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1 NOTATION

Table 1: Notations

Symbol Meaning

πE the expert policy
V π,P,r policy value under the transition model P and reward r
ε the imitation gap
δ failure probability
dπh(s) state distribution
dπh(s, a) state-action distribution
tr = (s1, a1, · · · , sH , aH) the trajectory
trh = (s1, a1, · · · , sh, ah) the truncated trajectory
trh(·) the state at time step h in tr
trh(·, ·) the state-action pair at time step h in tr
tr(ah) the action at time step h in tr
D expert dataset
m number of expert trajectories
d̂π

E

h (s, a) maximum likelihood estimator of dπ
E

h in Equation (4)
d̃π

E

h (s, a) transition-aware estimator in Equation (7)
PπE

(tr) probability of the trajectory tr under the expert policy πE

PπE

(trh) probability of the truncated trajectory trh under the expert policy πE

Sh(D) the set of states visited in time step h in dataset D
TrDh the trajectories along which each state has been visited in D up to time step h
π(t) the policy obtained in the iteration t
w(t) the reward function learned in the iteration t
η(t) the step size in the iteration t
f (t)(w) the objective function in the iteration t in Equation (9)
dh(s, a) the averaged state-action distribution in Algorithm 2
π the policy derived by the averaged state-action distribution in Algorithm 2
ΠBC (D1) the set of policies which take the expert action on states covered in D1

P̂ the empirical transition function

dπ,P̂h (s, a) the state-action distribution of π under the empirical transition function P̂
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2 FROM REGRET GUARANTEE TO PAC GUARANTEE

Shani et al. [2022] proved a regret guarantee for their OAL algorithm. In particular, Shani et al. [2022] showed that with
probability at least 1− δ′, we have

K∑
k=1

V πE − V πk ≤ Õ
(√

H4|S|2|A|K +
√
H3|S||A|K2/m

)
, (1)

where πk is the policy obtained at episode k, K is the number of interaction episodes, and m is the number of expert
trajectories. We would like to comment that the second term in (1) involves the statistical estimation error about the expert
policy. Furthermore, this term reduces to Õ(

√
H2|S|K2/m) under the assumption that the expert policy is deterministic.

To further convert this regret guarantee to the PAC guarantee considered in this paper, we can apply Markov’s inequality as
suggested by [Jin et al., 2018]. Concretely, let π be the policy that randomly chosen from {π1, π2, · · · , πK} with equal
probability, then we have

P
(
V πE − V π ≥ ε

)
≤ 1

ε
E

[
1

K

K∑
k=1

V πE − V πk

]
≤ 1

ε

(
Õ
(√

H4|S|2|A|
K

+
√
H2|S|/m

)
+ δ′H

)
,

Therefore, if we set δ′ = εδ/(3H), and

K = Õ
(
H4|S|2|A|

ε2δ2

)
, m = Õ

(
H2|S|
ε2

)
,

we obtain that P(V πE − V π ≥ ε) ≤ δ.

3 PROOF OF RESULTS IN SECTION 4

3.1 PROOF OF LEMMA 1

Proof. The proof starts with the dual representation of policy value (see Equation (1)).

V πE − V π =

H∑
h=1

∑
(s,a)∈S×A

(
dπ

E

h (s, a)− dπh(s, a)
)
rh(s, a)

(a)

≤
H∑

h=1

∥∥∥dπE

h − dπh

∥∥∥
1

≤
H∑

h=1

∥∥∥dπE

h − d̃π
E

h

∥∥∥
1
+

H∑
h=1

∥∥∥dπh − d̃π
E

h

∥∥∥
1
,

where inequality (a) is based on the assumption that rh(s, a) ∈ [0, 1]. For the two terms in RHS, according to Definition 1
and Definition 2, we have

H∑
h=1

∥∥∥dπE

h − d̃π
E

h

∥∥∥
1
≤ εEST,

H∑
h=1

∥∥∥dπh − d̃π
E

h

∥∥∥
1
≤ min

π∈Π

H∑
h=1

∥∥∥dπh − d̃π
E

h

∥∥∥
1
+ εOPT.

