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ABSTRACT

We formally define a feature-space attack where the adversary can perturb data-
points by arbitrary amounts but in restricted directions. By restricting the attack to
a small random subspace, our model provides a clean abstraction for non-Lipschitz
networks which map small input movements to large feature movements. We prove
that classifiers with the ability to abstain are provably more powerful than those
that cannot in this setting. Specifically, we show that no matter how well-behaved
the natural data is, any classifier that cannot abstain will be defeated by such an
adversary. However, by allowing abstention, we give a parameterized algorithm
with provably good performance against such an adversary when classes are reason-
ably well-separated in feature space and the dimension of the feature space is high.
We further use a data-driven method to set our algorithm parameters to optimize
over the accuracy vs. abstention trade-off with strong theoretical guarantees. Our
theory has direct applications to the technique of contrastive learning, where we
empirically demonstrate the ability of our algorithms to obtain high robust accuracy
with only small amounts of abstention in both supervised and self-supervised set-
tings. Our results provide a first formal abstention-based gap, and a first provable
optimization for the induced trade-off in an adversarial defense setting.

1 INTRODUCTION

A substantial body of work has shown that deep networks can be highly susceptible to adversarial
attacks, in which minor changes to the input lead to incorrect, even bizarre classifications (Nguyen
et al., 2015; Moosavi-Dezfooli et al., 2016; Su et al., 2019; Brendel et al., 2018; Shamir et al., 2019).
Much of this work has considered `p-norm adversarial examples, but there has also been recent
interest in exploring adversarial models beyond bounded `p-norm (Brown et al., 2018; Engstrom
et al., 2017; Gilmer et al., 2018; Xiao et al., 2018; Alaifari et al., 2019). What these results have in
common is that changes that either are imperceptible or should be irrelevant to the classification task
can lead to drastically different network behavior.

One reason for this vulnerability to adversarial attack is the non-Lipschitzness property of typical
neural networks: small but adversarial movements in the input space can often produce large
perturbations in the feature space. In this work, we consider the question of whether non-Lipschitz
networks are intrinsically vulnerable, or if they could still be made robust to adversarial attack, in
an abstract but (we believe) instructive adversarial model. In particular, suppose an adversary, by
making an imperceptible change to an input x, can cause its representation F (x) in feature space (the
penultimate layer of the network) to move by an arbitrary amount: will such an adversary always
win? Clearly if the adversary can modify F (x) by an arbitrary amount in an arbitrary direction,
then yes. But what if the adversary can modify F (x) by an arbitrary amount but only in a random
direction (which it cannot control)? In this case, we show an interesting dichotomy: if the classifier
must output a classification on any input it is given, then yes the adversary will still win, no matter
how well-separated the classes are in feature space and no matter what decision surface the classifier
uses. However, if the classifier is allowed to abstain, then it can defeat such an adversary so long as
natural data of different classes are reasonably well-separated in feature space. Our results hold for
generalizations of these models as well, such as adversaries that can modify feature representations
in random low-dimensional subspaces, or directions that are not completely random. More broadly,
our results provide a theoretical explanation for the importance of allowing abstaining, or selective
classification, in the presence of adversarial attack.
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Figure 1: Illustration of a non-Lipschitz feature mapping using a deep network.

Apart from providing a useful abstraction for non-Lipschitz feature embeddings, our model may be
viewed as capturing an interesting class of real attacks. There are various global properties of an
image, such as brightness, contrast, or rotation angle whose change might be “perceptible but not
relevant” to classification tasks. Our model could also be viewed as an abstraction of attacks of that
nature. Feature space attacks of other forms, where one can perturb abstract features denoting styles,
including interpretable styles such as vivid colors and sharp outlines and uninterpretable ones, have
also been empirically studied in (Xu et al., 2020; Ganeshan & Babu, 2019).

An interesting property of our model is that it is critical to be able to refuse to predict: any algorithm
which always predicts a class label—therefore without an ability to abstain—is guaranteed to perform
poorly. This provides a first formal hardness result about abstention in adversarial defense, and also
a first provable negative result in feature-space attacks. We therefore allow the algorithm to output
“don’t know” for some examples, which, as a by-product of our algorithm, serves as a detection
mechanism for adversarial examples. It also results in an interesting trade-off between robustness and
accuracy: by controlling how frequently we refuse to predict, we are able to trade (robust) precision
off against recall. We also provide results for how to provably optimize for such a trade-off using
a data-driven algorithm. Our strong theoretical advances are backed by empirical evidence in the
context of contrastive learning (He et al., 2020; Chen et al., 2020; Khosla et al., 2020).

1.1 OUR CONTRIBUTIONS

Our work tackles the problem of defending against adversarial perturbations in a random feature
subspace, and advances the theory and practice of robust machine learning in multiple ways.

• We introduce a formal model that captures feature-space attacks and the effect of non-
Lipschitzness of deep networks which can magnify input perturbations.

• We begin our analysis with a hardness result concerning defending against adversary without
the option of “don’t know”. We show that all classifiers that partition the feature space
into two or more classes—thus without an ability to abstain—are provably vulnerable to
adversarial examples for at least one class of examples with nearly half probability.

• We explore the power of abstention option: a variant of nearest-neighbor classifier with
the ability to abstain is provably robust against adversarial attacks, even in the presence of
outliers in the training data set. We characterize the conditions under which the algorithm
does not output “don’t know” too often.

• We leverage and extend dispersion techniques from data-driven decision making, and present
a novel data-driven method for learning data-specific optimal hyperparameters in our defense
algorithms to simultaneously obtain high robust accuracy and low abstention rates. Unlike
typical hyperparameter tuning, our approach provably converges to a global optimum.

• Experimentally, we show that our proposed algorithm achieves certified adversarial robust-
ness on representations learned by supervised and self-supervised contrastive learning. Our
method significantly outperforms algorithms without the ability to abstain.

2 RELATED WORK

Adversarial robustness with abstention options. Classification with abstention option (a.k.a. selec-
tive classification (Geifman & El-Yaniv, 2017)) is a relatively less explored direction in the adversarial
machine learning. Hosseini et al. (2017) augmented the output class set with a NULL label and trained
the classifier to reject the adversarial examples by classifying them as NULL; Stutz et al. (2020)
and Laidlaw & Feizi (2019) obtained robustness by rejecting low-confidence adversarial examples
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according to confidence thresholding or predictions on the perturbations of adversarial examples.
Another related line of research to our method is the detection of adversarial examples (Grosse et al.,
2017; Li & Li, 2017; Carlini & Wagner, 2017; Ma et al., 2018; Meng & Chen, 2017; Metzen et al.,
2017; Bhagoji et al., 2018; Xu et al., 2017; Hu et al., 2019). However, theoretical understanding
behind the empirical success of adversarial defenses with an abstention option remains elusive.

Data-driven decision making. Data-driven algorithm selection refers to choosing a good algorithm
from a parameterized family of algorithms for given data. It is known as “hyperparameter tuning” to
machine learning practitioners and typically involves a “grid search”, “random search” (Bergstra &
Bengio (2012)) or gradient-based search, with no guarantees of convergence to a global optimum. It
was formally introduced to the theory of computing community by Gupta & Roughgarden (2017) as
a learning paradigm, and was further extended in (Balcan et al., 2017). The key idea is to model the
problem of identifying a good algorithm from data as a statistical learning problem. The technique
has found useful application in providing provably better algorithms for several domains including
clustering, mechanism design, and mixed integer programs, and providing guarantees like differential
privacy and adaptive online learning (Balcan et al., 2018a;b; 2020). For learning in an adversarial
setting, we provide the first demonstration of the effectiveness of data-driven algorithm selection in a
defense method to optimize over the accuracy-abstention trade-off with strong theoretical guarantees.

3 PRELIMINARIES

Notation. We will use bold lower-case letters such as x and y to represent vectors, lower-case letters
such as x and y to represent scalars, and calligraphy capital letters such as X , Y and D to represent
distributions. Specifically, we denote by x ∈ X the sample instance, and by y ∈ Y the label, where
X ⊆ Rn1 and Y indicate the image and label spaces, respectively. Denote by F : X → Rn2 the
feature embedding which maps an instance to a high-dimensional vector in the latent space F (X ). It
can be parameterized, e.g., by deep neural networks. We will frequently use v ∈ Rn2 to represent an
adversarial perturbation in the feature space. Denote by dist(·, ·) the distance between any two vectors
in the image or feature space. Examples of distances include dist(x1,x2) = ‖x1 − x2‖—the one
induced by vector norm. We use B(x, τ) to represent a neighborhood of x: {x′ : dist(x,x′) ≤ τ} in
the image or feature space. We will frequently denote by DX the distribution of instances in the input
space, by DX|y the distribution of instances in the input space conditioned on the class y, by DF (X )

the distribution of features, and by DF (X )|y the distribution of features conditioned on the class y.

3.1 RANDOM FEATURE SUBSPACE THREAT MODEL

In principle, the adversarial example for a given labeled data (x, y) is a data point x′ that causes a
classifier to output a different label on x′ than the true label y. Probably one of the most popular
adversarial examples is the norm-bounded perturbation in the input space. Despite a large literature
devoted to defending against norm-bounded adversary by improving the Lipschitzness of neural
network as a function mapping from input space to feature space (Zhang et al., 2019; Yang et al.,
2020), it is typically not true that small perturbation in the input space necessarily implies small
modification in the feature space. In this paper, we study a threat model where an adversary can
modify the data by a large amount in the feature space. Note that because this large modification in
feature space is assumed to come from a small perturbation in input space, we always assume that
the true correct label y is the same for x′ as for x. Our model highlights the power of abstention in
the adversarial learning: there is a provable separation when we have and do not have an abstention
option under our threat model.

Our threat model. In the setting of (robust) representation learning, we are given a set of training
instances x1, ...,xm ∈ X . Let x be an n1-dimensional test input for classification. The input is
embedded into a high n2-dimensional feature space using a deep neural network F . We predict the
class of x by a prediction function on F (x) which can potentially output “don’t know”. The adversary
may corrupt F (x) such that the modified feature vector is restricted in a random n3-dimensional
affine subspace denoted by S + {F (x)}, while the perturbation magnitude might be arbitrarily large.
The adversary is given access to everything including F , x, S and the true label of x. Throughout
the paper, we will refer adversary and adversarial example to this threat model.
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Algorithm 1 ROBUSTCLASSIFIER(τ, σ)

1: Input: A test feature F (x) (potentially an adversarial example), a set of training features F (xi)
and their labels yi, i ∈ [m], a threshold parameter τ , a separation parameter σ.

