DECOUPLE QUANTIZATION STEP AND OUTLIER-MIGRATED RECONSTRUCTION FOR PTQ

Anonymous authors

Paper under double-blind review

1 **PROOF** OF **OMR**: *b*-bit with **OMR** Equals to b + 1-bit

As shown in Figure 3 of the paper, \bigcirc is ideal quantized output with $2X_{clip}$. (6) is the quantized outputs with OMR, whose clipping range is X_{clip} . When the input of conv7 in (a) and (b) is \bigcirc and (b), the output of Conv7 in a and b are equal. The proof is shown as follows. *i* is input channel index. *l* denotes *l*-th layer.

The output of Conv7 in (a) can be denoted as:

$$y^{l+1} = \sum_{i=0}^{c_{out}} W_i^{l+1} clip(\hat{x}_i^{l+1}, 0, 2X_{clip})$$

The input of Conv7 in (b), subgraph 6, can be denoted as:

$$\hat{x}_{i}^{l+1\prime} = \begin{cases} \hat{x}_{i}^{l+1} & \text{if } 0 \le i < c_{out} \\ \\ \hat{x}_{i-c_{out}}^{l+1} - X_{clip} & \text{if } c_{out} \le i < 2c_{out} \end{cases}$$

The weight of Conv7 in (b) can be denoted as:

$$W_i^{l+1\prime} = \begin{cases} W_i^{l+1} & \text{if} \quad 0 \le i < c_{out} \\ \\ W_{i-c_{out}}^{l+1} & \text{if} \quad c_{out} \le i < 2c_{out} \end{cases}$$

Thus the output of Conv7 in (b) can be denoted as:

$$\begin{split} y^{l+1} & l = W_i^{l+1\prime} * \hat{x}_i^{l+1\prime} \\ & = \sum_{i=0}^{c_{out}} W_i^{l+1} clip(\hat{x}_i^{l+1}, 0, X_{clip}) + \sum_{i=c_{out}}^{2c_{out}} w_{i-c_{out}}^{l+1} * clip(\hat{x}_{i-c_{out}}^{l+1} - X_{clip}, 0, X_{clip}) \\ & = \sum_{i=0}^{c_{out}} W_i^{l+1} clip(\hat{x}_i^{l+1}, 0, X_{clip}) + \sum_{i=0}^{c_{out}} W_i^{l+1} clip(\hat{x}_i^{l+1} - X_{clip}, 0, X_{clip}) \\ & = \sum_{i=0}^{c_{out}} W_i^{l+1} [clip(\hat{x}_i^{l+1}, 0, X_{clip}) + clip(\hat{x}_i^{l+1} - X_{clip}, 0, X_{clip}) + X_{clip} - X_{clip}] \\ & = \sum_{i=0}^{c_{out}} W_i^{l+1} [clip(\hat{x}_i^{l+1}, 0, X_{clip}) + clip(X_i^{l+1}, X_{clip}, 2X_{clip}) - X_{clip}] \\ & = \sum_{i=0}^{c_{out}} W_i^{l+1} [clip(\hat{x}_i^{l+1} + X_{clip}, X_{clip}, 3X_{clip}) - X_{clip}] \\ & = \sum_{i=0}^{c_{out}} W_i^{l+1} [clip(\hat{x}_i^{l+1}, 0, 2X_{clip}) = y^{l+1} \end{split}$$

2 COMPARISON VISUALIZATION OF OCS AND OMR

As shown in Fig1(notion the value changes in x-axis and the number of quantization levels), OCS squeezes outliers into a narrower range, which also squeezes inner values into a narrow. Thus OCS saves outliers at the sacrifice of the precision of inner values. However, our OMR saves outliers while preserves the precision of inner value as before. OMR indeed enlarges quantization levels and equals to earning one more unavailable bit, which is extremely helpful in 2,3-bit quantization.