With the above two inequalities, we further obtain

V πE − V π ≤ εEST +min
π∈Π

H∑
h=1

∥∥∥dπh − d̃π
E

h

∥∥∥
1
+ εOPT

(a)

≤ εEST +

H∑
h=1

∥∥∥dπE

h − d̃π
E

h

∥∥∥
1
+ εOPT

≤ 2εEST + εOPT.

Inequality (a) holds since πE ∈ Π. We complete the proof.



4 PROOF OF RESULTS IN SECTION 5

4.1 PROOF OF PROPOSITION 1

Proof. Let d̃π
E

h (s, a) be an expert state-action distribution estimator and P̂ be a transition model learned by a reward-free
method. Notice that reward-free exploration methods also enable uniform policy evaluation with respect to any reward
function; see Definition 4. That is, with probability at least 1 − δRFE, for any reward function r and policy π, we have
|V π,P,r − V π,P̂ ,r| ≤ εRFE. Then we define the following two events.

EEST :=

{
H∑

h=1

∥∥∥d̃πE

h − dπ
E

h

∥∥∥
1
≤ εEST

}
,

ERFE :=
{
∀r = (r1, . . . , rH),∀π ∈ Π :

∣∣∣V π,P,r − V π,P̂ ,r
∣∣∣ ≤ εRFE

}
.

According to assumption (a) and (b), we have that P (EEST) ≥ 1− δEST and P (ERFE) ≥ 1− δRFE. Applying union bound
yields

P (EEST ∩ ERFE) ≥ 1− δEST − δRFE.

The following analysis is established on the event EEST ∩ ERFE. Let π be the output of Algorithm 1.∣∣∣V πE,P − V π,P
∣∣∣ ≤ ∣∣∣V πE,P − V π,P̂

∣∣∣+ ∣∣∣V π,P̂ − V π,P
∣∣∣ ≤ ∣∣∣V πE,P − V π,P̂

∣∣∣+ εRFE.

The last inequality follows the event ERFE. Then we consider the error |V πE,P − V π,P̂ |. From the dual form of the policy
value in Equation (1), we have that

∣∣∣V πE,P − V π,P̂
∣∣∣ =

∣∣∣∣∣∣
H∑

h=1

∑
(s,a)∈S×A

(
dπ

E,P
h (s, a)− dπ,P̂h (s, a)

)
rh(s, a)

∣∣∣∣∣∣ ≤
H∑

h=1

∥∥∥dπE,P
h − dπ,P̂h

∥∥∥
1
,

where dπ,P̂h (s, a) is the state-action distribution of the policy π under the transition model P̂ . Then we get that

H∑
h=1

∥∥∥dπE,P
h − dπ,P̂h

∥∥∥
1
≤

H∑
h=1

∥∥∥dπE,P
h − d̃π

E

h

∥∥∥
1
+

H∑
h=1

∥∥∥d̃πE

h − dπ,P̂h

∥∥∥
1

≤ εEST +

H∑
h=1

∥∥∥d̃πE

h − dπ,P̂h

∥∥∥
1
.

The last inequality follows the event EEST. Combining the above three inequalities yields∣∣∣V πE,P − V π,P
∣∣∣ ≤ H∑

h=1

∥∥∥d̃πE

h − dπ,P̂h

∥∥∥
1
+ εEST + εRFE.

According to assumption (c), with the estimator d̃π
E

h (s, a) and transition model P̂ , algorithm C solves the optimization
problem in Equation (3) up to an error εOPT and π is the output of the algorithm C. Formally,

H∑
h=1

∥∥∥d̃πE

h − dπ,P̂h

∥∥∥
1
≤ min

π∈Π

H∑
h=1

∥∥∥d̃πE

h − dπ,P̂h

∥∥∥
1
+ εOPT.

