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Abstract1

Graph Neural Networks have been demonstrated to be highly effective and efficient2

in learning relationships between nodes locally and globally. Also, they are suitable3

for documents-related tasks due to their flexibility and capacity of adapting to4

complex layouts. However, information extraction on documents still remains a5

challenge, especially when dealing with unstructured documents. The semantic6

tagging of the text segments (a.k.a. entity tagging) is one of the essential tasks. In7

this paper we present SeqGraph, a new model that combines Transformers for text8

feature extraction, and Graph Neural Networks and recurrent layers for segments9

interaction, for an efficient and effective segment tagging. We address some of the10

limitations of current architectures and Transformer-based solutions. We optimize11

the model architecture by combining Graph Attention layers (GAT) and Gated12

Recurrent Units (GRUs), and we provide an ablation study on the design choices13

to demonstrate the effectiveness of SeqGraph. The proposed model is extremely14

light (4 million parameters), reducing the number of parameters between 100- and15

200-times compared to its competitors, while achieving state-of-the-art results16

(97.23% F1 score on CORD dataset).17

1 Introduction18

Information Extraction (IE) has become a focus task over the last years within the Machine Learning19

community. There is a growing need to automate the extraction and storage of information from20

documents, especially from unstructured ones. The rise of Deep Learning has been extremely21

beneficial, leading to the release of models capable of performing with the same quality as humans22

[1–5]. Moreover, a myriad of businesses and use cases within industry require the automatic23

processing and understanding of documents and their contents to convert unstructured data into their24

semantically structured components. The main aim is to reduce the manual burden in day to day25

operations implementing efficient and cost-effective automatic solutions.26

Within IE, the semantic tagging of the text segments (a.k.a. entity tagging) is an essential task that27

allows the system to understand the different parts of the document and to focus on the most relevant28

information. Usually, these text segments are detected in a previous stage by an OCR engine at29

word level. This paper presents an innovative solution for efficient and effective segment tagging on30

unstructured documents.31

Existing entity tagging models are huge, they contain an overwhelming number of parameters32

(hundreds of millions) that could be highly reduced. Furthermore, most of them are purely or mostly33

based on Transformer [6] architectures [1, 3–5]. They need to define a sequence limit and, therefore,34

they suffer from the sequence truncation problem. In addition, this sequence limit must be chosen35

carefully, as the computational complexity increases quadratically with it [7]. This is due to the fact36

that the Transformers are fully connected architectures, where each segment needs to interact with37

the rest.38

These challenges can be solved using more flexible architectures, such as the ones based on Graph39

Neural Networks (GNN) [2, 8, 9]. GNNs have been demonstrated to be highly effective and efficient40

in learning relationships between nodes locally and globally [9, 10], as well as between nodes of41
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different types [11, 12]. However, they do not use the sequential order of the nodes as a source of42

information, which is important for the considered task. To this extent, some attempts have been made43

to compensate for this limitation by combining them with other mechanisms, such as recurrent layers44

[2]. We believe they are also overparameterized and that the selection and treatment of the features45

is not optimal. To overcome these limitations, we present SeqGraph, a new model that combines46

Transformers for text feature extraction, and GNNs and recurrent layers for segments interaction, for47

an efficient and effective segment tagging. The main contributions of this work are:48

• Extremely light-weight entity tagging model (4 million parameters) capable of achieving state-49

of-the-art results (97.23% on entity tagging task of CORD dataset [13]).50

• Optimal selection and extraction of the node features from the text and bounding boxes of the51

segments.52

• Optimized model architecture combining Graph Attention layers (GAT) [14] and Gated Recur-53

rent Units (GRUs) [15].54

• Ablation study on the impact of the different sources of information on the model accuracy and55

parameters.56

2 Related Work57

In recent years, the increase in the demand for information extraction systems has been reflected in58

the number of publications and, consequently, also on entity tagging [1–5, 8, 9, 16–22]. Although59

there are few works that attempt to solve the problem from scratch [23], almost all the released60

models rely on text segments extracted using an OCR engine. Most of them are based purely or61

partially on Transformer architectures [6]. However, there is an emerging trend on the application of62