2: Preprocessing: Delete training examples F (xi) if minj∈[m],yi 6=yj dist(F (xi), F (xj)) < σ
3: Output: A predicted label of F (x), or “don’t know”.
4: if mini∈[m] dist(F (x), F (xi)) < τ then
5: Return yargmini∈[m] dist(F (x),F (xi))

6: else
7: Return “don’t know”

3.2 A META-ALGORITHM FOR INFERENCE-TIME ROBUSTNESS

Given a test data x, let r denote the shortest distance between F (x) and any training embedding
F (xi) of different labels. Throughout the paper, we consider the prediction rule that we classify
an unseen (and potentially adversarially modified) example with the class of its nearest training
example provided that the distance between them is at most τ ; otherwise the algorithm outputs
“don’t know” (see Algorithm 1 and Figure 2). The adversary is able to corrupt F (x) by a carefully-
crafted perturbation along a random direction, i.e., F (x) + v, where v is an adversarial vector of
arbitrary length in a random n3-dimensional subspace of Rn2 . The parameter τ trades the success
rate off against the abstention rate; when τ →∞, our algorithm is equivalent to the nearest-neighbor
algorithm. We also preprocess to remove outliers and points too close to them.
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Figure 1: Adversarial misclassification for nearest-neighbor predictor

Some comments/further questions:

2.1 How do the bounds depend on n1, n2?

2.1.1 We claim the above ✏2

r2 bound can be generalized to
�
✏
r

�n2�n1
upper bound on probability of error

in the general case.

2.1.2 This bound should be tight i.e. show ⌦
⇣�

✏
r

�n2�n1
⌘

lower bound.

TODO: Add a concrete theorem here.

2.2 This indicates that a ‘nice’ F could cluster together points from same class into small geometric regions,
to give an even better bound. Well separation already boosts the above bound as it improves with
increasing r. Can we extend sample complexity and prediction confidence bounds for F to robust
bounds for our setting?

– Concretely, if we have that F +h have a sample complexity of m(✏, �), then in the above adversary
model the failure probability is only increased by the above upper bound. We should therefore
get a slightly weaker sample complexity bound for our model. Also look at what we can say about
accuracy assuming adversary did not perturb the input.

2.3 The bound using n seems conservative, examples with the same label as x would not lead to misclas-
sification for example. Also ‘directions’ where you may get adversarially close to examples of a fixed
class probably overlap/correlate.

– Can we extend the above argument about individual training points to regions/clusters corre-
sponding to individual classes and get something tighter? We’ll probably also need to consider
probability mass of input points to overcome low mass examples that violate our assumptions.
Ideally we want our results to improve with more training examples.

2.4 Probabilistic Lipschitzness [2] is an assumption on ‘data niceness’ which can give sample complexity
guarantees for NN algorithm which scale with this ‘niceness’ of data distribution.

– It looks like Probabilistic Lipschitzness does not directly apply to our model (captures standard
threat model better), but we might want to introduce a similar definition for our setting.

2.5 Reducing ✏ improves the above bound but at the cost of more “don’t knows”. We might want to
quantify this trade-o↵ of accuracy of output vs dismissibility of input.

3 Robust PCA

F (x) is low-rank by design, and therefore L0 perturbations to it can be detected/resolved using the Robust
PCA method. Notice that this approach can be thought of as more than just a data assumption, even if x
is full rank, embedding into F (x) results in n1 dimensional manifolds in n2 > n1 dimensional space.

We currently treat this as a separate direction to be looked at after Sections 2 and 4. Unlike Section 2,
here we potentially expect unsupervised results.
TODO(Dravy, Hongyang): Add more details and further questions.
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Figure 2: Adversarial misclassification for nearest-neighbor predictor.

4 NEGATIVE RESULTS WITHOUT AN ABILITY TO ABSTAIN

Several negative results are known for defending against adversarial examples beyond norm-bounded
settings. For example, Shamir et al. (2019) provably show existence of targeted adversarial examples
with small hamming distance in the input space to their clean examples. For feature-space attacks,
several empirical negative results are known (Xu et al., 2020; Ganeshan & Babu, 2019). We present a
hardness result concerning defenses without an ability to abstain, and prove that such defenses are
inevitably doomed against our feature-space attacks.
Theorem 4.1. For any classifier that partitions Rn2 into two or more classes, any data distribution
D, any δ > 0 and any feature embedding F , there must exist at least one class y∗, such that for
at least a 1 − δ probability mass of examples x from class y∗ (i.e., x is drawn from DX|y∗), for a
random unit-length vector v, with probability at least 1/2− δ for some δ0 > 0, F (x) + δ0v is not
labeled y∗ by the classifier. In other words, there must be at least one class y∗ such that for at least
1− δ probability mass of points x of class y∗, the adversary wins with probability at least 1/2− δ.

Proof. Without loss of generality, we assume that the feature embedding F is an identity mapping.
Define rδ to be a radius such that for every class y, at least a 1− δ probability mass of examples x of
class y lie within distance rδ of the origin. Let R = rδ

√
n2/δ. R is defined to be large enough such

that if we take a ball of radius R and move it by a distance rδ , at least a 1− δ fraction of the volume
of the new ball is inside the intersection with the old ball. Now, let B be the ball of radius R centered
at the origin. Let vol(B) denote the volume of B and let voly(B) denote the volume of the subset of B
that is assigned label y by the classifier. Let y∗ be any label such that voly∗(B)/vol(B) ≤ 1/2. Such
a class y∗ exists because we do not have the option to output “don’t know”. Now by the definition
of y∗, a point z picked uniformly at random from B has probability at least 1/2 of being classified
differently from y∗. This implies that, by the definition of R, if x is within distance rδ of the origin,
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then a point zx that is picked uniformly at random in the ball Bx of radius R centered at x has
probability at least 1/2− δ of being classified differently from y∗. This immediately implies that if
we choose a random unit-length vector v, then with probability at least 1/2− δ, there exists δ0 > 0
such that x+ δ0v is classified differently from y∗, since we can think of choosing v by first sampling
zx from Bx and then defining v = (zx − x)/‖zx − x‖2. So, the theorem follows from the fact that,
by the definition of rδ , at least 1− δ probability mass of examples x from class y∗ are within distance
rδ of the origin.

We remark that our lower bound applies to any classifier and exploits the fact that a classifier without
abstention must label the entire feature space. For a simple linear decision boundary (center of
Figure 3), a perturbation in any direction (except parallel to the boundary) can cross the boundary
with an appropriate magnitude. The left and right figures show that if we try to ‘bend’ the decision
boundary to ‘protect’ one of the classes, the other class is still vulnerable. Our argument formalizes
and generalizes this intuition, and shows that there must be at least one vulnerable class irrespective
of how you may try to shape the class boundaries, where the adversary succeeds in a large fraction of
directions.

Figure 3: A simple example to illustrate Theorem 4.1.

Theorem 4.1 implies that all classifiers that partitions Rn2 into two or more classes—thus without an
ability to abstain—are vulnerable to adversarial examples for at least one class of data with nearly
half probability. Despite much effort has been devoted to empirically investigating the power of
“don’t know” in the adversarial robustness, theoretical understanding behind the empirical success of
these methods remains elusive. To the best of our knowledge, our work is the first result that provably
demonstrates the power of “don’t know” in the algorithmic design of adversarially robust classifiers.

5 POSITIVE RESULTS WITH AN ABILITY TO ABSTAIN

Theorem 4.1 gives a hardness result of robust classification without abtention. In this section, we
explore the power of abstaining and show classifiers with an ability to abstain are provably robust.

Given a test instance x ∼ DX , recall that r denotes the shortest distance between F (x) ∈ Rn2 and
any training embedding F (xi) ∈ Rn2 with a different label. The adversary is allowed to corrupt
F (x) with an arbitrarily large perturbation in a uniform-distributed subspace S of dimension n3.
Consider the prediction rule that we classify the unseen example F (x) ∈ Rn2 with the class of
its nearest training example provided that the distance between them is at most τ ; otherwise the
algorithm outputs “don’t know” (see Algorithm 1 when σ = 0). Denote by Exadv(f) := ES∼S1{∃e ∈
S + F (x) ⊆ Rn2 s.t. f(e) 6= y and f(e) does not abstain} the robust error of a given classifier f
for classifying instance x. Our analysis leads to the following positive results on this algorithm.

Theorem 5.1. Let x ∼ DX be a test instance, m be the number of training examples and r be
the shortest distance between F (x) and F (xi) where xi is a training point from a different class.

Suppose τ = o
(
r
√

1− n3

n2

)
. The robust error of Algorithm 1, Exadv(ROBUSTCLASSIFIER(τ, 0)), is

at most m

(
cτ

r
√

1−n3
n2

)n2−n3

+mcn2−n3
0 , where c > 0 and 0 < c0 < 1 are absolute constants.

Proof Sketch. We begin our analysis with the case of n3 = 1. Suppose we have a training example
x′ of another class, and suppose F (x) and F (x′) are at distance D in the feature space. Because
τ = o (D), the probability that the adversary can move F (x) to within distance τ of F (x′) should
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be roughly the ratio of the surface area of a sphere of radius τ to the surface area of a sphere of
radius D, which is at most

(
O
(
τ
D

))n2−1 ≤
(
O
(
τ
r

))n2−1. The analysis for the general case of n3
follows from a pealing argument: note that the random subspace in which the adversary vector is
restricted to lie can be constructed by first sampling a vector v1 uniformly at random from a unit
sphere in the ambient space Rn2 centered at 0; fixing v1, we then sample a vector v2 uniformly at
random from a unit sphere in the null space of span{v1}; we repeat this procedure n3 times and let
span{v1,v2, ...,vn3} be the desired adversarial subspace. For each step of construction, we apply

the same argument as that of n3 = 1 with D = Ω
(
r
√

n2−i
n2

)
by a high probability, if we project

F (x) and F (x′) to a random subspace of dimension n2 − i. Finally, a union bound over m training
points completes the proof. �

Trade-off between success probability and abstention rate. Theorem 5.1 captures the trade-off
between the success probability of an algorithm and the abstention rate: a smaller value of τ increases
the success probability of the algorithm, while it also encourages Algorithm 1 to output “don’t
know” more often. A related line of research to this observation is the trade-off between robustness
and accuracy: Zhang et al. (2019); Tsipras et al. (2019) showed that there might be no predictor
in the hypothesis class that has low natural and robust errors; even such a predictor exists for the
well-separated data (Yang et al., 2020), Raghunathan et al. (2020) showed that the natural error
could increase by adversarial training if we only have finite number of data. To connect the two
trade-offs, we note that a high success probability of ROBUSTCLASSIFIER(τ, 0) in Algorithm 1 tends
to avoid the algorithm from predicting wrong labels for adversarial examples, while the associated
high abstention rate encourages the algorithm to output “don’t know” even for natural examples, thus
leading to a trivial non-accurate classifier.

