhang et al., 2021; Carvalho et al., 2020). Next, we summarize some
standard assumptions adapted throughout this paper.
Assumption 2.1. The state-action visit distribution is positive, i.e., d(s, a) > 0 for all s ∈ S, a ∈ A.
Assumption 2.2. The feature matrix, X , has full column rank, and is a non-negative matrix. More-
over, columns of X are orthogonal.
Assumption 2.3 (Boundedness on feature matrix and reward matrix). There exists constants,
Xmax > 0 and Rmax > 0, such that max(||X||∞, ||XT ||∞) < Xmax, ||R||∞ < Rmax.

Note that Assumption 2.1, Assumption 2.2 and Assumption 2.3 are commonly adopted in the liter-
ature, e.g. Carvalho et al. (2020); Melo et al. (2008); Lee & He (2019). Moreover, under Assump-
tion 2.1, D is a nonsingular diagonal matrix with strictly positive diagonal elements.
Lemma 2.1 (Gosavi (2006)). Under Assumption 2.3, the optimal Q-function, Q∗, is bounded, i.e.,
||Q∗||∞ ≤ Rmax

1−γ .

The proof of Lemma 2.1 comes from the fact that under the discounted infinite horizon setting, Q∗
can be expressed as an infinite sum of a geometric sequence.
Remark 2.1. Carvalho et al., 2020; Agarwal et al., 2021 assume ||x(s, a)||∞ ≤ 1 for all (s, a) ∈
S×A. Moreover, Zhang et al. 2021 requires specific bounds on the feature matrix which is dependent
on various factors e.g. projection radius and transition matrix . On the other hand, our feature
matrix can be chosen arbitrarily large regardless of those factors.

2.4 O.D.E. ANALYSIS

The dynamic system framework has been widely used to prove convergence of reinforcement learn-
ing algorithms, e.g., Sutton et al. 2009; Maei et al. 2010; Borkar & Meyn 2000; Lee & He 2019;
Carvalho et al. 2020; Lee et al. 2021. Especially, Borkar & Meyn, 2000 is one of the most widely
used techniques to prove stability of stochastic approximation using O.D.E. analysis. Consider the
following stochastic algorithm with a non-linear mapping f : Rn → Rn:

θk+1 = f(θk) +mk, (4)

where mk ∈ Rn is an i.i.d. noise vector. For completeness, results in Borkar & Meyn, 2000 are
briefly reviewed in the sequel. Under the Assumption A.1 given in the Appendix, we now introduce
Borkar and Meyn theorem below.
Lemma 2.2 (Borkar and Meyn theorem). Suppose that Assumption A.1 in the Appendix holds, and
consider the stochastic algorithm in (4). Then, for any initial θ0 ∈ Rn, supk≥0 ||θk|| < ∞ with
probability one. In addition , θk → θe as k →∞ with probability one, where f(θe) = 0.

The main idea of Borkar and Meyn theorem is as follows: iterations of a stochastic recursive al-
gorithm follow the solution of its corresponding O.D.E. in the limit when the step-size satisfies the
Robbins-Monro condition. Therefore, by proving the asymptotic stability of the O.D.E., we can
induce the convergence of the original algorithm. In this paper, we will use an O.D.E. model of
Q-learning, which is expressed as a special nonlinear system called a switching system. In the next
section, basic concepts in switching system theory are briefly introduced.

2.5 SWITCHING SYSTEM

In this paper, we will consider a particular nonlinear system, called the switched linear system (Liber-
zon, 2003),

ẋt = Aσtxt, x0 = z ∈ Rn, t ∈ R+, (5)
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where xt ∈ Rn is the state, M := {1, 2, . . . ,M} is called the set of modes, σt ∈ M is called
the switching signal, and {Aσ, σ ∈ M} are called the subsystem matrices. The switching signal
can be either arbitrary or controlled by the user under a certain switching policy. Especially, a
state-feedback switching policy is denoted by σ(xt).

Stability and stabilization of (5) have been widely studied for decades. Still, finding a practical and
effective condition for them is known to be a challenging open problem. For example, contrary to
linear time-invariant systems, even if each subsystem matrix Aσ is Hurwitz, the overall switching
system may not be stable in general. This tells us that tools in linear system theories cannot be
directly applied to conclude the stability of the switching system.

Another approach is to use the Lyapunov theory (Khalil, 2002). From standard results in control sys-
tem theories, finding a Lyapunov function ensures stability of the switching system. If the switching
system consists of negative definite matrices, then we can always find a common quadratic Lyapunov
function and ensure its stability. We will use this fact to prove the convergence of the proposed al-
gorithm. In particular, the proposed Q-learning algorithm can be modelled as a switching system,
whose subsystem matrices are all negative definite.