GNNs for entity tagging.63

2.1 Transformer-based models64

Since the most basic versions, such as BERT [24] or RoBERTa [25], which only use the text and the65

sequential order of the segments to extract the input features, a lot of novelties have been introduced66

to enhance the Transformers performance on this task. New models include different sources of67

information, such as the image or the layout, but also new ways of extracting the features and68

combining them. For instance, in several works, the authors inject the layout information of each69

segment into their features, some of them at word level [1, 16–19], and others dividing the document70

into regions that share the same embeddings [3, 5, 20, 21]. In some cases, the layout information71

has also been used to enhance the self-attention mechanisms, usually as a bias term [3, 4, 16, 22, 26].72

The image features are usually integrated with the textual ones by concatenating or adding them73

[5, 18, 19, 22], but some models use more sophisticated ways of combining them. For instance, in [3],74

[4], and [20] the authors use a multi-modal transformer architecture that incorporates a multimodal75

self-attention to enforce the cross-modality feature correlation.76

2.2 GNN-based models77

Within IE tasks, GNNs try to overcome the limitations of the Transformer-based models. The78

Transformers are fully connected architectures, where each segment must interact with each other.79

The computational complexity increases rapidly with the number of segments [7]. In addition, they80

need a predefined maximum sequence length, leading to truncation problems for large sequences.81

GNNs avoid all these problems with their flexible structure, where each segment only needs to82

interact with a reduced number of neighbors. However, the setup is more complex, with some critical83

design choices, such as the graph structure, the edge sampling strategy, or the message propagation84

approach. Some promising approaches have been recently released. For instance, in [8] the authors85

propose a GNN-based model for solving entity tagging (ET), building (EB), and linking (EL). First,86

they generate a k-Nearest Neighbor (kNN) graph at text segment level for solving the EB task as87

an edge prediction task, using features extracted from the bounding boxes and from the text and88

passing them through several GAT layers. Then, the entity features are computed by aggregating the89

output features from the GNN and processing them with a linear layer. The features are used to solve90

the ET task, using a Multi-Layer Perceptron (MLP) classifier, and the EL task, evaluating all the91

possible entity pairs with another MLP classifier. In [9], the model incorporates also visual features92
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from the image. The text features are extracted using a BERT encoder and the visual ones using a93

SWIN Transformer with a Feature Pyramid Network (FPN). Both vectors are enriched with layout94

information by adding a layout embedding. Then, before each GAT layer of the GNN architecture,95

the visual features are fused into the input features using a fusion layer. In these layers, the relative96

layout is also included in the self-attention mechanism. On the other hand, in [2] the image and97

text features are fused before feeding them into the GNN. The layout information is not embedded98

into the node features but used for computing the weights for the message aggregation within the99

Graph Convolution Network (GCN) layers [27]. The text features are extracted using a Transformer100

encoder at character level and the image features using a Convolutional Neural Network (CNN)101

architecture. Then, the character features of each segment are averaged and passed through the GNN102

layers. The output features are then aggregated to the previous features at character level and fed to103

two bidirectional LSTM layers [26] in order to extract the sequential information. Finally, they use104

the Viterbi algorithm to generate the final predictions.105

All the above works have some drawbacks. In [8], the quality of the extracted text features is poor,106

and they do not leverage the sequential information, which is important for the considered task.107

Consequently, the results obtained are very limited. In the case of [2] and [9], the models have a huge108

number of parameters, in part due to the heavy image backbones that they use. In this work we aim at109

combining the benefits of all of them to make a light, fast, and effective entity tagging model.110

3 Methodology111

3.1 Problem definition112

Given a list of text segments (usually at word level) provided by an OCR engine who extracted113

them from an image of a document, the goal is to tag each segment with its corresponding semantic114

category from a closed list. Each segment consists of the text string and the rotated bounding box.115

For instance, having a purchase receipt, each segment could be tagged as store address, phone, date,116

time, item description, item value, etc. Figure 1 shows an illustration.117

Figure 1: Illustration of document entity tagging. In the right image, the color of the bounding
box denotes its category. Segments with the bounding boxes of the same color belong to the same
category.