5.1 A MORE GENERAL ADVERSARY WITH BOUNDED DENSITY

We extend our results to a more general class of adversaries, which have a bounded distribution over
the space of linear subspaces of a fixed dimension n3 and the adversary can perturb a test feature
vector arbitrarily in the sampled adversarial subspace.
Theorem 5.2. Consider the setting of Theorem 5.1, with an adversary having a κ-bounded distri-
bution over the space of linear subspaces of a fixed dimension n3 for perturbing the test point. If
E(τ, r) denotes the bound on error rate in Theorem 5.1 for ROBUSTCLASSIFIER(τ, 0) in Algorithm
1, then the error bound of the same algorithm against the κ-bounded adversary is O(κE(τ, r)).

5.2 OUTLIER REMOVAL AND IMPROVED UPPER BOUND

The upper bounds above assume that the data is well-separated in the feature space. For noisy data
and good-but-not-perfect embeddings, the condition may not hold. In Theorem E.1 (in Appendix E)
we show that we obtain almost the same upper bound on failure probability under weaker assumptions
by exploiting the noise removal threshold σ.

5.3 CONTROLLING ABSTENTION RATE ON NATURAL DATA

We show that we can control the frequency of outputting “don’t know”, when the data are nicely
distributed according to the following generative assumption. Intuitively, it says that for every label
class one can cover most of the distribution of the class with (potentially overlapping) balls of a fixed
radius, each having a small lower bound on the density contained. This holds for well-clustered
datasets (as is typical for feature data) for a sufficiently large radius.
Assumption 1. We assume that at least 1− δ fraction of mass of the marginal distribution DF (X )|y
over Rn2 can be covered by N balls B1, B2, ... BN of radius τ/2 and of mass PrDF (X)

[Bk] ≥
C0

m

(
n2 logm+ log 4N

β

)
, where C0 > 0 is an absolute constant and δ, β ∈ (0, 1).

Our analysis leads to the following guarantee on the abstention rate.
Theorem 5.3. Suppose that F (x1), ..., F (xm) arem training instances i.i.d. sampled from marginal
distribution DF (X ). Under Assumption 1, with probability at least 1− β/4 over the sampling, we
have Pr(∪mi=1B(F (xi), τ)) ≥ 1− δ.
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Theorem 5.3 implies that when Pr[Bk] ≥ β
N and m = Ω(n2N

β log n2N
β ), with probability at least

1−β/4 over the sampling, we have Pr(∪mi=1B(F (xi), τ)) ≥ 1− δ. Therefore, with high probability,
the algorithm will output “don’t know” only for an δ fraction of natural data.

6 LEARNING DATA-SPECIFIC OPTIMAL THRESHOLDS

Given an embedding function F and a classifier fτ which outputs either a predicted class if the
nearest neighbor is within distance τ of a test point or abstains from predicting, we want to evaluate
the performance of fτ on a test set T against an adversary which can perturb a test feature vector
in a random subspace S ∼ S. To this end, we define Eadv(τ) := ES∼S 1

|T |
∑

(x,y)∈T 1{∃e ∈
S+F (x) ⊆ Rn2 s.t. f(e) 6= y and fτ (e) does not abstain} as the robust error on the test set T , and
Dnat(τ) := 1

|T |
∑

(x,y)∈T 1{fτ (F (x)) abstains} as the abstention rate on the natural data. Eadv(τ)

and Dnat(τ) are monotonic in τ . The robust error Eadv(τ) is optimal at τ = 0, while we abstain
from prediction all the time (i.e., Dnat(τ) = 1). A simple approach is to fix an upper limit d∗ on
Dnat(τ), which corresponds to the maximum abstention rate on natural data under our budget. Then
it is straightforward to search for the optimal τ∗ such that Dnat(τ

∗) ≈ d∗ by using nearest neighbor
distances of test points. For τ < τ∗ we have a higher abstention rate, and when τ > τ∗ we have a
higher robust error rate. A potential problem with this approach is that Dnat(τ) is non-Lipschitz, so
small variation in τ can possibly make the abstention rate significantly higher than d∗.

An alternative objective which captures the trade-off between abstention rate and accuracy is defined
as g(τ) := Eadv(τ) + cDnat(τ), where c is a positive constant. If, for example, we are willing to
take a one percent increase of the abstention rate for a two percent drop in the error rate, we could
set c to be 1

2 . We can optimize g(τ) in a data-driven fashion and obtain theoretical guarantee on the
convergence to a global optimum. In the following, we consider the case where the test examples
appear in an online fashion in small batches of size b, and we set the threshold τ adaptively by a
low-regret algorithm. We note in Corollary 6.3, using online-to-batch conversion, that our results
imply a uniform convergence bound for objective g(τ) in the supervised setting. Details of proofs in
this section can be found in Appendix H.

The significance of data-driven design in this setting is underlined by the following two observations.
Firstly, as noted above, optimization for τ is difficult due to the non-Lipschitzness nature of Dnat(τ)
and the intractability of characterizing the objective function g(τ) exactly due to Eadv(τ). Secondly,
the optimal value of τ can be a complex function of the data geometry and sampling rate. We
illustrate this by exact computation of optimal τ for a simple intuitive setting: consider a binary
classification problem where the features lie uniformly on two one-dimensional manifolds embedded
in two-dimensions (i.e., n2 = 2, see Figure 4). Assume that the adversary perturbs in a uniformly
random direction (n3 = 1). For this setting, in Appendix J we show that

Theorem 6.1. Let τ∗ := arg maxτ∈R+ g(τ) and β = 2πcr
D . For the setting considered above, if

we further assume D = o(r) and m = ω (log β), then there is a unique value of τ∗ in [0, D/2).

Furthermore, we have τ∗ = Θ
(
D log(βm)

m

)
if m > 1

β ; otherwise, τ∗ = 0.

D

r

Class A Class B

D

Figure 4: A simple intuitive example where we compute the optimal value of the abstention threshold
exactly. Classes A and B are both distributed uniformly on one-dimensional segments of length D,
embedded collinear and at distance r in R2.

The remaining section summarizes our main theoretical results.

Theorem 6.2. Assume τ is o
(
min{m−1/n2 , r}

)
, and the data distribution is continuous, κ-bounded,

positive and has bounded partial derivatives. If τ is set using a continuous version of the multiplicative
updates algorithm (Algorithm 2 in Appendix H, Balcan et al. (2018a)), then with probability at least

1− δ, the expected regret in T rounds is bounded by O
(√

n2T log
(
κRTmb
δrn2−n3

))
, where R is a bound

7



Under review as a conference paper at ICLR 2021

on the largest distance between any two training points, b is the batch size, and r is the smallest
distance between points of different labels.

Corollary 6.3. Suppose we run the online algorithm of Theorem 6.2 on a validation set of size T , and
use a randomized threshold τ̂ on the test set drawn from a uniform distribution over the thresholds
τ1, . . . , τT used in online learning. If the threshold which maximizes g(τ) is τ∗, then with probability

greater than 1− δ, we have |E[g(τ̂)]− g(τ∗)| ≤ O
(√

n2

T log
(
κRTmb
δrn2−n3

))
.

Remark 1. The results can be generalized to a bounded density adversary (Corollary H.3).

Remark 2. The above analysis can be extended to the problem of optimizing over σ by formulating
the objective as function of two parameters, g(τ, σ) := Eadv(τ, σ) + cDnat(τ, σ) within a range
σ ∈ [r, s]. For fixed τ , both Eadv(τ, σ) and Dnat(τ, σ) are piece-wise constant and monotonic.
The proof of Lipschitzness of the pieces can be adapted easily to the case of σ ≥ r (Lemma H.2).
Discontinuities in Eadv(τ, ·) and Dnat(τ, ·) can be bounded using the upper bound s for σ (Lemma
H.4). Finally, the number of discontinuities in g(τ, σ) in a ball of radius w can be upper bounded by
a product of the number of discontinuities in g(τ, ·) and g(·, σ) in intervals of width w.

7 EXPERIMENTS ON CONTRASTIVE LEARNING

Theorem 5.1 sheds light on algorithmic designs of robust learning of feature embedding F . In order
to preserve robustness against adversarial examples regarding a given test point x, in the feature
space the theorem suggests minimizing τ—the closest distance between F (x) and any training
feature F (xi) of the same label, and maximizing r—the closest distance between F (x) and any
training feature F (xi) of different labels. This is conceptually consistent with the spirit of the
nearest-neighbor algorithm, a.k.a. contrastive learning when we replace the max operator with the
softmax operator for differentiable training:

min
F
− 1

m

∑

i∈[m]

log



∑
j∈[m],j 6=i,yi=yj e

− ‖F (xi)−F (xj)‖
2

T

∑
k∈[m],k 6=i e

− ‖F (xi)−F (xk)‖2
T


 , (1)

where T > 0 is the temperature parameter. Loss (1) is also known as the soft-nearest-neighbor
loss in the context of supervised learning (Frosst et al., 2019), or the InfoNCE loss in the setting of
self-supervised learning (He et al., 2020).

7.1 CERTIFIED ADVERSARIAL ROBUSTNESS AGAINST EXACT COMPUTATION OF ATTACKS

We verify the robustness of Algorithm 1 when the representations are learned by contrastive learning.
Given a embedding function F and a classifier f which outputs either a predicted class or abstains
from predicting, recall that we define the natural and robust errors, respectively, as Enat(f) :=
E(x,y)∼D1{f(F (x)) 6= y and f(F (x)) does not abstain}, and Eadv(f) := E(x,y)∼D,S∼S1{∃e ∈
S + F (x) ⊆ Rn2 s.t. f(e) 6= y and f(e) does not abstain}, where S ∼ S is a random adversarial
subspace of Rn2 with dimension n3. Dnat(f) := E(x,y)∼D1{f(F (x)) abstains} is the abstention
rate on the natural examples. Note that the robust error is always at least as large as the natural error.