3 PROJECTED BELLMAN EQUATION

In this section, we introduce the notion of projected Bellman equation with a regularization term,
and establish connections between it and the proposed algorithm. Moreover, we briefly discuss the
existence and uniqueness of the solution of the projected Bellman equation. We will also provide an
example to illustrate the existence and uniqueness. When using the linear function approximation,
since the true action value may not lie in the subspace spanned by the feature vectors, a solution
of the Bellman equation may not exist in general. To resolve this issue, a standard approach is to
consider the projected Bellman equation defined as

Xθ∗ = ΓT Xθ∗, (6)

where Γ := X(XTDX)−1XTD is the weighted Euclidean Projection with respect to state-action
visit distribution onto the subspace spanned by the feature vectors, and T Xθ∗ = γPΠXθ∗Xθ

∗+R.
In this case, there is more chances for a solution satisfying the above projected Bellman equation to
exist. Still, there may exist cases where the projected Bellman equation does not admit a solution.
We will give an example of such case in Appendix A.9. To proceed, let us rewrite (6) equivalently
as
Xθ∗ = X(XTDX)−1XTD(γPΠXθ∗Xθ

∗ +R)⇔ (XTDX − γXTDPΠXθ∗X)︸ ︷︷ ︸
AπXθ∗

θ∗ = XTDR︸ ︷︷ ︸
b

,

where we use the simplified notations AπXθ∗ := XTDX − γXTDPΠXθ∗X, b = XTDR. There-
fore, the projected Bellman equation in (6) can be equivalently written as the nonlinear equation

b−AπXθ∗ θ
∗ = 0. (7)

A potential deterministic algorithm to solve the above equation is
θk+1 = θk + αk(b−AπXθk θk). (8)

If it converges, i.e., θk → θ∗ as k →∞, then it is clear that θ∗ solves (7). In this paper, the proposed
algorithm is a stochastic algorithm that solves the modified equation

b− (AπXθe + ηC)θe = 0, (9)

where C := XTDX , and η ≥ 0 is a weight on the regularization term. Similar to (8), the corre-
sponding deterministic algorithm is

θk+1 = θk + αk(b− (AπXθk + ηC)θk). (10)

If it converges, i.e., θk → θe as k → ∞, then it is clear that θe solves (9). Some natural questions
that arise here are as follows: Which conditions can determine the existence and uniqueness of the
equations in (7) and (9)? Partial answers are given in the sequel. Considering the non-existence
of fixed point of (6)) (De Farias & Van Roy, 2000), both (7) and (9) may not also have a solution.
However, for the modified Bellman equation in (9), we can prove that under appropriate conditions,
its solution exists and is unique. We give an example where the solution does not exist for (7) but
does exist for (9) in Appendix A.9.
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Lemma 3.1. When η > ||(XTDX)−1||∞X2
max − 1, a solution of (9) exists and is unique.

The proof is given in Appendix A.3, and uses Banach fixed-point theorem (Agarwal et al., 2018).
The proof follows similar lines as in Melo (2001) to establish the existence and uniqueness of solu-
tion of (1). From Lemma 3.1, we can see that when the weight η is sufficiently large, the existence
and uniqueness of the solution is guaranteed. Note that even if a solution satisfying (9) exists, Xθe
may be different from the optimal Q-function, Q∗. However, we can derive a bound on the error,
Xθe − Q∗, using some algebraic inequalities and contraction property of Bellman operator, which
is presented below.
Lemma 3.2. Assume that a solution of (9) exists. Denoting Γ := X(XTDX)−1DX as the projec-
tion operator, when η > γ||Γ||∞ − 1, we have the following bound:

||Xθe −Q∗||∞ ≤
1

1 + η − γ||Γ||∞
||Q∗ − ΓQ∗||∞ +

η

1 + η − γ||Γ||∞
Rmax

1− γ
.

Some remarks are in order for Lemma 3.2. First of all, η > γ||Γ||∞ − 1 ensures that the error is
always bounded. The first term represents the error incurred by the difference between the optimal
Q∗ and Q∗ projected onto the feature space. Therefore, this error is induced by the linear function
approximation. The second term represents the error potentially induced by the regularization. For
instance, if 1 > γ||Γ||∞, then the second error term vanishes as η → 0. Finally, note that as
η → ∞, the first error term vanishes. This means that the error by the regularization dominates the
error induced by the linear function approximation.

4 ALGORITHM

In this section, we will introduce our main algorithm, called RegQ, and elaborate the condition on
the regularization term to make the algorithm convergent. The proposed algorithm is motivated
by TD-learning. In particular, for on-policy TD-learning, one can establish its convergence using
the property of the stationary distribution. On the other hand, for an off-policy case, the mismatch
between the sampling distribution and the stationary distribution could cause its divergence (Sutton
et al., 2016). To address this problem, Diddigi et al., 2019 adds a regularization term to TD-learning
in order to make it convergent. Since Q-learning can be interpreted as an off-policy TD-learning, we
add a regularization term to Q-learning update motivated by Diddigi et al., 2019. This modification
leads to the proposed RegQ algorithm as follows:

θk+1 = θk + αk(x(sk, ak)δk + ηx(sk, ak)x(sk, ak)T θk) (11)
Note that letting η = 0, the above update is reduced to the standard Q-learning with linear function
approximation in (3). The proposed RegQ is different from Diddigi et al., 2019 in the sense that a
regularization term is applied to Q-learning instead of TD-learning. Rewriting the stochastic update
in a deterministic manner, it can be written as follows:

θk+1 = θk + αk(b− (AπXθk + ηC)θk +mk+1), (12)

where mk+1 = δkx(sk, ak) + ηx(sk, ak)Tx(sk, ak)θk − (b − (AπXθk + ηC)θk) is an i.i.d. noise.
Note that without the noise, (12) is reduced to the deterministic version in (10). In our convergence
analysis, we will apply the O.D.E. approach, and in this case, AπXθk + ηC will determine the
stability of the corresponding O.D.E. model, and hence, convergence of (11). Note that (12) can be
interpreted as a switching system defined in (5) with stochastic noises. As mentioned earlier, proving
the stability of a general switching system is challenging in general. However, we can find a common
Lyapunov function to prove its asymptotic stability. In particular, we can make −(AπXθk + ηC) to
be negative definite under the following condition:

η > max
π∈Θ,s∈S,a∈A

γdTPπ(ea ⊗ es)
2d(s, a)

− 2− γ
2

, (13)

where Θ is the set of all deterministic policies, and ⊗ is the Kronecker product. Lemma A.2, given
in Appendix A.2, is similar to Theorem 2 in Diddigi et al., 2019, and ensures such a property. Now,
we can use the Lyapunov argument to establish stability of the overall system. Building on the
negative definiteness of the −(AπXθk + ηC), in the next section, we prove that under the stochastic
update (11), we have θk → θe as k → ∞ with probability one, where θe satisfies the projected
Bellman equation in (9). If η = 0 satisfies (13), we can guarantee convergence to an optimal policy
without errors.
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5 CONVERGENCE ANALYSIS

Recently, Lee & He, 2019 suggested a switching system framework to prove the stability of Q-
learning in the linear function approximation cases. However, its assumption seems too stringent to
check in practice. Here, we develop more practical Q-learning algorithm by adding an appropriately
preconditioned regularization term. We prove the convergence of the proposed Q-learning with
regularization term (11) following lines similar to Lee & He, 2019. Our proof mainly relies on
Borkar-Meyn theorem. Therefore, we first discuss about the corresponding O.D.E. for the proposed
update in (11), which is

θ̇t = −(1 + η)XTDXθt + γXTDPΠXθtXθt +XTDR := f(θt). (14)

Then, using changes of coordinates, the above O.D.E. can be rewritten as

d

dt
(θt − θe) = (−(1 + η)XTDX + γXTDPΠXθtX)(θt − θe) + γXTDP (ΠXθt −ΠXθe)Xθe,

(15)
where θe satisfies (9). Here, we assume that the equilibrium point exists and is unique. We later
prove that if the equilibrium exists, then it is unique. To apply Borkar-Meyn theorem, we discuss
about the asymptotic stability of the O.D.E. in (15), and check conditions of Assumption A.1 in Ap-
pendix A.5. Note that (15) includes an affine term, i.e., it cannot be expressed as a matrix times
θt−θe. Establishing asymptotic stability of switched linear system with affine term is difficult com-
pared to switched linear system (5). To circumvent this difficulty, Lee & He, 2019 proposed upper
and lower systems, which upper bounds and lower bounds the original system, respectively using the
so-called vector comparison principle. Then, the stability of the original system can be established
by proving the stability of the upper and lower systems, which are easier to analyze. Following sim-
ilar lines, to check global asymptotic stability of the original system, we also introduce upper and
lower systems, which upper bounds and lower bounds the original system, respectively. Then, we
prove global asymptotic stability of the two bounding systems. Since upper and lower systems can
be viewed as switched linear system and linear system, respectively, the global asymptotic stability
is easier to prove. We stress that although the switching system approach in Lee & He, 2019 is
applied in this paper, the detailed proof is entirely different and nontrivial. In particular, the upper
and lower systems are given as follows:

d

dt
θut = (−(1 + η)XTDX + γXTDPΠXθut

X)θut

d

dt
θlt = −((1 + η)XTDX + γXTDPΠXθeX)θlt,

where θut denotes the state of the upper system, and θlt stands for the state of the lower system. We
defer the detailed construction of each system to Appendix A.6. Establishing stability of upper and
lower system gives the stability of overall system.
Theorem 5.1. Suppose that (a) Assumption 2.2 holds, (b) (13)) holds, and (c) a solution of (9)
exists. Then, the solution is unique, and the origin is the unique globally asymptotically stable
equilibrium point of (15).

The detailed proof is given in Appendix A.6.

Building on previous results, we now use Borkar and Meyn’s theorem Lemma 2.2 to establish the
convergence of RegQ. The full proof of the following theorem is given in Appendix A.7.
Theorem 5.2. If η satisfies (13). Then under Assumption 2.1, Assumption 2.2 and Assumption 2.3,
under the stochastic update (11), θk → θe as k →∞ with probability one, where θe satisfies (9).