Figure 1: Difference between OCS and OMR

3 DETAILED ALGORITHM OF OUR DOMR→DJOS+OMR

Algorithm 1: PTQ using DOMR optimization
Input: Pretrained FP32 Model $\{W^l\}_{i=1}^N$; a batch of calibration input x ; optim iteration T . Params: quant-step of activation s_x ; quant-step, dequant-step and AdaRound parameter of weight s_w , s'_w and α .
The 1_{st} Stage: s_w initialization + s_w decoupling. 1.1 Iterative MSE Minimization (single s_w) as equation 1 to find a suitable s_w 1.2 Decouple s_w into s_w and s'_w , with s_w fixed and s'_w learnable
The 2_{nd} Stage: OMR+DJOS. Outlier-Migrated Reconstruction(OMR) with Joint Optimization for s'_w , s_x , AdaRound α (DJOS)
for $j = 1$ to T-iteration do
for each layer $i = 1$ to N do
Modify weight W^{i} to $W^{i'}$ for outlier feature migration as equation 2
$W^{ii} \leftarrow concat(W^{i}, W^{i}); b^{ii} \leftarrow concat(b^{i}, b^{i} - x_{clip})$
Modify next layer W^{i+1} for outlier feature migration as equation 3
$W^{i+1} \leftarrow concat(W^{i+1}, W^{i+1});$
Fake quantize W^* and x^* as equation 4, equation 5;
$\hat{W}^{i\prime} \xleftarrow{s_w, \alpha, s_w} W^{i\prime}, \hat{x}^i \xleftarrow{s_x} x^i$
Forward to get FP32 and quantized output
$x^{i+1\prime} = W^{i\prime}x^i + b^{i\prime};$
$\hat{x}^{i+1\prime} = \hat{W}^{i\prime}\hat{x}^i + b^{i\prime};$
Calculate quantization error Δ_i
$\Delta_{i} = x^{i+1'} - \hat{x}^{i+1'} _{F}^{2}$
Iterate the next layer.
Sum all layer's quantization error Δ_i for optimization.
$\Delta = \sum \Delta_i$
\square # Joint Optimization with \triangle to update s_x, s'_w and α as equation 6.
Output: Quantized model

$$\hat{\boldsymbol{w}} = clip(\lfloor \frac{\boldsymbol{w}}{s_w} \rceil; w_l, w_u) \cdot s_w, \quad \min_{\hat{\boldsymbol{w}}} ||\hat{\boldsymbol{w}} - \boldsymbol{w}||_F^2$$
(1)

$$\boldsymbol{W}_{i,j}^{l\prime} = \begin{cases} \boldsymbol{W}_{i,j}^{l} & \text{if } 0 \le j < c_{out} \\ \boldsymbol{W}_{i,j-c_{out}}^{l} & \text{if } c_{out} \le j < 2c_{out} \end{cases}, \boldsymbol{b}_{j}^{l\prime} = \begin{cases} \boldsymbol{b}_{j}^{l} & \text{if } 0 \le j < c_{out} \\ \boldsymbol{b}_{j-c_{out}}^{l} - x_{clip} & \text{if } c_{out} \le j < 2c_{out} \end{cases}$$

$$(2)$$

$$\boldsymbol{W}_{i,j}^{l+1\prime} = \begin{cases} \boldsymbol{W}_{i,j}^{l+1} & \text{if } 0 \le i < c_{out} \\ \boldsymbol{W}_{i-c_{out},j}^{l+1} & \text{if } c_{out} \le i < 2c_{out} \end{cases}$$
(3)

$$\hat{\boldsymbol{w}} = clip(\lfloor \frac{\boldsymbol{w}}{\boldsymbol{s}_{\boldsymbol{w}}} \rfloor + h(\boldsymbol{\alpha}); \boldsymbol{w}_{l}, \boldsymbol{w}_{u}) \cdot \boldsymbol{s}_{\boldsymbol{w}}'$$
(4)

$$\hat{\boldsymbol{x}} = clip(\lfloor \frac{\boldsymbol{x}}{s_x} \rceil; x_l, x_u) \cdot s_x \tag{5}$$

$$\min_{s'_w, \boldsymbol{\alpha}, s_x} || \hat{\boldsymbol{W}} \hat{\boldsymbol{x}} - \boldsymbol{W} \boldsymbol{x} ||_F^2 \tag{6}$$

4 OMR ON GELU, H-SWISH

Except for Conv-ReLU-Conv and positive nonlinear function like ReLU6/Sigmoid, the core of OMR, migrating outliers into safe clipping range then compensating in the following layers, can be extended to other structures like Conv-Conv, Linear-Linear and nonlinear function like h-swish, GeLU. The migration comparison is visualized as Figure 2.

Figure 2: OMR on ReLU and GeLU/h-swish