Self-supervised contrastive learning setup. Our experimental setup follows that of SimCLR (Chen
et al., 2020). We use the ResNet-18 architecture (He et al., 2016) for representation learning with a
two-layer projection head of width 128. The dimension of the representations is 512. We set batch
size 512, temperature T = 0.5, and initial learning rate 0.5 which is followed by cosine learning
rate decay. We sequentially apply four simple augmentations: random cropping followed by resize
back to the original size, random flipping, random color distortions, and randomly converting image
to grayscale with a probability of 0.2. In the linear evaluation protocol, we set batch size 512 and
learning rate 1.0 to learn a linear classifier in the feature space by empirical risk minimization.

Supervised contrastive learning setup. Our experimental setup follows that of Khosla et al. (2020).
We use the ResNet-18 architecture for representation learning with a two-layer projection head of
width 128. The dimension of the representations is 512. We set batch size 512, temperature T = 0.1,
and initial learning rate 0.5 which is followed by cosine learning rate decay. We sequentially apply
four simple augmentations: random cropping followed by resize back to the original size, random

8
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Table 1: Natural error Enat and robust error Eadv on the CIFAR-10 dataset when n3 = 1 and the
512-dimensional representations are learned by contrastive learning, where Dnat represents the
fraction of each algorithm’s output of “don’t know” on the natural data. We report values for σ ≈ τ
as they tend to give a good abstention-error trade-off w.r.t. σ.

Contrastive Linear Protocol Ours (τ = 3.0) Ours (τ = 2.0)
Enat Eadv Enat Eadv Dnat Enat Eadv Dnat

(σ = 0)
Self-supervised 8.9% 100.0% 15.4% 40.7% 2.2% 14.3% 26.2% 28.7%

Supervised 5.6% 100.0% 5.7% 60.5% 0.0% 5.7% 33.4% 0.0%

(σ = 0.9τ)
Self-supervised 8.9% 100.0% 7.2% 9.4% 12.9% 10.0% 17.7% 29.9%

Supervised 5.6% 100.0% 6.2% 18.9% 0.0% 5.6% 22.0% 0.1%

(σ = τ)
Self-supervised 8.9% 100.0% 1.1% 1.2% 33.4% 2.1% 3.1% 49.9%

Supervised 5.6% 100.0% 1.9% 2.8% 10.6% 4.1% 4.8% 3.3%

flipping, random color distortions, and randomly converting image to grayscale with a probability
of 0.2. In the linear evaluation protocol, we set batch size 512 and learning rate 5.0 to learn a linear
classifier in the feature space by empirical risk minimization.

In both self-supervised and supervised setups, we compare the robustness of the linear protocol with
that of our defense protocol in Algorithm 1 under exact computation of adversarial examples using
a convex optimization program in n3 dimensions and m constraints. Algorithm 4 in the appendix
provides an efficient implementation of the attack.

Experimental results. We summarize our results in Table 1. Comparing with a linear protocol, our
algorithms have much lower robust error. Note that even if abstention is added based on distance from
the linear boundary, sufficiently large perturbations will ensure the adversary can always succeed.
For an approximate adversary which can be efficiently implemented for large n3, see Appendix L.2.

7.2 ROBUSTNESS-ABSTENTION TRADE-OFF

The threshold parameter τ captures the trade-off between the robust accuracy Aadv := 1 − Eadv
and the abstention rate Dnat on the natural data. We report both metrics for different values of τ for
supervised and self-supervised constrastive learning. The supervised setting enjoys higher adversarial
accuracy and a smaller abstention rate for fixed τ ’s due to the use of extra label information. We
plot Aadv against Dnat for Algorithm 1 as hyperparameters vary. For small τ , both accuracy and
abstention rate approach 1.0. As the threshold increases, the abstention rate decreases rapidly and
our algorithm enjoys good accuracy even with small abstention rates. For τ →∞ (i.e. the nearest
neighbor search), the abstention rate on the natural data Dnat is 0% but the robust accuracy is also
roughly 0%. Increasing σ (for small σ) gives us higher robust accuracy for the same abstention rate.
Too large σ may also lead to degraded performance.

Figure 5: Adversarial accuracy (i.e., rate of adversary failure) vs. abstention rate as threshold τ varies
for n3 = 1 and different outlier removal thresholds σ.
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A ADDITIONAL RELATED WORKS

Adversarial examples beyond norm-bounded models. Adversarial example for a given labeled
data (x, y) is a data point x′ that causes a classifier to output a wrong label on x′. The adversarial
examples typically come in the form of restricted attacks such as ε-bounded perturbations (Szegedy
et al., 2013; Madry et al., 2018; Zhang et al., 2019; Blum et al., 2020), or unrestricted attacks such
as adversarial rotations, translations, and deformations (Brown et al., 2018; Engstrom et al., 2017;
Gilmer et al., 2018; Xiao et al., 2018; Alaifari et al., 2019). This work is on the latter setting, where
we assume that the attacker is allowed to corrupt the representation of a test instance arbitrarily in a
random subspace.

Feature-space attacks. Different from most existing attacks that directly perturb input pixels, there
are a few prior works that focus on perturbing abstract features as ours. More specifically, the
subspaces of features typically characterize styles, which include interpretable styles such as vivid
colors and sharp outlines, and uninterpretable ones (Xu et al., 2020). Ganeshan & Babu (2019)
proposed feature disruptive attack by generating image perturbation that disrupts features at each
layer of the network and causes deep-features to be highly corrupt. They showed that the attacks
generate strong adversaries for image classification, even in the presence of various defense measures.
Despite a large amount of empirical works on adversarial feature-space attacks, many fundamental
questions remain open, such as developing a provable defense against feature-space attacks.

Contrastive learning. Contrastive learning has received significant attention due to the recent
popularity of self-supervised learning: many recent studies (Wu et al., 2018; Oord et al., 2018;
Hjelm et al., 2018; Zhuang et al., 2019; Hénaff et al., 2019; Tian et al., 2019; Bachman et al.,
2019) present promising results of unsupervised representation learning against their supervised
counterparts. Representative self-supervised contrastive learning includes MoCo(v2) (He et al.,
2020) and SimCLR (Chen et al., 2020). In ImageNet classification task, both methods almost
match the accuracy of their supervised counterparts; in 7 detection/segmentation tasks on PASCAL
VOC, COCO, and other datasets, MoCo (He et al., 2020) can outperform its supervised pre-training
counterpart sometimes by large margins. A more recent work of Khosla et al. (2020) proposed
supervised contrastive learning. The intuition behind supervised contrastive learning is to use soft
k-nearest-neighbor classifier to replace the linear classifier and cross-entropy loss in the traditional
design of network architecture and obtains improved performance than the cross-entropy training.

B PROOF OF THEOREM 5.1

Theorem 5.1 (Restated). Given a test instance x and let m be the number of training data. Suppose
that τ = o

(
r
√

1− n3

n2

)
. The robust error Exadv(f) of ROBUSTCLASSIFIER(τ, 0) in Algorithm 1 for

classifying x is at most m

(
cτ

r
√

1−n3
n2

)n2−n3

+mcn2−n3
0 , where c > 0 and 0 < c0 < 1 are absolute

constants.

Proof. We begin our analysis with the case of n3 = 1. Suppose we have a training example x′

of another class, and suppose F (x) and F (x′) are at distance D in the feature space. That is,
dist(F (x), F (x′)) = D. Because τ = o (D), the probability that the adversary can move F (x) to
within distance τ of F (x′) should be roughly the ratio of the surface area of a sphere of radius τ to
the surface area of a sphere of radius D, which is at most

(
O
( τ
D

))n2−1
≤
(
O
(τ
r

))n2−1

if the feature space is n2-dimensional.

To analyze the case when the adversary subspace is n3-dimensional, we need the following Random
Projection Theorem.
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Lemma B.1 (Random Projection Theorem1). Let z be a fixed unit length vector in d-dimensional
space and z̃ be the projection of z onto a random k-dimensional subspace. For 0 < δ < 1,

Pr

[∣∣∣∣‖z̃‖22 −
k

d

∣∣∣∣ ≥ δ
k

d

]
≤ e− kδ

2

4 .

Without loss of generality, we assume F (x) = 0 in Rn2 . We use the peeling argument. Note that the
random subspace in which the adversary vector is restricted to lie can be constructed by the following
sampling scheme: we first sample a vector v1 uniformly at random from a unit sphere in the ambient
space Rn2 centered at 0; fixing v1, we then sample a vector v2 uniformly at random from a unit
sphere in the null space of span{v1}; we repeat this procedure n3 times and let span{v1,v2, ...,vn3

}
be the desired subspace. Note that the sampling scheme satisfies the random adversary model.
For the fixed null space null(span{v1, ...,vi}) of dimension n2 − i, according to the analysis of
the case n3 = 1, the failure probability of the algorithm over x′ conditioning on Di is at most
(O(τ/Di))

n2−i−1, where Di represents the distance of F (x) and F (x′) when they are projected to
null(span{v1, ...,vi}). We also note that null(span{v1, ...,vi}) is a random subspace of dimension

n2 − i. Thus by Lemma B.1 (with constant δ), we have Di ≥ Cr
√

n2−i
n2

with probability at least

1−e−c′(n2−i), where C, c′ > 0 are absolute constants. Therefore, by the union bound over the choice

of n3 null spaces and the failure probability of the event Di ≥ Cr
√

n2−i
n2

, the failure probability of
the algorithm over x′ is at most

n3∑

i=1

e−c
′(n2−i) +

n3∑

i=1


O


 τ

Cr
√

n2−i
n2





n2−i

≤ cn2−n3
0 +


 cτ

r
√

n2−n3

n2



n2−n3

.

By the union bound over all m training data x′’s completes the proof.

C AN ASYMPTOTICALLY IMPROVED BOUND OF THEOREM 5.1

Theorem C.1. If τ = o(r), the robust error Exadv(f) of ROBUSTCLASSIFIER(τ, 0) in Algorithm

1 for classifying x is at most O
(

m
n2−n3

(
τ
r

)n2−n3 1
B(n3/2,(n2−n3)/2)

)
, where B(·, ·) is the Beta

function.

Remark 3. Theorem C.1 is an asymptotic improvement over Theorem 5.1 for fixed n3 and large n2.

Proof. Let x be the origin. By rotational symmetry, we assume WLOG that the random n3-
dimensional space R is given by xn3+1 = xn3+2 = · · · = xn2 = 0, and x′ is the uniformly
random unit vector (z1, . . . , zn2). Indeed, for a fixed direction from x, the set of subspaces for which
the projection of x′ lies along that direction is constrained by one vector each in the range space
and kernel space, and is therefore in bijection to the set of subspaces associated with another fixed
direction.