Then we get that∣∣∣V πE,P − V π,P
∣∣∣ ≤ H∑

h=1

∥∥∥d̃πE

h − dπ,P̂h

∥∥∥
1
+ εEST + εRFE

≤ min
π∈Π

H∑
h=1

∥∥∥d̃πE

h − dπ,P̂h

∥∥∥
1
+ εOPT + εEST + εRFE



(a)

≤
H∑

h=1

∥∥∥d̃πE

h − dπ
E,P̂

h

∥∥∥
1
+ εOPT + εEST + εRFE

≤
H∑

h=1

∥∥∥d̃πE

h − dπ
E,P

h

∥∥∥
1
+

H∑
h=1

∥∥∥dπE,P
h − dπ

E,P̂
h

∥∥∥
1
+ εOPT + εEST + εRFE

(b)

≤
H∑

h=1

∥∥∥dπE,P
h − dπ

E,P̂
h

∥∥∥
1
+ εOPT + 2εEST + εRFE,

where inequality (a) holds since πE ∈ Π and inequality (b) follows the event EEST. With the dual representation of ℓ1-norm,
we have that

H∑
h=1

∥∥∥dπE,P
h − dπ

E,P̂
h

∥∥∥
1
= max

w∈W

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)
(
dπ

E,P
h (s, a)− dπ

E,P̂
h (s, a)

)

= max
w∈W

H∑
h=1

V πE,P,w − V πE,P̂ ,w ≤ εRFE,

whereW = {w = (w1, . . . , wH) : wh ∈ R|S|×|A|, ∥wh∥∞ ≤ 1}, V πE,P̂ ,w is the value of policy πE with the transition
model P̂ and reward function w. The last inequality follows the event ERFE. Then we prove that∣∣∣V πE,P − V π,P

∣∣∣ ≤ 2εEST + 2εRFE + εOPT.

4.2 REWARD-FREE EXPLORATION METHOD

In this part, we present the RF-Express algorithm in [Ménard et al., 2021] with our notations. Please see Algorithm 1.

Algorithm 1 RF-Express

Input: Failure probability δ, function β(n, δ) = log(3|S||A|H/δ) + |S| log(8e(n+ 1)).
1: for t = 0, 1, 2, · · · do
2: Update the counter and the empirical transition model:

nt
h(s, a) =

t∑
i=1

I{sih = s, aih = a}, nt
h(s, a, s

′) =
t∑

i=1

I{sih = s, aih = a, sih+1 = s′},

P̂ t
h(s

′|s, a) = nt
h(s, a, s

′)

nt
h(s, a)

, if nt
h(s, a) > 0 and P̂ t

h(s
′|s, a) = 1

|S| , ∀s
′ ∈ S otherwise.

3: Define W t
H+1(s, a) = 0, ∀(s, a) ∈ S ×A.

4: for h = H,H − 1, · · · , 1 do

5: W t
h(s, a) = min

(
H, 15H2 β(nt

h(s,a),δ)
nt
h(s,a)

+
(
1 + 1

H

)∑
s′∈S P̂ t

h(s
′|s, a)maxa′ W t

h+1 (s
′, a′)

)
.

6: end for
7: Derive the greedy policy: πt+1

h (s) = argmaxa∈A W t
h(s, a),∀s ∈ S,∀h ∈ [H].

8: if 3e
√
W t

1(s1, π
t+1,
1 (s1)) +W t

1(s1, π
t+1
1 (s1)) ≤ ε/2 then

9: break
10: end if
11: Rollout πt+1 to collect a trajectory τ t+1 = (st1, a

t
1, s

t
2, a

t
2, · · · , stH , atH).

12: end for
Output: Transition model P̂ t.



4.3 PROOF OF LEMMA 4

Prior to proving Lemma 4, we first prove that the estimator shown in (7) is an unbiased estimation. We consider the
decomposition of dπ

E

h (s, a).

dπ
E

h (s, a) =
∑

trh∈Tr
D1
h

PπE

(trh)I {trh(·, ·) = (s, a)}+
∑

trh /∈Tr
D1
h

PπE

(trh)I {trh(·, ·) = (s, a)}

=
∑

trh∈Tr
D1
h

Pπ′
(trh)I {trh(·, ·) = (s, a)}+

∑
trh /∈Tr

D1
h

PπE

(trh)I {trh(·, ·) = (s, a)}, (2)

where π′ ∈ ΠBC (D1) and the last equality follows Lemma 1.