Some of the challenges present on the raw collected images of documents include highly unstructured118

documents, such as purchase receipts, with multiple and complex layouts and non-natural language119

(abbreviations, brands, product names, punctuations, etc). The noise caused by the OCR engine120

(errors in the text, inaccurate bounding boxes, missing or duplicated detections...) and due to bad121

image and/or physical conditions (perspective, rotation, wrinkles, ripples. . . ).122
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3.2 Overview123

Given the above background, we focus on a GNN-based model due to these reasons:124

• Graph-based representations are flexible and capable of adapting to complex layouts.125

• The task can be defined as node classification, where the semantic category of a node is highly126

dependent on the features of its neighbor nodes and on the global context. The literature about127

GNNs has demonstrated they are highly effective and efficient in learning relationships between128

nodes locally and globally [9, 10].129

• The number of nodes in the document varies from a few to hundreds of them, which can be130

unfeasible to process for fully connected networks or Transformer-based models. However, for131

this use case, the number of interactions can be limited based on the bounding box coordinates,132

accelerating the inference and reducing the number of required resources. GNNs are suitable for133

this type of highly sparse data structure.134

We must note one of the weaknesses of the proposed GNN-based approach. GNNs do not consider135

the position of the segments in the input sequence. However, it is important to keep an order to136

read a document beyond text layout prediction. Several approaches have tried to overcome this137

limitation injecting the sequential information into the node features [28], using it within the attention138

mechanism of the GAT layers [29], or combining the GNN with recurrent layers [2]. The first two139

require defining how to extract and combine it with the rest of the features, which can be tedious and140

lead to a more unstable model. In addition, it requires increasing the number of GNN layers or its141

number of parameters to learn from this new source of information. On the contrary, in recurrent142

layers this information is learnt directly from the order of the segments with a reduced number of143

parameters and without altering the GNN architecture.144

Following this reasoning, we developed SeqGraph, a hybrid model based on GNN and RNN for145

text segment tagging as in Figure 2. Starting from the list of text segments coming from the OCR,146

SeqGraph first extracts and preprocesses the text and region features from each segment. In parallel, it147

generates the segment nodes and performs the edge sampling between them. Next, the node features148

are passed through the graph attention layers and get enriched by their neighbors. Two bidirectional149

Gated Recurrent Unit (GRU) layers [15] processes the featuers to add information about the order of150

the segments. Finally, we add a linear layer and a Softmax layer to obtain the output probabilities for151

each text segment.152

Figure 2: High Level Architecture of the proposed model.

3.3 Feature extraction153

We use three sources of information: the text string, the bounding box and the position in the154

sequence.155

Diving through the literature, we can find different approaches for extracting features from the text of156

a segment, but we can group them into two categories: the ones that extract the features attending to157

its semantic meaning and the ones that extract the features attending to its composition. The first one158

assigns a feature vector to each text string (usually at word level) using an embedding layer and a159
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predefined dictionary [8, 30]. The embedding layer can be pretrained on another dataset or it can160

be trained directly from scratch, using the training set for generating the dictionary [8]. The latter161

method, extracting the features attending to the text composition, means inspecting its characters162

and their position within the text and finding relevant relationships between them [2]. We include a163

deeper dive with pros and cons of each of the two approaches in the Appendix A.1.164

Analyzing both approaches and the challenges of the segment tagging task for documents, we adopt165

the second approach, text feature extraction based on its composition, similar to how it is done in [2].166

We decide to consider only ASCII characters, setting the length of the dictionary to 128. We convert167

all the Unicode characters using the standard Unidecode Python package. Its function unidecode()168

takes Unicode data and tries to represent it in ASCII characters using transliteration tables. The169

characters that cannot be converted are removed. The size of the embedding layer is 256. The170

Transformer has 3 layers with 4 heads and an internal dimension of 512.171

Regarding the rotated bounding box, we select the following features:172

• Left center coordinates: middle point between the top-left and the bottom-left vertices of the173

rotated bounding box.174

• Right center coordinates: middle point between the top-right and the bottom-right vertices of175

the rotated bounding box.176

• Bounding box rotation: angle of the bounding box in radians, between -PI/2 and PI/2.177