The adversary can win if and only if xx′ makes an angle θ ∈
[
π
2 − φ,

π
2

]
with the closest vector in

R, i.e. with (z1, . . . , zn3
, 0, . . . , 0), where φ = arcsin τ

r . This is equivalent to

π

2
− φ ≤ arccos

∑n3

i=1 z
2
i√∑n3

i=1 z
2
i

√∑n2

i=1 z
2
i

≤ π

2
or,

n3∑

i=1

z2i ≤ sin2 φ

i.e. distance from the orthogonal space x1 = x2 = · · · = xn3 = 0 is at most sinφ = τ
r . Applying

Lemma C.2, together with a union bound for the number of training points, gives the result.

1http://www.cs.cornell.edu/courses/cs4850/2010sp/Scribe%20Notes/
Lecture05.pdf
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x x′

in kernel space
in range space

y

Pr[x′]

Figure 6: Rotational symmetry of adversarial subspaces. Let y be a random direction from test point
x, and Pr[x′] be the projection of training point x′ on to xy. For any adversarial space with Pr[x′] as
the projection of x′ on the space, we must have xy in the range space and x′Pr[x′] in the null space.

Lemma C.2. The fraction of points on the surface of the unit (n− 1)-sphere at a distance at most
small ε = o(1) from a fixed (n− k)-hyperplane through its center is at most 2εk

k
A(k−1)A(n−k−1)

A(n−1) ,
where A(m) is the surface-area of the unit m-sphere embedded in m+ 1 dimensions.

Proof. Let the fixed hyperplane be x1 = x2 = · · · = xk = 0. We change the coordinates to a product
of spherical coordinates (ρ is the distance from the hyperplane, r is the orthogonal component of the
radius vector).

xj =





ρSj−1 cosφj if j < k

ρSj−1 if j = k

rTj−k−1 cosαj−k if k < j < n

rTj−k−1 if j = n

where Sl =
∏l
i=1 sinφi, Tl =

∏l
i=1 sinαi. The desired surface area is easier to compute in the new

coordinate system.

The new coordinates are (y1, . . . , yn) = (ρ, φ1, φ2, . . . , φk−1, r, α1, . . . , αn−k−1), and let z =√
r2 + ρ2 =

√∑n
i=1 x

2
i denote the usual radial spherical coordinate. Volume element in this new

coordinate system is given by

dV = |det(J)| dρ dφ1 . . . dφk−1dr dα1 . . . dαn−k−1

where J is the Jacobian matrix, Jij = ∂xi
∂yj

. We can write

J =

[
A 0
0 B

]

where Aij = ∂xi
∂yj

for 1 ≤ i, j ≤ k and Bij = ∂xi+k
∂yj+k

for 1 ≤ i, j ≤ n− k.

By Leibniz formula for determinants, it is easy to see

det(J) = det(A) · det(B)

= ρk−1
(
k−2∏

i=1

sink−i−1 φi

)
· rn−k−1

(
n−k−2∏

i=1

sinn−k−i−1 αi

)

= ρk−1rn−k−1
(
k−2∏

i=1

sink−i−1 φi

)(
n−k−2∏

i=1

sinn−k−i−1 αi

)

Now the surface element is given by

dS =
1

zn−1
dV

dz
=

1

zn−1

(
dV

dr

∂r

∂z
+
dV

dρ

∂ρ

∂z

)
=

1

rzn−2
dV

dr
+

1

ρzn−2
dV

dρ
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Plugging in our computation for dV ,

dS =

(
ρk−1rn−k−2

zn−2
dρ+

ρk−2rn−k−1

zn−2
dr

)(k−2∏

i=1

sink−i−1 φidφi

)(
n−k−2∏

i=1

sinn−k−i−1 αidα1

)

We care about z = 1 and ρ ≤ ε (or r ≥
√

1− ε2). Notice
∫ 1

√
1−ε2

ρk−2rn−k−1

zn−2
dr =

∫ 0

ε

ρk−2rn−k−1
−ρdρ
r

=

∫ ε

0

ρk−1rn−k−2dρ

Thus, using the surface element in the new coordinates and integrating, we get

Area of ε-close points = A(k−1)A(n−k−1) ·2
∫ ε

0

ρk−1rn−k−2dρ ≤ A(k−1)A(n−k−1) · 2ε
k

k

which gives the desired fraction.

D PROOF OF THEOREM 5.2

Theorem 5.2. Consider the setting of Theorem 5.1, with an adversary having a κ-bounded distri-
bution over the space of linear subspaces of a fixed dimension n3 for perturbing the test point. If
E(τ, r) denotes the bound on error rate in Theorem 5.1 for ROBUSTCLASSIFIER(τ, 0) in Algorithm
1, then the error bound of the same algorithm against the κ-bounded adversary is O(κE(τ, r)).

Proof Sketch. To argue upper bounds on failure probability, we consider the set of adversarial
subspaces which can allow the adversary to perturb the test point x close to a training point x′. Let
S(x′, τ) denote the subset of linear subspaces of dimension n3 such that for any S ∈ S(x′, τ) there
exists v ∈ S with x + v ∈ B(x′, τ). Note that from Section C, we can upper bound the fraction
of the total probability space occupied by S(x′, τ) by 1

mE(τ, r), where constants in n2, n3 have
been suppressed. If we show that S(x′, τ) is a measurable set, we can use the κ-boundedness of the
adversary distribution to claim that the failure probability for misclassifying as x′ is upper bounded
by κvol(S) 1

mE(τ, r) = O
(
κ
mE(τ, r)

)
, since the volume of the complete adversarial space S is a

constant in n2, n3. In Lemma D.1 below, we make the stronger claim that S(x′, τ) is convex. We
can then use a union bound on the training points to get a bound on the total failure probability as
O (κE(τ, r)). �

Lemma D.1. Let x,x′ ∈ Rn2 , τ ∈ R+ and S(x′, τ) denote the subset of linear subspaces of
dimension n3 such that for any S ∈ S(x′, τ) there exists v ∈ S with x + v ∈ B(x′, τ). The set
S(x′, τ) is convex.

Proof. Let S, S′ ∈ S(x′, τ). Then we have v ∈ S, v′ ∈ S′ such that x+ v, x+ v′ ∈ B(x′, τ). Let
S∗ = αS + (1− α)S′, α ∈ [0, 1]. Pick v∗ = αv + (1− α)v′ ∈ S∗. x+ v∗ must lie in B(x′, τ) by
convexity of B(x′, τ).

E ERROR UPPER BOUND WITH OUTLIER REMOVAL

We will need the following assumption.

Assumption 2. We assume that at least 1− δ fraction of mass of the marginal distribution DF (X )|y
over Rn2 can be covered by N balls B1, B2, ... BN of radius τ , such that when the δ probability mass
is excluded, each ball has density at least PrDF (X)

[Bk] ≥ C0

m

(
n2 logm+ log 4N

β

)
(where C0 > 0

is an absolute constant and δ, β ∈ (0, 1)), all non-excluded points in each ball have the same label
(call this the ball’s label) and two balls with distinct labels are at least σ > 2τ apart.

Theorem E.1. If τ = o(σ) and m = Ω(n2N
β log n2N

β ), the failure probability of Algorithm 1 is at

most Õ
(
N
(

2τ
σ−2τ

)n2−n3

+ δ + β

)
, where the soft-O notation suppresses constants in n2, n3, and

N, β, δ as in Assumption 2.
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Proof. We claim that the distance of a test point to any training point with a different label is at least
σ−2τ with high probability. To do this we use a covering argument to argue the test point x is within
τ of some training point x∗ of the same label.

Let N(τ, σ) be the number of balls of radius τ needed to cover at least 1− δ probability mass of the
data, such that when the δ probability mass is excluded, each ball has density at least β/N(τ, σ), all
non-excluded points in each ball have the same label and two balls with distinct labels are at least
σ > 2τ apart (Assumption 2). Then with probability 1− δ, the test point x will be within a ball B of
its own label, and for m = Ω(n2N

β log n2N
β ) with probability at least 1− β/4 over the sampling (by

Lemma F.1), a training point x∗ within B would have been sampled. Thus dist(x, x∗) ≤ 2τ . Since
any training point x′ of a different label for x∗ satisfies dist(x∗, x′) > σ, by triangle inequality, we
have dist(x, x′) > σ − 2τ . We can now apply the upper bound of Algorithm 1, together with a union
bound over the failure modes, to get the desired bound on the failure probability.

F PROOF OF THEOREM 5.3

Theorem 5.3 (Restated). Suppose that F (x1), ..., F (xm) are m training instances i.i.d. sampled
from marginal distribution DF (X ). Under Assumption 1, with probability at least 1− β/4 over the
sampling, we have Pr(∪mi=1B(F (xi), τ)) ≥ 1− δ.

Proof. The proofs of Theorem 5.3 are built upon the following lemma from Chaudhuri & Dasgupta
(2010).

Lemma F.1 (Lemma 16, Chaudhuri & Dasgupta (2010)). Suppose {zi}mi=1 ⊆ Rn2 is a sample of m
points drawn independently at random from a distribution DZ over Z . There is a universal constant
C0 > 0 such that for any δ > 0, with probability at least 1− δ/4, for any ball B ⊂ Rn2 , if

Pr[B] ≥ C0

m

(
n2 logm+ log

4

δ

)
,

then there is at least a point zi such that zi ∈ B.

We are now ready to prove Theorem 5.3. By Lemma F.1, for a fixed ball Bk in Assumption 1, there
is at least a sample F (xi) such that F (xi) ∈ Bk with probability at least 1 − β/(4N). Therefore,
with probability at least 1 − β/4 (by the union bound over N balls), for all k ∈ [N ] there is
at least a sample F (xik) ∈ {F (x1), F (x2), ..., F (xm)} such that F (xik) ∈ Bk. This implies
∪mi=1B(F (xi), τ) ⊇ ∪Nk=1Bk, since Bk is a ball of radius τ/2. So with probability at least 1− β/4
over the sampling, we have Pr[∪mi=1B(F (xi), τ)] ≥ Pr[∪Nk=1Bk] ≥ 1− δ.

G AN ALTERNATIVE PROOF OF OUTPUTTING “DON’T KNOW” ON MINORITY
OF INPUTS

Definition 1 (Doubling dimension). A measure DF (X ) with support F (X ) is said to have a doubling
dimension d, if for all points F (x) ∈ F (X ) and all radius τ > 0, we have DF (X )(B(F (x), 2τ)) ≤
2dDF (X )(B(F (x), τ)).