Lemma 1. We define ΠBC (D1) as the set of policies, each of which takes expert action on states contained in D1. For each
π ∈ ΠBC (D1), ∀h ∈ [H] and (s, a) ∈ S ×A, we have∑

trh∈Tr
D1
h

PπE

(trh)I {trh(·, ·) = (s, a)} =
∑

trh∈Tr
D1
h

Pπ(trh)I {trh(·, ·) = (s, a)} .

Proof. The proof is based on the fact that any π ∈ ΠBC(D1) takes the same action with the expert on trajectories in TrD1

h .
More concretely, for any trh ∈ TrD1

h , we have

PπE

(trh)

= ρ(trh(s1))π
E
1 (trh(a1)|tr(s1))

h−1∏
ℓ=1

Pℓ (trh(sℓ+1)|trh(sℓ), trh(aℓ))πE
ℓ+1 (trh(aℓ+1)|trh(sℓ+1))

= ρ(trh(s1))π1 (trh(a1)|tr(s1))
h−1∏
ℓ=1

Pℓ (trh(sℓ+1)|trh(sℓ), trh(aℓ))πℓ+1 (trh(aℓ+1)|trh(sℓ+1))

= Pπ(trh),

which completes the proof.

Now we proceed to prove Lemma 4.

Proof of Lemma 4. We aim to upper bound the estimation error
∑H

h=1 ∥d̃π
E

h − dπ
E

h ∥1. Recall the definition of the estimator
d̃π

E

h (s, a) in Equation (7):

d̃π
E

h (s, a) :=

∑
trh∈D′

env
I
{
trh(·, ·) = (s, a), trh ∈ TrD1

h

}
|D′

env|
+

∑
trh∈Dc

1
I
{
trh(·, ·) = (s, a), trh /∈ TrD1

h

}
|Dc

1|
.

Using Equation (2), for any h ∈ [H] and (s, a) ∈ S ×A, we have∣∣∣d̃πE

h (s, a)− dπ
E

h (s, a)
∣∣∣

≤

∣∣∣∣∣∣∣
∑

trh∈D′
env

I
{
trh(·, ·) = (s, a), trh ∈ TrD1

h

}
|D′

env|
−

∑
trh∈Tr

D1
h

Pπ′
(trh)I {trh(·, ·) = (s, a)}

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∑

trh∈Dc
1
I
{
trh(·, ·) = (s, a), trh /∈ TrD1

h

}
|Dc

1|
−

∑
trh /∈Tr

D1
h

PπE

(trh)I {trh(·, ·) = (s, a)}

∣∣∣∣∣∣∣ .
Thus, we can upper bound the estimation error.

H∑
h=1

∥∥∥d̃πE

h − dπ
E

h

∥∥∥
1



≤
H∑

h=1

∑
(s,a)∈S×A

∣∣∣∣∣∣∣
∑

trh∈D′
env

I
{
trh(·, ·) = (s, a), trh ∈ TrD1

h

}
|D′

env|
−

∑
trh∈Tr

D1
h

Pπ′
(trh)I {trh(·, ·) = (s, a)}

∣∣∣∣∣∣∣︸ ︷︷ ︸
Error A

+

H∑
h=1

∑
(s,a)∈S×A

∣∣∣∣∣∣∣
∑

trh∈Dc
1
I
{
trh(·, ·) = (s, a), trh /∈ TrD1

h

}
|Dc

1|
−

∑
trh /∈Tr

D1
h

PπE

(trh)I {trh(·, ·) = (s, a)}

∣∣∣∣∣∣∣︸ ︷︷ ︸
Error B

.

We first analyze the term Error A. Trajectories in D′
env are collected by π′ via interacting with the environment. Thus, we

have the estimator in Error A is unbiased, i.e., for any (s, a) ∈ S ×A and h ∈ [H],

E

∑trh∈D′
env

I
{
trh(·, ·) = (s, a), trh ∈ TrD1

h

}
|D′

env|

 =
∑

trh∈Tr
D1
h

Pπ′
(trh)I {trh(·, ·) = (s, a)} ,

where the expectation is taken over the randomness of collecting D′
env. The above equality holds because the stochastic

processes on the both sides are induced by π′. Then we leverage Chernoff’s bound to upper bound Error A.