Note that we discard the height of the bounding box as we observed that the model tended to overfit178

using this feature. We believe that the height of the segment is not a crucial feature for this task, as it179

might vary across segments that share the same category, and it does not contain reliable information180

about the distance between different text lines.181

Finally, the position in the sequence is already implicit in the order of the segments and used by the182

recurrent layers. It could be also injected into the node features by using for instance a positional183

embedding, but that would require selecting a maximum position and truncating the sequences that184

exceed this length, which would yield a drop of accuracy. In addition, the positional embeddings185

do not work well with very long sequences, and we want to consider lengths of hundreds. For these186

reasons, this information is not injected into the node features.187

After extracting the textual and bounding box features they are fused by increasing the dimension of188

the bounding box features using a linear layer to match the textual features one (256) and adding189

both. The whole feature extraction process is described in Figure 3.190

Figure 3: Feature extraction process applied to each text segment.

3.4 GNN191

The GNN architecture takes advantage of the fact that all the information needed for computing192

the message passing weights (positional and textual information) is already embedded in the node193

features and we select Graph Attention Layers (GAT) [14] as the one that best suits our needs. In194

the GAT layers, the weights for the message passing are computed directly inside the layer using195

the input node features, in a similar way as it is done in the original attention layers (see Equation 1,196
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where h denotes the node features, W is the weight matrix, and a is the weight vector for the dot197

product).198

h
(l+1)
i = σ

 ∑
j∈N (i)

α
(l)
ij W

(l)h
(l)
j


α
(l)
ij =

exp(e
(l)
ij )∑

k∈N (i) exp(e
(l)
ik )

e
(l)
ij = LeakyReLU(a(l)

T

(W (l)h
(l)
i ||W (l)h

(l)
j ))

(1)

They have been widely applied in document understanding tasks [8, 9]. To avoid 0-in-degree errors199

(disconnected nodes) while using the GAT layers, we add a self-loop for each node, i. e. adding an200

edge that connects the node with itself.201

The proposed architecture in Figure 4 is composed of 3 GAT layers. All the layers are followed by202

SiLU activations [31] except for the last one. In our research, this activation worked better than ReLU203

and other variants. We also add residual connections in all the layers to accelerate the convergence.204

Figure 4: Proposed GNN architecture.

Inspired by [9], we introduce a global document node. We use one global node per graph level, and205

we connect it bidirectionally to the rest of the level nodes. Its feature embedding is initially computed206

by averaging all the level node embeddings. It has two purposes: Firstly, it provides some context207

information to the nodes, as it gathers information from the whole graph. Secondly, it acts as a208

regularization term for the GAT layer weights, as it is not a real neighbor node. These global nodes209

are only used during the message passing but discarded once the GNN stage is finished.210

For the edge sampling we use a custom approach. We are dealing with unstructured documents211

with an unknown variability in layouts and we cannot assume any constraint related to the distance212

between the segments. We define a sampling function that aims at connecting each segment with the213

rest of the segments that are on the same line or in the adjacent ones: an edge from segment A to214

segment B is created if the vertical distance between their centers (C) is less than the height (H) of215

segment A by a constant (K) (see Equation 2). In our experiments we set this constant to two.216

edgeA−B = |Cy
A − Cy

B | < HA ∗K (2)
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3.5 Recurrent layers217

The recurrent layers gather the information about the sequence order that the GNN layers are missing218

and inject it into the node features. More specifically, we use two bidirectional Gated Recurrent Units219

(GRUs) [15] with 256 hidden features size. We also considered using Long Short Term Memory220

layers (LSTM) [26], but as reported in the ablation study of the appendix the accuracy obtained is221

similar while the GRU layers have less parameters and are faster. The contribution of these layers is222

analyzed in the experimental section.223

3.6 Classification head224

The classification head takes the output features for each node from the recurrent layer and transforms225

them into the class probabilities. It consists of one linear layer that generates the logits, followed by a226