6 EXPERIMENTS

In this section, we present experimental results under well-known environments in Tsitsiklis &
Van Roy (1996); Baird (1995), where Q-learning with linear function approximation diverges. We
also compare performance under the Mountain Car environment (Sutton & Barto, 2018) where Q-
learning performs well. In Appendix A.8.2, we show experimental results under various step-size
and η. We also show trajectories of upper and lower systems to illustrate the theoretical results.

7
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(a) Results in θ → 2θ (b) Results in Baird seven star counter example

Figure 1: Experiment results

6.1 θ → 2θ (TSITSIKLIS & VAN ROY, 1996)

Even when there are only two states, Q-learning with linear function approximation could di-
verge (Tsitsiklis & Van Roy, 1996). Depicted in Figure 4d in Appendix A.8.1, from state one
(θ), the transition is deterministic to absorbing state two (2θ), and reward is zero at every time steps.
Therefore, the episode length is fixed to be two. Learning rate for Greedy GQ (GGQ) and Coupled Q
Learning (CQL), which have two learning rates, are set as 0.05 and 0.25, respectively as in Carvalho
et al., 2020; Maei et al., 2010. Since CQL requires normalized feature values, we scaled the feature
value with 1

2 as in Carvalho et al., 2020, and initialized weights as one. We implemented Q-learning
with target network (Zhang et al., 2021), which also have two learning rates, without projection for
practical reason (Qtarget). We set the learning rate as 0.25 and 0.05 respectively, and the weight η
as two. For RegQ, we set the learning rate as 0.25, and the weight η as two. It is averaged over 100
runs. In Figure 1a, we can see that RegQ achieves the fastest convergence rate.

6.2 BAIRD SEVEN STAR COUNTER EXAMPLE (BAIRD, 1995)

Baird, 1995 considers an overparameterized example, where Q-learning with linear function ap-
proximation diverges. The overall state transition is depicted in Figure 4f given in Appendix A.8.1.
There are seven states and two actions for each state, which are solid and dash action. The number
of features are h = 15. At each episode, it is initialized at random state with uniform probability.
Solid action leads to seventh state while dashed action makes transition uniformly random to states
other than seventh state. At seventh state, the episode ends with probability 1

100 . The behavior policy
selects dashed action with probability 5

6 , and solid action with probability 1
6 . Since CQL in Carvalho

et al. (2020) converges under normalized feature values, we scaled the feature matrix with 1√
5

. The
weights are set as one except for θ7 = 2. The learning rates and the weight η are set as same as
the previous experiment. As in Figure 1b, Qtarget shows the fastest convergence but to guarantee
convergence, it requires projection twice theoretically, which is not implemented in this experiment.
Our RegQ shows fastest convergence compared to other two time scale algorithm, CQL and GGQ.

6.3 MOUNTAIN CAR (SUTTON & BARTO, 2018)

Mountain Car is environment where state consists of position, and velocity, which are both contin-
uous values. The actions are discrete, accelerating to left, staying neutral, and accelerating to the
right. The goal is to reach the top of the mountain quickly as agent gets -1 reward every time step.
We use tile-coding (Sutton & Barto, 2018) to discretize the states. We experimented under various
tiling numbers and with appropriate η, it achieves performance as Q-learning does. We ran 1000
episodes for the training process, and the episode reward was averaged for 100 runs during test time.
From Table 1, with appropriate η, RegQ performs comparable to Q-learning.

8
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(a) θ1 − θe1 (b) θ2 − θe2

Figure 2: O.D.E. results

Table 1: Mountain Car results, step size = 0.1. The columns correspond to η, and rows correspond
to number of tiles.

0 0.05 0.1 0.2
2× 2 −199.803± 0.025 −200.0± 0.0 −199.767± 0.028 −199.725± 0.032
4× 4 −191.622± 0.216 −191.96± 0.204 −189.17± 0.241 −187.943± 0.256
8× 8 −164.954± 0.255 −163.768± 0.27 −162.577± 0.25 −163.03± 0.255

16× 16 −157.95± 0.252 −157.447± 0.245 −157.643± 0.257 −159.828± 0.25

6.4 O.D.E. EXPERIMENT

Let us consider a MDP with |S| = 2, |A| = 2, and the following parameters:

X =

1 0
0 2
1 0
0 2

 , D =


1
4 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

4

 , P =

 0.5 0.5
1 0

0.5 0.5
0.25 0.75

 , R =

1
1
1
1

 , γ = 0.99.

For this MDP, we will illustrate trajectories of the upper and lower system. Each state action pair
is sampled uniformly random and reward is one for every time step. η = 2.25 is chosen to satisfy
conditions of Theorem 5.1. From Figure 2, we can see that the trajectory of the original system is
bounded by the trajectories of lower and upper system.