Lemma 2 (Chernoff’s bound [Vershynin, 2018]). Let X = 1/n ·∑n
i=1 Xi, where Xi is a Bernoulli random variable with

P(Xi = 1) = pi and P(Xi = 0) = 1− pi, for i ∈ [n]. Furthermore, assume these random variables are independent. Let
µ = E[X] = 1/n ·∑n

i=1 pi. Then for 0 < t ≤ 1,

P
(∣∣X − µ

∣∣ ≥ tµ
)
≤ 2 exp

(
−µnt2

3

)
.

First, for each s ∈ S and h ∈ [H], for any non-expert action a ̸= πE
h (s), we have that∑

trh∈Tr
D1
h

Pπ′
(trh)I {trh(·, ·) = (s, a)} = 0.

This is because on the trajectory trh ∈ TrD1

h , the state s in time step h is covered in D1. As a result, the BC policy π′

learned from D1 must take the expert action πE
h (s) on such a state and thus Pπ′

(trh)I {trh(·, ·) = (s, a)} = 0. Second,
since the estimator of ∑

trh∈D′
env

I
{
trh(·, ·) = (s, a), trh ∈ TrD1

h

}
|D′

env|

is an unbiased estimator and is non-negative almost surely. Therefore, for each s ∈ S and h ∈ [H], for any non-expert action
a ̸= πE

h (s), with probability of 1, ∑
trh∈D′

env
I
{
trh(·, ·) = (s, a), trh ∈ TrD1

h

}
|D′

env|
= 0.

Based on the above two claims, we have that

Error A =

H∑
h=1

∑
s∈S

∣∣∣∣∣∣∣
∑

trh∈D′
env

I
{
trh(·, ·) = (s, πE

h (s)), trh ∈ TrD1

h

}
|D′

env|
−

∑
trh∈Tr

D1
h

Pπ′
(trh)I

{
trh(·, ·) = (s, πE

h (s))
}∣∣∣∣∣∣∣ .

Let E′s
h be the event that trh ∈ D′

env agrees with expert policy at state s at time step h and also appears in TrD1

h . Formally,

E′s
h = I{trh(·, ·) = (s, πE

h (s)) ∩ trh ∈ TrD1

h }.



By Lemma 2, for each s ∈ S and h ∈ [H], with probability at least 1− δ
2|S|H over the randomness of D′

env, we have∣∣∣∣∣∣∣
∑

trh∈D′
env

I
{
trh(·, ·) = (s, πE

h (s)), trh ∈ TrD1

h

}
|D′

env|
−

∑
trh∈Tr

D1
h

Pπ′
(trh)I

{
trh(·, ·) = (s, πE

h (s))
}∣∣∣∣∣∣∣

≤
√
Pπ′ (E′s

h)
3 log (4|S|H/δ)

n′ .

By union bound, with probability at least 1− δ
2 over the randomness of D′

env, we have

Error A ≤
H∑

h=1

∑
s∈S

√
Pπ′ (E′s

h)
3 log (4|S|H/δ)

n′

≤
H∑

h=1

√
|S|
√∑

s∈S
Pπ′ (E′s

h)
3 log (4|S|H/δ)

n′

The last inequality follows the Cauchy-Schwartz inequality. It remains to upper bound
∑

s∈S PπE

(E′s
h) for all h ∈ [H]. To

this end, we define the event G′D1

h that policy π′ visits states covered in D1 up to time step h. Formally, G′D1

h = I{∀h′ ≤
h, sh′ ∈ Sh′(D1)}, where Sh(D1) is the set of states in D1 at time step h, where s′h comes from trh ∈ D′

env. Then, for all
h ∈ [H], we have ∑

s∈S
Pπ′ (

E′s
h

)
= Pπ′

(G′D1

h ) ≤ P(G′D1

1 ).

The last inequality holds since G′D1

h ⊆ G′D1

1 for all h ∈ [H]. Then we have that

Error A ≤ H

√
3|S| log (4|S|H/δ)

n′ .