Softmax layer that produces the normalized probabilities.227

4 Experiments228

4.1 Dataset229

We select one well-known public dataset of purchase receipts, CORD [13], that contains annotations230

for the segment tagging task in order to compare our model with other approaches. In addition, we231

include a larger and challenging private dataset to better analyze the performance of the model. Due232

to space limitation, they are further described with examples in Appendix A.2.233

4.2 Training and Evaluation details234

For all the datasets, the model is trained from scratch for 30 epochs using a batch of 4 documents235

on each iteration. The selected optimizer is AdamW [32] with an initial learning rate of 3e-4 and a236

reduction factor of 0.1 in epochs 20 and 25. For the loss function, we use Cross Entropy Loss for237

CORD dataset and Focal Loss for the private in order to deal with the high class imbalance. We also238

test the impact of pretraining the model on the private dataset before training on CORD. In this case,239

the models are finetuned for 1000 steps with batch size of 64, an initial learning rate of 1e-4 and a240

reduction factor 0.1 in step 900. To reduce the overfitting, we use a dropout of 0.1 for the Transformer241

encoder and before each GAT layer, and a dropout of 0.2 for the GRU layers and before the final242

linear layer. For both datasets we sort the segments of each document from top to bottom and from243

left to right in order to have a consistent ordering for the recurrent layers. The maximum character244

length for the Transformer encoder is 30, longer segments are truncated. Finally, we convert all the245

characters of the segments into ASCII characters as described in Section 3.3.246

4.3 Metrics247

We select two well-known metrics for evaluating the accuracy of the model:248

• F1 score micro: compute the F1 score using all the samples. In this case, all the samples249

contribute equally to the result, without considering their category.250

• F1 score macro: computes the F1 score per class and then averages them to obtain the final251

score. This is a more robust metric when dealing with unbalanced datasets.252

4.4 Results253

4.4.1 CORD254

First, we use the CORD public dataset to compare SeqGraph against other baseline and state-of-the-255

art models that perform segment tagging. In this case, as the rest of the methods report the results256

at entity level, we train and test SeqGraph using the annotations at entity level, grouping together257

the segments that belong to the same entity and using the minimum rotated rectangle as the entity258

bounding box. The results are reported in Table 1. For all the rest of the methods (except PICK), even259

their base versions have more than 100 million parameters, while the proposed method hardly reaches260

the 4 million. Despite this huge difference, SeqGraph outperforms almost all the base versions and261

most of the large versions of the other state-of-the-art methods with 96.36%. It stays just 1% below262

the best result achieved by LayoutLMv3 [3] while having almost 100 times less parameters.263
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Table 1: Comparison with different state-of-the-art models on the tagging task of the CORD dataset
at entity level. We also include the number of parameters, if the model needs pretraining or not, and
the modality of the input data (“T/L/I” denotes “text/layout/image”).

Model Parameters Pretrained Modality CORD F1 micro

BERTBASE[24] 110M yes T 89.68
RoBERTaBASE[25] 125M yes T 93.54

BROSBASE[1] 110M yes T+L 95.73
LiLTBASE[33] - yes T+L 96.07
TILTBASE[22] 230M yes T+L+I 95.11

LayoutLMv2BASE[18] 200M yes T+L+I 94.95
DocFormerBASE[4] 183M yes T+L+I 96.33

LayoutLMv3BASE[3] 133M yes T+L+I 96.56

BERTLARGE[24] 340M yes T 90.25
RoBERTaLARGE[25] 355M yes T 93.8

BROSLARGE[1] 340M yes T+L 97.4
FormNet[34] 345M yes T+L 97.28

TILTLARGE[22] 780M yes T+L+I 96.33
LayoutLMv2LARGE[18] 426M yes T+L+I 96.01

DocFormerLARGE[4] 536M yes T+L+I 96.99
GraphDoc[9] 265M yes T+L+I 96.93

LayoutLMv3LARGE[3] 368M yes T+L+I 97.46
PICK[2] 68M no T+L+I 95.81

SeqGraph (ours) 4M no T+L 96.36
SeqGraph pret (ours) 4M yes T+L 97.23

Note that almost all the rest of the models are pretrained in other huge datasets before being finetuned264

in the CORD dataset while SeqGraph and PICK are trained from scratch. Although they are trained265

in an unsupervised way and in other tasks, this pretraining impacts a lot in the text feature extraction,266

especially for datasets like CORD with limited training information, where many words that appear267

in the test set might not appear in the training set but could have been learnt during the pretraining. In268

order to test this impact in our model, we try pretraining it on the private dataset, even though it has269

less than 10 thousand single page documents while usually the models are pretrained using millions270