Lemma G.1. Suppose that the measure DF (X ) has a doubling dimension d. Let D be the diameter
of F (X ). Then for any point F (x) ∈ F (X ) and any radius of the form τ = D/2T for certain T ∈ N,
we have DF (X )(B(F (x), τ)) ≥ (τ/D)d.
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Proof. Since D is the diameter of F (X ), we have DF (X )(B(F (x), D)) = 1. Therefore, we have

DF (X )(B(F (x), τ)) = DF (X )(B(F (x), D/2T ))

≥ 2−d · DF (X )(B(F (x), D/2T−1))

≥ · · ·
≥ 2−Td · DF (X )(B(F (x), D))

= 2−Td

= (τ/D)d.

Lemma G.2 (Relating doubling dimension to covering number). Given any radius τ of the form
τ = D/2T for certain T ∈ N, there is a covering of F (X ) using balls of radius τ of size no more
than (2D/τ)d.

Proof. We construct the covering balls of F (X ) as follows: when there is a point F (x) ∈ F (X )
which is not contained in any current covering ball of radius τ , we add the ball B(F (x), τ) to the
cover. We follow this procedure until every point in F (X ) is covered by some covering balls. Denote
by C the set of centers for the balls in the cover.

We now show that this procedure stops after adding at most (2D/τ)d balls to the cover. We note that
by our construction, the centers of the covering are at least distance τ from each other, implying that
the collection of B(F (x), τ/2) for F (x) ∈ C are disjoint. This yields

1 ≥ DF (X )

(
∪F (x)∈CB(F (x), τ/2)

)

=
∑

F (x)∈C
DF (X )(B(F (x), τ/2)) (since B(F (x), τ/2) are disjoint)

≥
∑

F (x)∈C

( τ

2D

)d
(by Lemma G.1)

= |C|
( τ

2D

)d
.

So we have |C| ≤ (2D/τ)d.

Theorem G.3. Suppose that the measure DF (X )|y in the feature space has a doubling dimension d.
Let D be the diameter of F (X ). For any τ > 0 and any δ > 0, if we draw an i.i.d. sample of size
m ≥ 2D

τ (d log 4D
τ + log 1

δ ), then with probability at least 1 − δ over the sampling of S, we have
supx∈X d(F (x), NNS(F (x))) ≤ τ .

Proof. Lemma G.2 implies that there exists a covering of F (X ) of size (4D/τ)d which consists of
balls of radius τ/2. For any ball B in the cover, the probability that there is no sample point landing
in ball B is

(1−DF (X )(B))m ≤
(

1− τ

2D

)m
(by Lemma G.1)

≤ exp
(
−mτ

2D

)
.

Thus by the union bound over all the balls in the cover, the probability of the event E that there is at
least one ball B in the cover which does not contain any sample points is

Pr[E] ≤ |C| exp
(
−mτ

2D

)
(by the union bound)

≤
(

4D

τ

)d
exp

(
−mτ

2D

)
(by Lemma G.2)

≤ δ.
(

since m ≥ 2D

τ

(
d log

4D

τ
+ log

1

δ

))
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H DATA-SPECIFIC OPTIMAL THRESHOLDS

We begin with a useful lemma, which allows us to focus on small τ . For this section we will assume
fixed n2, n3 for a simpler exposition, asymptotics in the the dimensions may be readily obtained by
following our proofs.

Lemma H.1. Let φ be a distribution defined on a compact convex subsetC of Rn which is continuous
and strictly positive on C, and has bounded partial derivatives throughout C. If m samples B =
{β1, . . . , βm} are drawn from φ, for any βi the probability that the distance di to its nearest neighbor
in B is not O(m−1/n) is o(1).

Proof. We compute asymptotic moments of nearest neighbor distance distribution using Evans et al.
(2002) together with a concentration inequality to complete the proof. Indeed, the asymptotic mean
nearest neighbor distance is shown to be O(m−1/n), and the variance is O(m−2/n). By Chebyshev’s
inequality, the probability that di is outside ω(1) standard deviations is o(1).

We can apply Lemma H.1 to (compact convex subsets of the support of) the distribution F (x) as
(x,y) ∼ D. Essentially it implies that for a large enough training sample, we expect most of the
change in abstention rate occur for small values of τ . This crucially allows us to show that Eadv(τ) as
well as Dnat(τ) (and therefore g(τ)) are nice enough to be optimized. We will now state a theorem
showing τ can be learned online to optimize g(τ).

We will need the following lemmas about Eadv(τ) and Dnat(τ) respectively.

Lemma H.2. If τ is o
(
min{m−1/n2 , r}

)
, Eadv(τ) is O

(
m

n3+1
n2 /rn2−n3

)
-Lipshcitz.

Proof. Consider the probability that the adversary is able to succeed in misclassifying a test point x as
a fixed training point x′ (of different label) only when the threshold increases from τ to τ+dτ . WLOG,
let x be the origin and the adversarial subspace S be given by xn3+1 = xn3+2 = · · · = xn2

= 0,
and x′ is the uniformly random unit vector (z1, . . . , zn2

). The adversary can win if and only if
xx′ makes an angle θ ∈

[
π
2 − φ,

π
2

]
with the closest vector in S, i.e. (z1, . . . , zn3

, 0, . . . , 0), where
φ = arcsin τ

r . This is equivalent to

π

2
− φ ≤ arccos

∑n3

i=1 z
2
i√∑n3

i=1 z
2
i

√∑n2

i=1 z
2
i

≤ π

2
or,

n3∑

i=1

z2i ≤ sin2 φ

i.e., the distance ∆ from the orthogonal space x1 = x2 = · · · = xn3
= 0 is at most sinφ = τ

r .
Therefore a threshold change of τ to τ + dτ corresponds to ∆ ∈

(
τ
r ,

τ+dτ
r

)
. We observe from the

proof of Lemma C.2 that

Pr

[
∆ ∈

(
τ

r
,
τ + dτ

r

)]
= C(n2, n3) ·

∫ (τ+dτ)/r

τ/r

ρn2−n3−1
(√

1− ρ2
)n3−2

dρ

≤ C(n2, n3) · τ
n2−n3−1dτ
rn2−n3

,

where C(n2, n3) = 2A(n3 − 1)A(n2 − n3 − 1) is a constant for fixed dimensions n2, n3. Using a
union bound we conclude,

Eadv(τ + dτ)− Eadv(τ) ≤ mC(n2, n3)
τn2−n3−1dτ
rn2−n3

The slope bound increases with τ , substituting τ = O
(
m−1/n2

)
gives the desired bound on Lips-

chitzness.

Corollary H.3. For a κ̃-bounded adversary, Eadv(τ) is O
(
κ̃m

n3+1
n2 /rn2−n3

)
-Lipshcitz, if τ is

o
(
min{m−1/n2 , r}

)
.
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Lemma H.4. Suppose that the data distribution satisfies the assumptions in Lemma H.1, and further
is κ-bounded. The expected number of discontinuties in Dnat(τ) in any interval of width w for
τ = o

(
m−1/n2

)
is O(κm1/n2 |T |w).

Proof. Note that the discontinuities of Dnat(τ) in an interval (τ, τ + w) corresponds to points
(x,y) ∈ T such that nearest neighbor distance of x is in that interval.

E[number of discontinuities in (τ, τ + w)] = |T |Pr[nearest neighbor of a test point ∈ (τ, τ + w)]

≤ |T |Pr[some neighbor of a test point ∈ (τ, τ + w)]

≤ κm|T |vol(spherical shell of radius τ and width w)

= κm|T |O(τn2−1w)

= O(κm1/n2 |T |w)

For the full proof of Theorem 6.2, we will need the definition of dispersion, and a low-regret bound
for dispersed functions.

Definition 2 (Dispersion, Balcan et al. (2018a)). Let u1, . . . , uT : C → [0, 1] be a collection of
functions where ui is piecewise Lipschitz over a partition Pi of C. We say that Pi splits a set A if A
intersects with at least two sets in Pi. The collection of functions is (w, k)-dispersed if every ball of
radius w is split by at most k of the partitions P1, . . . , PT .

Typically we would use discontinuities of ui’s as the partitions Pi’s. Intuitively a sequence of
functions is dispersed if the discontinuities do not concentrate in a small region of the domain space
over time. If the sequence of functions is dispersed, we can bound the regret of a simple exponential
forecaster algorithm (Algorithm 2) by the following theorem.

Theorem H.5 (Balcan et al. (2018a)). Let u1, . . . , uT : C → [0, 1] be any sequence of piecewise
L-Lipschitz functions that are (w, k)-dispersed. Suppose C ⊂ Rd is contained in a ball of radius
R and B(ρ∗, w) ⊂ C, where ρ∗ = arg maxρ∈C

∑T
i=1 ui(ρ). The exponentially weighted forecaster

with λ =
√
d ln(R/w)/T has expected regret bounded by O

(√
Td log(R/w) + k + TLw

)
.

Algorithm 2 Exponential Forecaster Algorithm
1: Input: step size parameter λ ∈ (0, 1].
2: Output: thresholds τt for times t = 1, 2, . . . , T .
3: Set w1(ρ) = 1 for all ρ ∈ C
4: for t = 1, 2, . . . , T do
5: Wt :=

∫
C
wt(ρ)dρ

6: Sample ρ with probability proportional to wt(ρ), i.e. with probability pt(ρ) = wt(ρ)
Wt

7: Observe ut(·)
8: For each ρ ∈ C, set wt+1(ρ) = eλut(ρ)wt(ρ)

We now restate and prove our main theorem.

Theorem 6.2. Assume τ is o
(
min{m−1/n2 , r}

)
, and the data distribution is continuous, κ-bounded,

positive and has bounded partial derivatives. If τ is set using a continuous version of the multiplicative
updates algorithm (Algorithm 2 in Appendix H, Balcan et al. (2018a)), then with probability at least

1− δ, the expected regret in T rounds is bounded by O
(√

n2T log
(
κRTmb
δrn2−n3

))
, where R is a bound

on the largest distance between any two training points, b is the batch size, and r is the smallest
distance between points of different labels.

Proof. Assume the test data arrives in T batches of size b. We apply Algorithm 2 to set threshold τ
for each batch. The utility function is set as g(τ) with the batch as the test set over which the error
and abstention rates are computed.
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Algorithm 3 Robust classifier in the feature space with point-specific threshold τAi of “don’t know”
1: Input: A test feature F (x) (potentially an adversarial example), a set A of training features
F (xAi ) and their labels yAi , i ∈ [mA], a set B of training features F (xBi ) and their labels yBi ,
i ∈ [mB].