7 CONCLUSION

In this paper, we presented a new convergent Q-learning with linear function approximation (RegQ),
which is simple to implement. We provided theoretical analysis on the proposed RegQ, and demon-
strated its performance on several experiments, where the original Q-learning with linear function
approximation diverges. Developing a new Q-learning algorithm with linear function approximation
without bias would be one interesting future research topic. Moreover, considering the great success
of deep learning, it would be interesting to develop deep reinforcement learning algorithms with
appropriately preconditioned regularization term instead of using the target network.
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A APPENDIX

A.1 ASSUMPTION FOR BORKAR AND MEYN THEOREM

Assumption A.1.
1. The mapping f : Rn → Rn is globally Lipschitz continuous, and there exists a function f∞ :
Rn → Rn such that

lim
c→∞

f(cx)

c
= f∞(x), ∀x ∈ Rn . (16)

2. The origin in Rn is an asymptotically stable equilibrium for the O.D.E. ẋt = f∞(xt).

3. There exists a unique globally asymptotically stable equilibrium θe ∈ Rn for the O.D.E.
ẋt = f(xt) , i.e., xt → θe as t→∞.

4. The sequence {m, k ≥ 1} where Gk is sigma-alebra generated by {(θi,mi, i ≥ k)}, is a
Martingale difference sequence. In addition , there exists a constant C0 < ∞ such that for any
initial θ0 ∈ Rn , we have E[||mk+1||2| Gk] ≤ C0(1 + ||θk||2),∀k ≥ 0.

5. The step-sizes satisfies the Robbins-Monro condition (Robbins & Monro, 1951) :
∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞.

A.2 NEGATIVE DEFINITENESS OF AπXθ + ηC

We first introduce Gerschgorin circle theorem (Horn & Johnson, 2013) to prove Lemma A.2.

Lemma A.1 (Gerschgorin circle theorem (Horn & Johnson, 2013)). Let A = [aij ] ∈ Rn×m and

Ri(A) =
m∑
j 6=i

aij . Consider the Gerschgorin circles

{z ∈ C| : |z − aii| ≤ Ri(A)}, i = 1, . . . , n.

The eigenvalues of A are in the union of Gerschgorin discs

G(A) = ∪ni=1{z ∈ C| : |z − aii| ≤ Ri(A)}.

Now, we state the lemma to guarantee negative definiteness of AπXθ + ηC.

Lemma A.2. Let

MπXθ := D((1 + η)I − γPπXθ ).

Under the following condition:

η > max
π∈Θ,s∈S,a∈A

γdTPπ(ea ⊗ es)
2d(s, a)

− 2− γ
2

,

where Θ is the set of all deterministic policies, and ⊗ is the Kronecker product, MπXθ is positive
definite.

Proof. We use Gerschgorin circle theorem for the proof. First, denote mij = [MπXθ ]ij . Then, one
gets

mii = di((1 + η)− γeTi PπXθei),
mij = −diγeTi PπXθej for i 6= j.

Except for the diagonal element, the row and column sums, respectively, become∑
j∈Si

|mij | = γdi(1− eTi PπXθei)

12
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∑
j∈Si

|mji| = γdTPπXθei − γdieTi PπXθei,

where Si = {1, 2, . . . , |S||A|} \ {i}. We need to show that MπXθ + MπTXθ is positive definite. To
this end, we use Lemma A.1 to have the following inequality:

|λ− 2mii| ≤
∑
j∈Si

|mij |+
∑
j∈Si

|mji|

Considering the lower bound of λ, we have

λ ≥ 2mii −
∑
j∈Si

|mij | −
∑
j∈Si

|mji|

= (1 + η − γ)di + ((1 + η)di − γdTPπXθei)
= η(2di) + (2− γ)di − γdTPπXθei.

Hence, for λ > 0, we should have

η >
γdTPπXθei

2di
− 2− γ

2
.

Taking η > maxπ∈Θ,s∈S,a∈A
γdTPπ(ea⊗es)

2d(s,a) − 2−γ
2 , we can make MπXθ always positive definite.

A.3 PROOF OF LEMMA 3.1

To show existence and uniqueness of the solution of (9), we use Banach fixed-point theorem (Agar-
wal et al., 2018). First, we define the operator Tη as follows:

Tη(θ) :=
1

1 + η
(XTDX)−1(XTDR+ γXTDPΠXθXθ)

We show that Tη is contraction mapping. The existence and uniqueness of (9) follows from the
Banach fixed-point theorem.

||θ1 − θ2||∞ =
1

1 + η
||(XTDX)−1(γXTDPΠXθ1Xθ1 − γXTDPΠXθ2Xθ2)||∞

≤ γ

1 + η
||(XTDX)−1||∞||XT ||∞||ΠXθ1Xθ1 −ΠπXθ2

Xθ2||∞

≤ γ

1 + η
||(XTDX)−1||∞||XT ||∞||ΠX(θ1−θ2)(Xθ1 −Xθ2)||∞

≤ γ

1 + η
||(XTDX)−1||∞||XT ||∞||Xθ1 −Xθ2||∞

≤ γ

1 + η
||(XTDX)−1||∞||XT ||∞||X||∞||θ1 − θ2||∞

≤ γ||θ1 − θ2||∞.

The first inequality follows from the submultiplicativity of matrix norm and ||DP ||∞ ≤ 1. The
second inequality follows from the fact that maxx −max y ≤ max(x − y). The last inequality is
due to the condition η > ||(XTDX)−1||∞X2

max−1. Since γ < 1, Tη is contraction mapping. Now
we can use Banach fixed-point theorem to conclude existence and uniqueness of (9).