(for instance LayoutLMv3 uses 50 million pages). As it can be seen in Table 2, this pretraining271

improves the results of the model, reaching 97.23% and reducing the gap between SeqGraph and272

LayoutLMv3 to 0.23%.273

Another important point that should be taken into account is that the rest of the presented methods274

are purely or mostly based on Transformer architectures operating at segment level, so they need275

to define a sequence limit and, therefore, they suffer from the sequence truncation problem. In276

addition, this sequence limit must be chosen carefully, as the computational complexity increases277

quadratically with it [7]. However, SeqGraph and PICK do not suffer from this issue, so they do not278

have a sequence limit. In the CORD dataset this is not a problem, as the number of segments per279

document is low on average, but for other datasets such as the private receipts dataset, where the280

receipts may contain hundreds of segments this limitation would impact in the accuracy and could281

cause the loss of relevant information.282

We also extract the results at segment level for SeqGraph (from scratch and pretrained versions) and283

PICK (see Table 2). Again, SeqGraph outperforms PICK, with a higher difference in this case (almost284

2%), and with the pretraining our model improves by 0.47%.285

4.4.2 Private dataset286

For the next experiment, we train and evaluate the proposed model on the segment tagging task of the287

private dataset. The model is trained following the procedure specified in Section 4.2. We compare288

our model against PICK [2], as it also performs exclusively the tagging task, it operates at segment289

level, and it has several similarities with SeqGraph, such as the character encoder for the text features290

or the combination of GNN and recurrent layers. The PICK model is trained and evaluated using the291
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Table 2: Results on the tagging of the CORD dataset at word level.

Model Parameters Modality CORD F1 micro

PICK[2] 68M T+L+I 92.87
SeqGraph (ours) 4M T+L 94.61

SeqGraph pret (ours) 4M T+L 95.08

official repository and the default configuration. Both models were trained on a machine with one292

NVIDIA Tesla V100 GPU, 64 GB of RAM, and 1 Intel(R) Xeon(R) Gold 6142 CPU.293

The micro and macro F1 score for both methods are presented in Table 3, along with the number294

of parameters (in millions), the modality of the input data (“T/L/I” denotes “text/layout/image”),295

and the time taken for the whole training process. Note that the proposed method has 17 times less296

parameters than PICK and that, unlike PICK, it does not use the image as an input source. Despite297

this, it can be observed that SeqGraph outperforms PICK in both metrics and specially in the F1298

macro, where it improves more than a 1%. These results demonstrate that the image does not provide299

additional relevant information to the one extracted from the text, the layout, and the order of the300

segments.301

Table 3: Results on the segment tagging task of the private receipts dataset. We also include the
number of parameters, the modality of the input data (“T/L/I” denotes “text/layout/image”), and the
total training time.

Model Parameters Modality F1 micro F1 macro Training time

PICK[2] 68M T+L+I 96.99 93.27 33h
SeqGraph (ours) 4M T+L 97.47 94.51 1h20m

Regarding the training time, for the same number of epochs, PICK was trained in 33 hours (1 hour302

per epoch) while SeqGraph was trained in 1 hour and 20 minutes (less than 3 minutes per epoch).303

Some of the causes of this overwhelming difference are the heavy image feature extraction done304

by PICK or the fact that the recurrent layers of PICK process the sequences at character level. An305

ablation study provides further discussion in Appendix A.3306

5 Conclusions and Future Work307

In this work we have addressed the problem of text segment tagging on unstructured documents.308

We believe that the existing state-of-the-art models are unnecessarily huge, with an overwhelming309

number of parameters. Furthermore, most of them are based on Transformer architectures, suffering310

from the sequence truncation problem and not taking advantage of the sparse nature of the use case.311