2: Output: A predicted label of F (x), or “don’t know”.
3: τAi ← minj: yAi 6=yBj dist(F (xAi ), F (xBj )) for all i ∈ [mA]

4: imin ← arg mini∈[m] dist(F (x), F (xAi ))

5: if dist(F (x), F (xAimin
)) < τAimin

then
6: Return yAimin

7: else
8: Return “don’t know”

By Lemma H.2, we know that Aadv(τ) is L-Lipschitz if τ is o
(
min{m−1/n2 , r}

)
, where L =

O

(
m
n3+1
n2

rn2−n3

)
. Since Dnat(τ) is piecewise constant, this implies g(τ) is also L-Lipschitz.

By Lemma H.4, for batch size b, Dnat(τ) has O(κm2|T |w) in any interval of width w. To apply
Theorem H.5, we need a concentration bound. By Markov’s inequality, with probability at least
1 − δ, Dnat(τ) is (w, κm

1/n2bw
δ )-dispersed for any w. Since Eadv(τ) is Lipschitz, g(τ) is also

(w, κm
1/n2bw
δ )-dispersed.

We can now apply Theorem H.5 with w = δ
κm1/n2bL

√
T

to conclude the desired regret bound.

I ESTIMATING POINT-SPECIFIC THRESHOLD OF “DON’T KNOW”

Algorithm 3 gives an alternative to our algorithm where instead of using a fixed threshold for each
point, we use a variable point-specific threshold learned from the data.

For this algorithm, we have the following guarantee.

Theorem I.1. Suppose that the sets A and B are two independent samples from F (X ) of size mA
and mB, respectively. Let mB = mA

εδ . Then with probability at least 1− δ over the draw of A, for a
new sample F (x′), the probability that “F (x′) is closer to F (xA) than any point in B of different
labels than F (xA), and F (x′) has a different label than F (xA)” is at most ε, where the probability
is taken over the draw of F (x′) and the draw of B.

Proof. Fixing the draw of setA, we can think of picking a random set S of sizemB+1 and randomly
choosing one of the points in it to be F (x′) and the rest to be B. Assuming S has at least one point in
it of a different label than F (xA), then there is exactly a 1

mB+1 probability that we choose F (x′) to
be the closest point in S to F (xA) of a different label than F (xA); if S has all points of the same
label as x, then the probability is 0. Now we can apply the union bound over all F (xA) in A to get a
total probability of failure at most mA

mB+1 < εδ.

The above analysis gives an expected failure probability over the draw of setA. Applying the Markov
inequality gives a high-probability bound.

J A SIMPLE INTUITIVE EXAMPLE WITH EXACT CALCULATION
DEMONSTRATING SIGNIFICANCE OF DATA-DRIVEN DECISION MAKING

We will do an exact computation of the optimal value for the threshold τ in our Algorithm 1
ROBUSTCLASSIFIER(τ, 0) to demonstrate its data dependence, and underline the significance of
data-driven parameter setting as examined in Section 6. The optimality will be with respect to
the objective function g(τ) := Aadv(τ) − cDnat(τ), where Aadv(τ) := 1 − Eadv(τ) is the robust
accuracy and Dnat(τ) is the abstention rate. Consider a simple instance of binary classification of
data distribution in two uniformly distributed one-dimensional clusters of diameter D each, arranged
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collinearly and at distance r apart, as depicted in Figure J. Further assume that our training set consists
of 2m examples, m from each class. Even in this toy setting, we are able to show that the optimal
threshold varies with data-specific factors.

D

r

Class A Class B

D

Figure 7: A simple example where we compute the optimal value of the abstention threshold exactly.
Classes A and B are both distributed respectively on segments of length D, embedded collinear and
at distance r in R2.

Formal setting: We set the feature and adversary dimensions as n2 = 2, n3 = 1. Examples of class
A are all located on the segment SA = [(0, 0), (D, 0)], similarly instances of class B are located on
SB = [(D+r, 0), (2D+r, 0)] (where [a,b] := {αa+(1−α)b | α ∈ [0, 1]}). The data distribution
returns an even number of samples, 2m, with m > 0 points each drawn uniformly from SA and SB .

For this setting, we show that the optimal value of the threshold is a complex function of both the
geometry (D, r) and the sampling rate (m).

Theorem J.1. Let τ∗ := arg maxτ∈R+ g(τ). For the setting considered above, if we further assume
D = o(r) and m = ω

(
log
(
2πcr
D

))
, then there is a unique value of τ∗ in [0, D/2). Further,

τ∗ =

{
Θ
(
D log((πcrm)/D)

m

)
if 1
m < πcr

D

0 πcr
D ≤

1
m

Proof. We compute accuracy Aadv(τ) and abstention rate Dnat(τ) as functions of τ . Even with
D = o(r), the exact computation of the robust accuracy as a simple closed form is difficult without
further assuming τ = o(r) as well. Fortunately, by Lemma J.2, we only need to consider τ ≤ D. For
this case, indeed τ = o(r). We compute the abstention and accuracy rates in Lemmas J.3 and J.4,
respectively. This gives us, for τ ≤ D,

g(τ) = 1− τ

πr

(
1− m+ 3

m+ 1
·Θ
(
D

r

))
−Θ

((τ
r

)3)

− c

m+ 1

[
2
(

1− τ

D

)m+1

+ (m− 1)Iτ≤D/2
(

1− 2τ

D

)m+1
]

For τ ≤ D/2,

g′(τ) =− 1

πr

(
1− m+ 3

m+ 1
·Θ
(
D

r

))
−Θ

(
1

r

(τ
r

)2)

+
2c

D

[(
1− τ

D

)m
+ (m− 1)

(
1− 2τ

D

)m]

We need to consider two cases.

Case 1. πcrD ≤
1
m

In this case g′(0) = −1
πr + 2cm

D ≤ 0. Since g′′(τ) ≤ 0, so we must have the only maximum at τ = 0.

Otherwise, g′(0) = −1
πr + 2cm

D > 0. Also g′(D/2) = −1
πr + 2c

D2m < 0 since m > log
(
2πcr
D

)
. But

g′′(τ) ≤ 0, so we must have a unique local maximum in (0, D/2), which is the global maximum.

Further, define y as τ = D
m log y. Now if y = 2o(m), we have τ

D = o(1), or
(

1− τ

D

)m
= exp

(
m log

(
1− τ

D

))
= y−1−o(1)
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Case 2. 1
m < πcr

D

If y > 1, for y = 2πcrm
D ,

g′(τ) =
−1

πr
+

2c

D

[(
D

2πcrm

)1+o(1)

+ (m− 1)

(
D

2πcrm

)2+o(1)
]

<
−1

πr
+

2c

D

[(
D

2πcrm

)1

+ (m− 1)

(
D

2πcrm

)1
]

=
−1

πr
+

2c

D

[
D

2πcr

]
= 0

and for y =
(

2πcr(m−1)
D

)1/4
,

g′(τ) =
−1

πr
+

2c

D

[(
D

2πcr(m− 1)

) 1
4+o(1)

+ (m− 1)

(
D

2πcrm

) 1
2+o(1)

]

>
−1

πr
+

2c

D

[(
D

2πcr(m− 1)

)1

+ (m− 1)

(
D

2πcr(m− 1)

)1
]

=
1

πr(m− 1)
> 0

Together, we get that τ∗ = Θ
(
D log((πcrm)/D)

m

)
in this case.

Lemma J.2. In the setting of Theorem J.1, g(τ) is monotonically decreasing for τ > D.

Proof. Note that Dnat(τ) = 0 for τ > D as long as m > 0, since any test point of a class must be
within D of every training point of that class. Hence, it suffices to note thatAadv(τ) is monotonically
decreasing in τ (increasing the threshold can only increase the ability of the adversary to successfully
perturb to the opposite class).

Lemma J.3. In the setting of Theorem J.1, the abstention rate is given by

Dnat(τ) =
1

m+ 1

[
2Iτ≤D

(
1− τ

D

)m+1

+ (m− 1)Iτ≤D/2
(

1− 2τ

D

)m+1
]

Proof. Note that for τ ≥ D, if m > 0, we never abstain on any test point. So we will assume τ ≤ D
in the following. Consider a test point x = (x, 0) sampled from class A (class B is symmetric, so
the overall abstention rate is the same is that of points drawn from class A). Let nbdx(τ) denote the
intersection of a ball of radius τ around x with SA. For x to be classified as ‘don’t know’, we must
have no training point sampled from nbdx(τ). This happens with probability

(
1− |nbdx(τ)|

D

)m
,

where |nbdx(τ)| is the size of nbdx(τ) and is given by

|nbdx(τ)| =





max{x+ τ,D} x < τ

max{2τ,D} τ ≤ x ≤ D − τ
max{D − x+ τ,D} x > D − τ

Averaging over the distribution of test points x, we get

Dnat(τ) =
1

D

∫ D

0

(
1− |nbdx(τ)|

D

)m
dx

=
1

m+ 1

[
2
(

1− τ

D

)m+1

+ (m− 1)Iτ≤D/2
(

1− 2τ

D

)m+1
]
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Lemma J.4. In the setting of Theorem J.1, the robust accuracy rate for τ ≤ D is given by

Aadv(τ) = 1− τ

πr

(
1− m+ 3

m+ 1
·Θ
(
D

r

))
−Θ

((τ
r

)3)

Proof. Consider a test point x = (x, 0) from SA. Let y = (y, 0) denote the nearest point in SB .
In the given geometry, it is easy to see that if x can be perturbed into the τ neighborhood of some
point y′ ∈ SB when moved along a fixed direction, then it must be possible to perturb it into the τ
neighborhood of y (Figure J). Therefore it suffices to consider directions where perturbation to the
τ -ball around y is possible.

r

Class A Class B

x

y y′

adversarial direction
τ balls

Figure 8: It suffices to consider the nearest point of the opposite class for adversarial perturbation.

Therefore the probability of adversary’s success for x, given y is the nearest point of the opposite
class, is

errx|y(τ) =
1

π
arcsin

(
τ

y − x

)
=

1

π
arcsin

(
τ

r + d

)

where d = y − x− r ∈ [0, 2D]. Now since τ ≤ D = o(r), we have

errx|y(τ) =
τ

π(r + d)
+ Θ

((τ
r

)3)
=

τ

πr

(
1−Θ

(
d

r

))
+ Θ

((τ
r

)3)

We can now compute the average error using the probability distributions for x and y, x is a uniform
distribution over SA, while y is a nearest-neighbor distribution.

p(x) =
1

D
, p(y) =

m

D

(
1− y − r −D

D

)m−1

The average value of d is

d̄ =

∫ D

0

∫ D

0

(y′ + x′)
m

D

(
1− y′

D

)m−1
dy′

dx′

D
=
D(m+ 3)

2(m+ 1)

Using this to compute the average of errx|y(τ) gives the result.