A.4 PROOF OF LEMMA 3.2

Proof. The bias term of the solution can be obtained using simple algebraic inequalities.

||Xθe −Q∗||∞ ≤
∥∥∥∥Xθe − 1

1 + η
Q∗
∥∥∥∥
∞

+

∥∥∥∥ η

1 + η
Q∗
∥∥∥∥
∞

13
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≤
∥∥∥∥Xθe − 1

1 + η
ΓQ∗

∥∥∥∥
∞

+

∥∥∥∥ 1

1 + η
Q∗ − 1

1 + η
ΓQ∗

∥∥∥∥
∞

+

∥∥∥∥ η

1 + η
Q∗
∥∥∥∥
∞

≤ 1

1 + η
||Γ(T Xθe)− ΓT Q∗||∞ +

∥∥∥∥ 1

1 + η
Q∗ − 1

1 + η
ΓQ∗

∥∥∥∥
∞

+

∥∥∥∥ η

1 + η
Q∗
∥∥∥∥
∞

≤ γ||Γ||∞
1 + η

||Xθe −Q∗||∞ +

∥∥∥∥ 1

1 + η
Q∗ − 1

1 + η
ΓQ∗

∥∥∥∥
∞

+

∥∥∥∥ η

1 + η
Q∗
∥∥∥∥
∞
.

The last inequality follows from the fact that the Bellman operator T is γ-contraction with respect
to the infinity norm.

Rearranging the terms, we have

||Xθe −Q∗||∞ ≤
1

1 + η − γ||Γ||∞
||Q∗ − ΓQ∗||∞ +

η

1 + η − γ||Γ||∞
Rmax

1− γ
.

The bias is caused by projection and additional error term due to regularization.

A.5 PROOFS FOR ASSUMPTION A.1

In this section, we provide omitted proofs to check Assumption A.1 for Theorem 5.2.

First of all, Lipschitzness of f(θ) ensures the unique solution of the O.D.E..
Lemma A.3 (Lipschitzness). Let

f(θ) = −(1 + η)XTDXθ + γXTDPΠXθXθ +XTDR. (17)

Then, f(θ) is globally Lipschitzness continuous.

Proof. Lipschitzness of f(θ) can be proven as follows:

||f(θ)− f(θ′)||∞ ≤ (1 + η)||XTDX(θ − θ′)||∞ + γ||XTDP (ΠXθXθ −ΠXθ′Xθ
′)||∞

≤ (1 + η)||XTDX||∞||θ − θ′)||∞ + γ||XTDP ||∞||ΠXθXθ −ΠXθ′Xθ
′||∞

≤ (1 + η)||XTDX||∞||θ − θ′)||∞ + γ||XTDP ||∞||ΠX(θ−θ′)X(θ − θ′)||∞
≤ ((1 + η)||XTDX||∞ + γ||XTDP ||∞||X||∞)||θ − θ′)||∞

Therefore f(θ) is Lipschitz continuous with respect to the || · ||∞,

Next, the existence of limiting O.D.E. of (14) can be proved using the fact that policy is invariant
under constant multiplication when linear function approximation is used.
Lemma A.4 (Existence of limiting O.D.E. and stability). Let

f(θ) = −(1 + η)XTDXθ + γXTDPΠXθXθ +XTDR. (18)

Under (13), there exists limiting O.D.E. of (18) and its origin is asymptotically stable.

Proof. The existence of limiting O.D.E. can be obtained using the homogeneity of policy, ΠX(cθ) =
ΠXθ.

f(cθ) = −(1 + η)XTDX(cθ) + γXTDPΠX(cθ)X(cθ) +XTDR,

lim
c→∞

f(cx)

c
= (−(1 + η)XTDX + γXTDPΠXθX)θ

This can be seen as switching system and shares common Lyapunov function V = ||θ||2. Hence,
the origin is asymptotically stable.

Lastly, we check conditions for martingale difference sequences.
Lemma A.5 (Martingale difference sequence, mk, and square integrability). We have

E[mk+1| Fk] = 0,

E[||mk+1||2| Fk] < C0(1 + ||θ||2),

where C0 := max(12X2
maxR

2
max, 12γX4

max + 4η2X2
max).

14
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Proof. To show {mk, k ∈ N} is a martingale difference sequence with respect to the sigma-algebra
generated by Gk, we first prove expectation of mk+1 is zero conditioned on Gk:

E[mk+1|Gk] = 0

This follows from definition of b, C and AπXθ .

The boundedness E[||nk||] < ∞ also follows from simple algebraic inequalities. Therefore
{mk, k ∈ N} is martingale difference sequence.

Now, we show square integrability of the martingale difference sequence, which is

E[||mk+1||2|Gk] ≤ C0(||θk||2 + 1).