To overcome these limitations, we have proposed SeqGraph, a new model which optimizes the312

feature extraction stage and mixes GNNs and RNNs to efficiently and effectively solve the segment313

tagging problem. We have demonstrated its capabilities by testing it on the CORD dataset, where it314

achieves state-of-the-art results while reducing the number of parameters between 100- and 200-times315

compared to its competitors. In the benchmark against PICK [2], we have also demonstrated that316

the image features are not essential for this task and that they do not provide additional relevant317

information that can be added to the one extracted from the OCR text segments.318

Future work will focus on improving the performance of the model trying to mitigate the bottlenecks.319

For instance, injecting positional embeddings into the node features, to see if the sequence information320

can be extracted by the GAT layers and thus removing the recurrent layers, which are computationally321

heavy. Another research line is extending the capabilities of the model to cover also segment grouping322

and entity linking tasks, evolving into an end-to-end information extraction model.323
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A Appendix418

A.1 Analysis of the text feature extraction methods419

As it is described in Section 3.3, we can group the text feature extraction methods in two main420

categories: the ones that extract the features attending to its semantic meaning and the ones that421

extract the features attending to its composition.422

Feature extraction based on the semantic meaning of the features has some important drawbacks423

listed below:424

• The words that are not in the dictionary will get assigned a useless embedding, so the model425

will not perform well on unseen data or on noisy data (for instance due to parsing errors in the426

OCR module).427

• The size of the dictionary must be huge to include as many words as possible, and so does the428

size of the dataset for generating it. This size problem worsens when working with multilingual429

data.430
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• It is very prone to overfitting, especially for the words that are less frequent.431

• Problems when dealing with wide ranges of numbers. For instance, when working with prices,432

the model cannot extract general rules for them and needs to treat each number as an independent433

word, while it is not feasible to include all the possible numbers in the dictionary.434

Some of these weak points can be partially mitigated by decomposing the text in known character435

grams and extracting the features from them [1, 30]. This variant can improve the performance over436

noisy and unseen data and reduce the overfitting. Nevertheless, this strategy can increase even more437

the size of the dictionary and the models are still very sensitive to the noise and the unseen data.438

On the other hand, extracting the features attending to the text composition has the following439

advantages:440

• The size of the dictionary is drastically reduced. For instance, if considering only the ASCII441

characters the length would be only 128.442

• The models are more robust to unseen or noisy data, as even if some characters are missing or443

they are different, it can find relationships between the rest of them.444

• The models tend to analyze the words at a lower level, without attending too much to the445

semantic meaning and finding more general rules, which reduces overfitting.446

• The numbers range problem is eliminated, as it can find general rules to group all the segments447

of the same type under the same meaning. For instance, the model could learn that when a digit448

is followed by a dot and then by other digits, the segment is a price without having to analyze all449

the possible numbers.450

• These previous advantages also impact on reducing the amount of data required for pretraining451

the embedding layer.452

A.2 Datasets453

A.2.1 CORD454

Consolidated Receipt Dataset [13] is composed of 1000 Indonesian purchase receipts which contain455

images and box/text annotations for OCR, and multi-level semantic labels for semantic parsing and456

relation extraction tasks. In the ground truth, each segment is associated with the category field and457

the group_id field for joining the segments at entity level. It contains 30 different categories. The458

samples are split into 800 for train, 100 for dev (validation), and 100 for test.459

A.2.2 Private dataset460

For effectively evaluating the capabilities of the model, we propose an internal challenging dataset461

composed of 8814 purchase receipt images from 5 countries: Germany, Italy, France, Mexico, and462

Brazil. Receipts vary widely in height, density, and image quality. They may contain perspective463

artifacts, 3D rotations and all kinds of wrinkles. Each receipt has all its text segments annotated. The464

available annotated information for each text segment is the rotated bounding box, the text, the entity465

category, and the product ID (in case the segment belongs to a product cluster). About the entity466

categories, there are 21 types of different entities, some of them at receipt level (purchase_date,467

purchase_time, total_value,...) and others at purchase item level (item_description, item_code,468

item_value, ...).469

The dataset also contains the receipt region annotation. We have cropped the images, filtering the470

segments that are outside the receipt, and shifting the coordinates of the remaining segments to the471

cropped pixel space. Finally, we split the dataset in training, validation and test sets using a ratio of472