When the interaction complexity satisfies that n′ ≳ |S|H2

ε2 log
(

|S|H
δ

)
, with probability at least 1− δ

2 over the randomness
of D′, we have Error A ≤ ε

2 .

For the term Error B, we utilize [Rajaraman et al., 2020, Lemma A.11]. When the expert sample complexity satisfies that
m ≳ |S|H3/2

ε log
(

|S|H
δ

)
, with probability at least 1− δ

2 over the randomness of D, we have Error B ≤ ε
2 . Applying union

bound finishes the proof.

4.4 PROOF OF LEMMA 5

Before we prove Lemma 5, we first state the following key lemma.

Lemma 3. Consider Algorithm 2, we have

T∑
t=1

f (t)
(
w(t)

)
− min

w∈W

T∑
t=1

f (t)(w) ≤ 2H
√
2|S||A|T ,

where f (t)(w) =
∑H

h=1

∑
(s,a)∈S×A wh(s, a)(d

π(t),P̂
h (s, a)− d̃π

E

h (s, a)).

Proof. Lemma 3 is a direct consequence of the regret bound of online gradient descent [Shalev-Shwartz, 2012]. To
apply such a regret bound, we need to verify that 1) the iterate norm ∥w∥2 has an upper bound; 2) the gradient norm
∥∇wf

(t)(w)∥2 also has an upper bound. The first point is easy to show, i.e., ∥w∥2 ≤
√

H|S||A| by the condition that



w ∈ W = {w = (w1, . . . , wH) : ∥wh∥∞ ≤ 1, ∀h ∈ [H]}. For the second point, let d̃1h and d̃2h be the first and the second
part in d̃π

E

h defined in (7). Then,

∥∥∥∇wf
(t)(w)

∥∥∥
2
=

√√√√ H∑
h=1

∑
(s,a)∈S×A

(
dπ

(t),P̂
h (s, a)− d̃π

E

h (s, a)
)2

=

√√√√ H∑
h=1

∑
(s,a)∈S×A

(
dπ

(t),P̂
h (s, a)− d̃1h(s, a)− d̃2h(s, a)

)2

≤

√√√√ H∑
h=1

3
∑

(s,a)∈S×A

(
dπ

(t),P̂
h (s, a)

)2
+
(
d̃1h(s, a)

)2
+
(
d̃2h(s, a)

)2

≤

√√√√ H∑
h=1

3
(∥∥∥dπ(t),P̂

h

∥∥∥
1
+
∥∥∥d̃1h∥∥∥

1
+
∥∥∥d̃2h∥∥∥

1

)
≤ 2
√
H,

where the first inequality follows (a + b + c)2 ≤ 3(a2 + b2 + c2) and the second inequality is based on that x2 ≤ |x| if
0 ≤ x ≤ 1.

Invoking Corollary 2.7 in [Shalev-Shwartz, 2012] with B =
√
H|S||A| and L = 2

√
H finishes the proof.

Proof of Lemma 5. With the dual representation of ℓ1-norm, we have

min
π∈Π

H∑
h=1

∥∥∥dπ,P̂h − d̃π
E

h

∥∥∥
1
= min

π∈Π
max
w∈W

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)
(
d̃π

E

h (s, a)− dπ,P̂h (s, a)
)
.

Since the above objective is linear w.r.t both w and dπh, invoking the minimax theorem [Bertsekas, 2016] yields

min
π∈Π

max
w∈W

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)
(
d̃π

E

h (s, a)− dπ,P̂h (s, a)
)

= max
w∈W

min
π∈Π

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)
(
d̃π

E

h (s, a)− dπ,P̂h (s, a)
)

= − min
w∈W

max
π∈Π

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)
(
dπ,P̂h (s, a)− d̃π

E

h (s, a)
)
,

where the last step follows the property that for a function f , −maxx f(x) = minx−f(x). Therefore, we have

min
π∈Π

H∑
h=1

∥∥∥dπ,P̂h − d̃π
E

h

∥∥∥
1
= − min

w∈W
max
π∈Π

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)
(
dπ,P̂h (s, a)− d̃π

E

h (s, a)
)
. (3)