Using simple algebraic inequalities, we have

E[||mk+1||2|Gk] = E[||δkx(sk, ak) + ηx(sk, ak)Tx(sk, ak)θk − Eµ[δkx(sk, ak) + ηx(sk, ak)Tx(sk, ak)θk]||2|Gt]
≤ E[||δkx(sk, ak) + ηx(sk, ak)Tx(sk, ak)θk||2 + ||Eµ[δkx(sk, ak) + ηx(sk, ak)Tx(sk, ak)θk]||2|Gt]
≤ 2E[||δkx(sk, ak) + ηx(sk, ak)Tx(sk, ak)θk]||2Gt]
≤ 4E[||δkx(sk, ak)||2|Gt] + 4η2 E[|||x(sk, ak)Tx(sk, ak)θk||2|Gt]
≤ 12X2

max E[||rk||2 + ||γmaxx(sk, ak)θk||2 + ||x(sk, ak)θk||2|Gt] + 4η2X2
max||θk||2

≤ 12X2
maxR

2
max + 12γX4

max||θk||2 +X2
max||θk||2 + 4η2X2

max||θk||2

≤ C0(1 + ||θk||2),

where C0 := max(12X2
maxR

2
max, 12γX4

max + 4η2X2
max). The fourth inequality follows from the

fact that ||a+ b+ c||2 ≤ 3||a||2 + 3||b||2 + 3||c||2. This completes the proof.

A.6 PROOF OF THEOREM 5.1

Before moving onto the proof of Theorem 5.1, in order to prove the stability using the upper and
lower systems, we need to introduce some notions such as the quasi-monotone function and vector
comparison principle. We first introduce the notion of quasi-monotone increasing function, which
is a necessary prerequisite for the comparison principle for multidimensional vector system.

Definition A.1 (Quasi-monotone function). A vector-valued function f : Rn → Rn with f :=

[f1 f2 · · · fn]
T is said to be quasi-monotone increasing if fi(x) ≤ fi(y) holds for all i ∈

{1, 2, . . . , n} and x, y ∈ Rn such that xi = yi and xj ≤ yj for all j 6= i.

Based on the notion of quasi-monotone function, we introduce the vector comparison principle.

Lemma A.6 (Vector Comparison Principle (Hirsch & Smith, 2006)). Suppose that f̄ , f are globally
Lipschitz continuous. Let xt be a solution of the system

d

dt
xt = f̄(xt), xo ∈ Rn,∀t ≥ 0.

Assume that f̄ is quasi-monotone increasing, and let vt be a solution of the system

d

dt
vt = f(vt), v0 < x0,∀t ≥ 0,

where f(v) ≤ f̄(v) holds for any v ∈ Rn. Then, vt ≤ xt for all t ≥ 0.

The vector comparison lemma can be used to bound the state trajectory of the original system by
those of the upper and lower systems. Then, proving global asymptotic stability of the upper and
lower systems leads to global asymptotic stability of original system. We now give the proof of The-
orem 5.1.
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Proof. First we construct the upper comparison part. Noting that

γXTDPΠXθeXθe ≥ γXTDPΠXθXθe (19)

and
γXTDPΠX(θ−θe)X(θ − θe) ≥ γXTDPΠXθX(θ − θe), (20)

we define f̄(y) and f(y) as follows:

f̄(y) = (−(1 + η)XTDX + γXTDPΠXyX)y,

f(y) = (−(1 + η)XTDXy + γXTDPΠX(y+θe)X)y + γXTDP (ΠX(y+θe) −ΠXθe)Xθe

Using using (19) and (20), we have f̄(y) ≤ f(y).

f is the corresponding O.D.E. of original system and f̄ becomes O.D.E. of the upper system. f̄
becomes switched linear system.

Now consider the O.D.E. systems

d

dt
θut = f̄(θut ), θu0 > θ0,

d

dt
θt = f(θt).

Next, we prove quasi-monotone increasing property of f̄ . For any z ∈ R|S||A|, consider a non-
negative vector p ∈ R|S||A| such that its i-th element is zero. Then, for any 1 ≤ i ≤ d,we have

eTi f̄(y + p) = eTi (−(1 + η)XTDX + γXTDPΠX(y+p)X)(y + p)

= −(1 + η)eTi X
TDXy − (1 + η)eTi X

TDXp+ γeTi X
TDPΠX(y+p)X(y + p)

≥ −(1 + η)eTi X
TDXy + γeTi X

TDPΠXyXy

= eTi f̄(y),

where the inequality comes from eTi X
TDXp = 0 due to Assumption 2.2.

Therefore by Lemma A.6, we can conclude that θt ≤ θut . The switching system matrices of the
upper system are all negative definite by Lemma A.2, The switching system shares V (θ) = ||θ||2
as common Lyapunov function. Therefore, we can conclude that the upper comparison system is
globally asymptotically stable.