70/10/20. In Figure 5 we present some examples. We also overlay the ground-truth labels, where the473

boxes with the same color belong to the same category. Note that this dataset is more challenging474

than CORD in the number of samples, languages, high imbalance in the classes (especially for475

’other’, i.e. text not belonging to targeted classes) and that the number of segments can vary from476

several to hundreds from one receipt to another. Furthermore, the layouts may vary highly intra- and477

inter-retailers and there are a large number of them (hundreds per country). Finally, note also that the478

quality of the receipts related to paper and printing defects and image capture is worse than in CORD,479

which means injecting more noise and variability into the input data.480
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Figure 5: Examples from the private dataset of receipts including ground truth labels. The color of
the bounding box denotes its category. On each image, multiple text segments can belong to same
category.

A.3 Ablation study481

We analyze some design choices and their impact on the model accuracy and on the number of482

parameters. All these experiments are performed using the private dataset and the results are gathered483

in Table 4.484

First, we study the differences between using GRU [15] and LSTM [26] as the recurrent layers.485

The experiment shows that the results slightly improve when using GRU layers, while reducing the486

number of parameters of the model by 0.6 million.487

Table 4: Ablation study on the proposed method. SeqGraph is the baseline model; SeqGraph LSTM
replaces the GRU layers by LSTM ones; SeqGraph w/o RNN removes the recurrent layers; SeqGraph
w/o RNN extended removes the recurrent layers and add more GAT layers to compensate the drop of
parameters; SeqGraph w/o RNN & layout removes the recurrent layers and the layout features; and
SeqGraph w/o text removes the text feature extraction module.

Model Parameters Modality F1 micro F1 macro

SeqGraph 4M T+L+S 97.47 94.51
SeqGraph LSTM 4.6M T+L+S 97.40 94.39

SeqGraph w/o RNN 2.3M T+L 96.33 91.56
SeqGraph w/o RNN extended 6.5M T+L 96.84 92.81

SeqGraph w/o layout 4M T+S 97.22 94.18
SeqGraph w/o RNN & layout 2.3M T 93.98 87.99

SeqGraph w/o text 2.4M L+S 95.13 88.22
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Next, we want to analyze the contribution of each source of input information. We start with the488

sequential information, which is gathered by the recurrent layers. Thus, we remove the recurrent489

layers, connecting the output of the GNN directly to the final linear layer (SeqGraph w/o RNN in490

Table 4). As can be observed, there is a drop of 1% in F1 score micro and almost 3% in F1 score491

macro. However, note that there is also an important drop in the number of parameters, almost 50%.492

In order to compensate for this drop, the number of GAT layers is increased from 3 to 5, and the493

number of heads of each layer from 4 to 8. With this variant (SeqGraph w/o RNN extended) the494

drop is halved, but it is still important for the F1 score macro. Therefore, we can conclude that495

the sequential information is relevant for this task and that it cannot be fully replaced by the layout496

features.497

The next source of information considered is the layout, embedded in the coordinates of the segment498

bounding boxes. We remove this information from the node features, maintaining only the text ones499

(SeqGraph w/o layout). Surprisingly, the drop in performance is almost null, 0.25 in micro and 0.33500

in macro metrics. Nevertheless, note that the layout features are also employed during the edge501

sampling step for finding the neighbors of each node, so we believe that this information embedded502

in the graph structure, together with the sequence information, is mitigating the suppression of the503

features from the nodes.504

We also try removing both the sequential and the layout information (SeqGraph w/o RNN & layout).505

In this case, the drop in performance is huge, 6.6% in the macro metric. This demonstrates that,506

although each of these sources contains some exclusive relevant information, most of it is shared by507

both.508

Finally, we test a version of the model where we remove the text information from the node features509

(SeqGraph w/o text). As expected, the F1 score macro highly decreases (more than 6%), demonstrat-510

ing that the text features are the most important ones, but that they need to be complemented with511

other sequential and/or layout features.512
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