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A Appendix

A.1 Proof of Proposition 2

Proof._For a weight W € R4*@X¢inxcout and an input activation X € Rh*wx¢in the FLOPs of
X @ W is 2hw(cind? + 1)cous. In addition, the FLOPs required to calculate @ and Z are ¢, d*Cous
and ghwc;,, respectively. Besides, the size of the output activation can be calculated by:

hout = [(h — d + 2 % padding)/stride + 1], wour = [(w — d + 2 * padding)/stride + 1]. (1)

Without loss of generality, assume that the values of padding and stride are both 1, therefore, the
FLOPs required to de-quantize the output activation is hoyt WoutCout = (B — d + 3)(w — d + 3)Cout-
Finally, all FLOPs required for a layer quantization is:

FLOPsy; = 2hw(cmd2 + Deour + Cind*Cour + ghwe, + (h—d+3)(w—d+3)cout- (2)
Without loss of generality, assume that d = 3, ¢;,, = Cout = ¢, and h = w = k, then
FLOPsq; = 18k*¢? + gk®c + 9¢% + 3k2c. 3)

Compared with only one scale (¢ = 1), FLOPs are increased by » when adopting multiple scales
(g=2)
(9 — ke (9 — 1)k g—1 @
r = = ~ s
18k2¢2 4+ k2¢c 4+ 9¢? + 3k%c  (18k%2 +9)c+4k?> 18c+ 4
As we discussed in the section of experiments, the value of g that we adopt is 4. In this case, Eq. 4]
can be further simplified to

g—1 3 1 )

re = ~ .

18c+4 18c+4 6¢c+1
Considering that the magnitude of c is generally in the tens or hundreds of common neural networks,
thus the value of r is very small. Therefore, the increase in FLOPs brought by the scheme of
group-shared scales is negligible. O

A.2 Full-precision Results

In the section of experiments, we re-trained multiple full-precision adder networks on various datasets.
The full-precision results on CIFAR-10 and CIFAR-100 are reported in Table[I] and the full-precision
results on ImageNet are reported in Table [2] both denoted by AddNN. The results of AddNN are
basically consistent with the results in [1]. The baseline results of convolutional neural network
(CNN) and binary neural network (BNN) are cited from [[1]].
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Table 1: Full-precision results on CIFAR-10 and CIFAR-100 datasets.

Model Method # Mul. # Add. # XNOR. CIFAR-10 (%) | CIFAR-100 (%)
CNN 0.65G 0.65G 0 93.80 72.73
VGG-Small BNN 0.05G 0.65G 0.60G 89.80 67.24
AddNN 0.05G 1.25G 0 93.44 73.60
CNN 41.17TM 41.17TM 0 92.25 68.14
ResNet-20 BNN 0.45M 41.17"M 40.72M 84.87 54.14
AddNN 0.45M 81.8OM 0 91.42 67.59
CNN 69.12M 69.12M 0 93.29 69.74
ResNet-32 BNN 0.45M 69.12M 68.67TM 86.74 56.21
AddNN 0.45M 137.79M 0 92.72 70.17

Table 2: Full-precision results on ImageNet.

Model Method # Mul. # Add. # XNOR. Top-1 Acc (%) Top-5 Acc (%)
CNN 1.8G 1.8G 0 69.8 89.1
ResNet-18 BNN 0.1G 1.8G 1.7G 51.2 73.2
AddNN 0.1G 3.5G 0 67.9 87.8
CNN 3.9G 3.9G 0 76.2 92.9
ResNet-50 BNN 0.1G 3.9G 3.8G 55.8 78.4
AddNN 0.1G 7.6G 0 75.0 91.9

A.3 Analysis on the Ratio of Discarded Outliers

As we discussed in the subsection of outliers clamp for activations, the value r, = X[|a* (n—1)]] is
selected as the range of activations for the calculation of scale, where « € (0, 1] is a hyper-parameter
controlling the ratio of discarded outliers in activations. We supplement the ablation study of this
ratio with 4-bit quantized adder ResNet-20 network on CIFAR-100 dataset.

Table 3: Analysis on the ratio of discarded outliers in activations.
o 0.9985 0.9990 0.9995 1.0
Acc (%) 67.29 67.35 67.11 65.17

As shown in Table E] , @ = 1 means that the scheme of outliers clamp for activations is not adopted,
resulting in a significantly degraded quantized accuracy. The quantized accuracy can be improved
with an appropriate .

A.4 Quantization Results on Adder Vision Transformers

We also try the proposed quantization method on adder vision transformers [5]. We re-train the
full-precision adder DeiT-T for 400 epochs from scratch on ImageNet dataset following [5]], and
the final top-1 accuracy of the full-precision adder DeiT-T is 68.3%. For the next quantization step,
the number of groups we use is 4, the hyper-parameter « controlling the ratio of discarded outliers
in activations is set to 0.9992. The accuracy drops after post-training quantization are reported in
Table[d] The advantage of the proposed method over QSSFF [6] is significant. For example, at the
case of W4 A4, the accuracy drop of our method is 8.7%, which is much lower than the 16.3% of
QSSF [6].

A.5 Quantization Results on Lower-bit

We supplement the 3-bit PTQ quantization experiment of adder ResNet-20 on CIFAR-100 dataset.
Besides, the comparisons with more CNN quantization methods are also supplemented. The detailed
accuracy drops are reported in Table[5]

A.6 Distribution of the Weights and Activations

In Figure [T} we visualize the histogram of the weights and activations in AdderNet. The input
full-precision (FP) activations and weights in pre-trained AdderNet show a significant difference,



Table 4: Accuracy drops under various bits.

WS8AS8(%) W6A6 (%) | W4A4 (%)
Ours -0.5 -4.1 -8.7
QSSF [6] -1.7 -6.5 -16.3

Table 5: Comparisons with more CNN quantization methods.

W4AL (%) | W3A3 (%)
AddNN 183 6.02
CNN AdaRound [4] 201 677
CNN BRECQ [3] 174 5.95
CNN QDROP [7] 1.70 5.36

which pose a huge challenge for AdderNet quantization. Other AdderNet quantization methods [6} 2]
fail to deal with this challenge, leading to the phenomenon of over clamp and bits waste, further
resulting in a poor quantized accuracy. In contrast, our quantization method can effectively address
this challenge by the redistribution of full-precision weights and activations, resulting in a good
quantized accuracy. One-shared scale is adopted here for the simplification of visualization, and
symmetric 4-bit quantization is taken as an example.

A.7 Limitations and Societal Impacts

Our AdderNet quantization method has one major limitation: as the number of bits decreases, the
accuracy loss of the quantization model will increase. Therefore, quantization-aware training is
necessary for the low bits, which is time consuming and computationally consuming.

As for the societal impacts, the proposed quantization method can further reduce the energy con-
sumption of AdderNet with a lower quantized accuracy loss. The low power devices equipped with
quantized AdderNet can be deployed to surveillance scenario. If used improperly, there may be a risk
of information leakage.
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Figure 1: Distribution of the weights and activations in AdderNet.
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