For the lower comparison part, noting that

γXTDPΠXθXθ ≥ γXTDPΠXθeXθ,

we can define f(y) and f̄(y) such that f(y) ≤ f̄(y) as follows:

f̄(y) = −(1 + η)XTDXy + γXTDPΠXyXy +XTDR,

f(y) = −(1 + η)XTDXy + γXTDPΠXθeXy +XTDR

The corresponding O.D.E. system becomes

d

dt
θt = f̄(θt),

d

dt
θlt = f(θlt), θl0 < θ0. (21)

Proving quasi-monotonicity of f̄ is similar to previous step. Consider non-negative vector p ∈
R|S||A| such that its i-th element is zero. Then, we have

eTi f̄(y + p) = eTi (−(1 + η)XTDX(y + p) + γXTDPΠX(y+p)X(y + p) +XTDR)
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= eTi (−(1 + η)XTDXy + γXTDPΠX(y+p)X(y + p) +XTDR)

≥ eTi (−(1 + η)XTDXy + γXTDPΠXyXy +XTDR)

= eTi f̄(y).

The second equality holds since XTDX is diagonal matrix and pi = 0.
Therefore by Lemma A.6, we can conclude that θlt ≤ θt. The lower comparison part is linear
system with affine term, and the matrix is negative definite by Lemma A.2. Hence, we can conclude
that (21) is globally asymptotically stable.

To prove uniqueness of the equilibrium point, assume there exists two different equilibrium points θe1
and θe2. The global asymptotic stability implies that regardless of initial state, θt → θe1 and θt → θe2.
However this becomes contradiction if θe1 6= θe2. Therefore, the equilibrium point is unique.

A.7 PROOF OF THEOREM 5.2

Proof. To apply Lemma 2.2, let us check Assumption A.1.

1. First and second statement of Assumption A.1 follows from Lemma A.4

2. Third statement of Assumption A.1 follows from Theorem 5.1

3. Fourth statement of Assumption A.1 follows from Lemma A.5

Since we assumed Robbins Monro step-size, we can now apply Lemma 2.2 to complete the proof.

A.8 EXPERIMENTS

A.8.1 DIAGRAMS FOR θ → 2θ AND BAIRD SEVEN STAR COUNTER EXAMPLE

The state transition diagrams of θ → 2θ and Baird seven-star example are depicted.

(a) θ → 2θ

(b) Baird seven star counter example

Figure 3: Counter-examples where Q-learning with linear function approximation diverges
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A.8.2 EXPERIMENTS WITH VARYING HYPERPARAMETERS

(a) ThetaTwoTheta learning rate 0.01 (b) ThetaTwoTheta learning rate 0.05

(c) ThetaTwoTheta learning rate 0.1 (d) Baird learning rate 0.01

(e) Baird learning rate 0.05 (f) Baird learning rate 0.1

Figure 4: Learning curve under different learning rate and regularization coefficient

In Figure 4, we have ran experiments under η ∈ {2−2, 2−1, 1, 2, 4, 8, 16}, and learning rate
0..01, 0.05, 0.1. Overall, we can see that the convergence rate gets faster as η increases.

A.9 EXAMPLE

Example A.1. Let us define a MDP whose state transition diagram is given as in Figure 5. The
cardinality of state space and action space are |S| = 3, |A| = 2 respectively. The corresponding
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Figure 5: State transition diagram

state transition matrix, and other parameters are given as follows:

X =


0.01 0
0.1 0
0 0.01
0 0.01

0.1 0
0 0.01

 , R1 =

[−2
0
0

]
, R2 =

[
1
0
0

]
, P1 =

0 1 0
1
4

1
4

1
2

1
4

1
2

1
4

 , P2 =

0 0 1
1
4

1
4

1
2

1
4

1
2

1
4

 ,

γ = 0.99, d(s, a) =
1

6
, ∀s ∈ S,∀a ∈ A

where the order of elements of each column follows the orders of the corresponding definitions. Note
that for this Markov decision process, taking action a = 1 and action a = 2 at state s = 2 have
the same transition probabilities and reward. It is similar for the state s = 3. In this MDP, there
are only two deterministic policies available, denoted by π1 and π2, that selects action a = 1 and
action a = 2 at state s = 1, respectively, i.e., π1(1) = 1 and π2(1) = 2. The actions at state s = 2
and s = 3 do not affect the overall results.

The motivation of this MDP is as follows. Substitute πXθ∗ in (7) with π1 and π2. Then each of its
solution becomes

θe1 :=

[
θe11

θe12

]
≈
[
−6
111

]
∈ R2, θe2 :=

[
θe21

θe22

]
≈
[
−496
−4715

]
∈ R2.

If π1 is the corresponding policy to the solution of (7), it means that action a = 1 is greedily
selected at state s = 1. Therefore, Qπ1(1, 1) > Qπ1(1, 2) should be satisfied. However, since
Qπ1(1, 1) = x(1, 1)T θe1 = −0.06 and Qπ1(1, 2) = x(1, 2)T θe1 ≈ 1.11, this is contradiction. The
same logic applies to the case for π2. Therefore, neither of them becomes a solution of (7). On the
other hand, considering (9) with η = 1.98 which satisfies (13), the solution for each policy becomes
θe11 ≈ 0.13, θe12 ≈ 13 and θe21 ≈ 0.02, θe22 ≈ 14 respectively. For π1 and π2, we have Qπ1(1, 1) <
Qπ2(1, 2) and Qπ1(1, 1) < Qπ1(1, 2) respectively. Hence, θe2 satisfies (9) and becomes the unique
solution.
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