K ALGORITHM FOR THE EXACT COMPUTATION OF ATTACKS FOR OUR
ALGORITHM UNDER OUR THREAT MODEL

Overview of Algorithm 4: If the point ui closest to the training point xi of different label than test
point x in the adversarial subspace S (slight abuse of notation to refer to x + S as S) is closer to
xi than any training point wj with the same label as x and within the threshold τ of xi, it will be
misclassified as xi (or potentially another point of an incorrect label). If however ui is closer to some
wj , we look at the points closer to xi than all wj in the subspace S , and consider the closest point zi
to xi (if it is within threshold τ ) which should be misclassified. This can be computed using a convex
optimization program (Line 14 of Algorithm 4) in n3 dimensions. We claim it is sufficient to look at
these two points for each training example xi.

Proof of correctness: To argue correctness of Algorithm 5, suppose an adversary wins by perturbing
to some point v. Then v must be closer to some point xi than all wj ∈ C (the set of training points
with same label as x) and within τ of xi. If ui is closer to xi than all wj ∈ C then, it must be at
least as close as v (since v is in the adversarial subspace S) and therefore within τ of xi.
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Algorithm 4 Exact computation of attacks under threat model 3.1 against Algorithm 1
1: Input: A randomly-sampled adversarial subspace S of dimension n3, a test feature F (x) and its

label y, a set of training features F (xi) and their labels yi, i ∈ [m], a threshold parameter τ .
2: Output: A misclassified adversarial feature F (x) + v, v ∈ S if it exists; otherwise, output “no

adversarial example”.
3: Fcenter(xi)← F (xi)− F (x) for i ∈ [m]
4: for i = 1, ...,m do
5: if yi 6= y then
6: ui = arg minu∈S d(u, Fcenter(xi)) (candidate adversarial perturbation)
7: C ← {xj | yj = y}
8: if ∃w ∈ C | dist(ui, Fcenter(w)) < dist(ui, Fcenter(xi)) then
9: Hj ← {z | dist(Fcenter(xi), z) ≤ dist(wj , z),wj ∈ C}

10: H ← ∩iHi

11: A← H ∩ S
12: if A = {} then
13: continue
14: zi = arg minz∈A dist(z, Fcenter(xi)) (candidate adversarial perturbation)
15: else
16: zi ← ui
17: if dist(zi, Fcenter(xi)) < τ then
18: Output F (x) + zi
19: Output “no adversarial example”

Figure 9: Two-dimensional t-SNE visualization of 512-dimensional embedding by contrastive
learning on the CIFAR10 test dataset. Left Figure: Self-supervised contrastive learning. Right
Figure: Supervised contrastive learning.

Otherwise there is some wj closer to ui than xi. Let H be the convex polytope of points closer to xi
than wj’s in C. Consider the intersection A of H with S. All points in A are misclassified by our
algorithm, if within the threshold τ . v must lie within A since it is closer to xi. ui must lie outside
of A in this case. If v is within τ of xi, so is ui and therefore also the line joining the two. If this
line intersects A at point v, then v is a valid adversarial point and so is point closest to xi in A. This
proves completeness of the algorithm, soundness is more straightforward to verify.

L ADDITIONAL EXPERIMENTS

L.1 VISUALIZATION OF REPRESENTATIONS OF CONTRASTIVE LEARNING

Figure 9 shows the two-dimensional t-SNE visualization of 10,000 features by minimizing loss
(1) on the CIFAR10 test dataset. It shows that τx � rx for most of data, where τx :=
mini:y=yi dist(F (x), F (xi)), rx := mini:y 6=yi dist(F (x), F (xi)), and {xi}mi=1 are a set of training
example with label yi.
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84.5%
94.3%

Figure 10: Frequency of τx/rx by contrastive learning on the CIFAR10 dataset, where τx represents
the closest distance between the test embedding and any training embedding of the same label, and
rx stands for the closest distance between the test embedding and any training embedding of different
labels. Left Figure: Self-supervised contrastive learning. Right Figure: Supervised contrastive
learning.

To have a closer look at τx vs. rx, we plot the frequency of τx/rx in Figure 10. For self-supervised
contrastive learning, there are 84.5% data which has τx/rx smaller than 1.0, while for supervised
setting, there are 94.3% data which has τx/rx smaller than 1.0.

L.2 APPROXIMATING ROBUST ACCURACY FOR LARGE n3

The experiments in Section 7 consider an adversary which is difficult to compute in practice for large
adversarial space, i.e. large n3. In this section we present a ‘greedy’ adversary (Algorithm 5) which
provides a good approximation to the exact adversary for small τ , which can be easily run even for
large n3: we can generate the adversarial examples of F (x) by projecting each training feature onto
the affine subspace F (x) + S and pick the one with the closest distance to F (x). We denote the
accuracy against this algorithm as Âadv. The averaged results of multiple runs are in Table 2: we
report the natural accuracy (Anat = 1− Enat), the adversarial accuracy, and the abstention rate,
where the abstention rate represents the fraction of algorithm’s output of “don’t know” among the
misclassified data by the nearest-neighbor classifier.

Algorithm 5 Approximate computation of attacks under threat model 3.1 against Algorithm 1
1: Input: A randomly-sampled adversarial subspace S of dimension n3, a test feature F (x) and its

label y, a set of training features F (xi) and their labels yi, i ∈ [m], a threshold parameter τ .
2: Output: A misclassified adversarial feature F (x) + v, v ∈ S if it exists; otherwise, output “no

adversarial example”.
3: Fcenter(xi)← F (xi)− F (x) for i ∈ [m]
4: // The Fproj(xi)’s in the next step are candidate adversarial examples
5: Project Fcenter(xi), i ∈ [m] onto S and obtain Fproj(xi) for i ∈ [m]
6: for i = 1, ...,m do
7: Run the nearest-neighbor algorithm to predict the label of Fproj(xi) with the training set

{(Fcenter(xj), yj) : j = 1, ...,m}
8: if the output of the nearest-neighbor algorithm is NOT y and the closest distance is smaller

than τ then
9: Output F (x) + Fproj(xi)

10: Terminate the algorithm
11: Output “no adversarial example”

We observe that as the dimension of adversarial subspaces n3 increases, the adversarial accuracy Âadv

decreases while the abstention rate tends to increase, which verifies an intrinsic trade-off between
robustness and abstention rate. Recall that our algorithm abstains if and only if the closest distance
between the given test feature and any training feature is larger than a threshold τ . As the threshold
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Table 2: Natural accuracy Anat and adversarial accuracy Âadv on the CIFAR-10 dataset when the
512-dimensional representations are learned by contrastive learning, where abstain represents the
fraction of each algorithm’s output of “don’t know” among the misclassified data by ours (τ →∞,
a.k.a. the nearest-neighbor classifier).

Contrastive Linear Protocol Ours (τ →∞) Ours (τ = 1.0) Ours (τ = 0.8)
Anat Âadv Anat Âadv Anat/abstain Âadv/abstain Anat/abstain Âadv/abstain

n3 = 1
Self-supervised 91.1% 0.0% 84.5% 81.5% 99.3%/95.5% 99.2%/95.7% 100.0%/100.0% 100.0%/100.0%

Supervised 94.4% 0.0% 94.3% 93.5% 95.0%/12.3% 94.5%/15.4% 97.7%/59.6% 97.7%/64.6%

n3 = 25
Self-supervised 91.1% 0.0% 84.5% 65.1% 99.3%/95.5% 98.8%/96.6% 100.0%/100.0% 100.0%/100.0%

Supervised 94.4% 0.0% 94.3% 84.5% 95.0%/12.3% 91.6%/45.8% 97.7%/59.6% 96.8%/79.4%

n3 = 50
Self-supervised 91.1% 0.0% 84.5% 56.3% 99.3%/95.5% 98.3%/96.1% 100.0%/100.0% 100.0%/100.0%

Supervised 94.4% 0.0% 94.3% 71.7% 95.0%/12.3% 89.7%/63.6% 97.7%/59.6% 95.5%/84.1%

n3 = 100
Self-supervised 91.1% 0.0% 84.5% 31.1% 99.3%/95.5% 96.7%/95.2% 100.0%/100.0% 99.7%/99.6%

Supervised 94.4% 0.0% 94.3% 35.0% 95.0%/12.3% 86.3%/78.9% 97.7%/59.6% 93.0%/89.2%

n3 = 200
Self-supervised 91.1% 0.0% 84.5% 1.2% 99.3%/95.5% 91.1%/91.0% 100.0%/100.0% 98.6%/98.6%

Supervised 94.4% 0.0% 94.3% 0.7% 95.0%/12.3% 74.7%/74.5% 97.7%/59.6% 85.8%/85.7%

Figure 11: Sensitivity of model success rate (estimated by Âadv) and abstention rate on the parameter
τ , where abstain represents the fraction of algorithm’s output of “don’t know” among the misclassified
data by ours (τ →∞, a.k.a. the nearest-neighbor classifier). Left Figure: n3 = 1. Middle Figure:
n3 = 25. Right Figure: n3 = 50.

parameter τ decreases, the adversarial accuracy Âadv increases while the algorithm abstains from
predicting the class of more data.

L.2.1 SENSITIVITY OF THRESHOLD PARAMETER τ

The threshold parameter τ is an important hyperparameter in our proposed method. It captures the
trade-off between the accuracy and the abstention rate. We show how the threshold parameter affects
the performance of our robust classifiers by numerical experiments on the CIFAR-10 dataset. We
first train a embedding function F by following the setups in Section 7.1. We then fix F and run our
evaluation protocol by varying τ from 0.0 to 5.0 with step size 0.001. We summarize our results in
Figure 11 which plots the adversarial accuracy Âadv and the abstention rate for three representative
dimension of adversarial subspace. Compared with self-supervised contrastive learning (the solid
line), supervised contrastive learning (the dashed line) enjoys higher adversarial accuracy (the blue
curve) and smaller abstention rate (the red curve) for fixed τ ’s due to the use of extra label information.
For both setups, the adversarial accuracy is not very sensitive to the choice of τ .
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