Then we consider the term minw∈W maxπ∈Π

∑H
h=1

∑
(s,a)∈S×A wh(s, a)

(
dπ,P̂h (s, a)− d̃π

E

h (s, a)
)

.

min
w∈W

max
π∈Π

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)
(
dπ,P̂h (s, a)− d̃π

E

h (s, a)
)

≤ max
π∈Π

H∑
h=1

∑
(s,a)∈S×A

(
1

T

T∑
t=1

w
(t)
h (s, a)

)(
dπ,P̂h (s, a)− d̃π

E

h (s, a)
)

≤ 1

T

T∑
t=1

max
π∈Π

H∑
h=1

∑
(s,a)∈S×A

w
(t)
h (s, a)

(
dπ,P̂h (s, a)− d̃π

E

h (s, a)
)
.



At iteration t, π(t) is the approximately optimal policy regarding reward function w(t) with an optimization error of εRL.
Then we obtain that

1

T

T∑
t=1

max
π∈Π

H∑
h=1

∑
(s,a)∈S×A

w
(t)
h (s, a)

(
dπ,P̂h (s, a)− d̃π

E

h (s, a)
)

≤ 1

T

T∑
t=1

H∑
h=1

∑
(s,a)∈S×A

w
(t)
h (s, a)

(
dπ

(t),P̂
h (s, a)− d̃π

E

h (s, a)
)
+ εRL.

Applying Lemma 3 yields that

1

T

T∑
t=1

H∑
h=1

∑
(s,a)∈S×A

w
(t)
h (s, a)

(
dπ

(t),P̂
h (s, a)− d̃π

E

h (s, a)
)

≤ min
w∈W

1

T

T∑
t=1

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)
(
dπ

(t),P̂
h (s, a)− d̃π

E

h (s, a)
)
+ 2H

√
2|S||A|

T

= min
w∈W

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)

(
1

T

T∑
t=1

dπ
(t),P̂

h (s, a)− d̃π
E

h (s, a)

)
+ 2H

√
2|S||A|

T

= min
w∈W

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)
(
dπ,P̂h (s, a)− d̃π

E

h (s, a)
)
+ 2H

√
2|S||A|

T
.

Note that π is induced by the mean state-action distribution, i.e., πh(a|s) = Ph(s, a)/
∑

a Ph(s, a), where Ph(s, a) =
1
T

∑T
t=1 d

π(t),P̂
h (s, a). Based on Proposition 3.1 in [Ho and Ermon, 2016], we have that dπ,P̂h (s, a) = Ph(s, a), and hence

the last equation holds. Combined with Equation (3), we have that

min
π∈Π

H∑
h=1

∥∥∥dπ,P̂h − d̃π
E

h

∥∥∥
1

≥ − min
w∈W

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)
(
dπ,P̂h (s, a)− d̃π

E

h (s, a)
)
− 2H

√
2|S||A|

T
− εRL

= max
w∈W

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)
(
d̃π

E

h (s, a)− dπ,P̂h (s, a)
)
− 2H

√
2|S||A|

T
− εRL

=
∥∥∥d̃πE

h − dπ,P̂h

∥∥∥
1
− 2H

√
2|S||A|

T
− εRL,

where the last step again utilizes the dual representation of ℓ1-norm. If we take εRL ≤ ε/2, T ≳ H2|S||A|/ε2 and
η(t) :=

√
|S||A|/(8T ), then we have

H∑
h=1

∥∥∥dπ,P̂h − d̃π
E

h

∥∥∥
1
≤ min

π∈Π

H∑
h=1

∥∥∥dπ,P̂h − d̃π
E

h

∥∥∥
1
+ ε.

We complete the proof.

4.5 PROOF OF THEOREM 1

Proof of Theorem 1. Firstly, we verify assumption (a) in Proposition 1. With Lemma 2, when the number of trajectories
collected by RF-Express satisfies

n ≳
H3|S||A|

ε2

(
|S|+ log

( |S|H
δ

))
,



for any policy π ∈ Π and reward function w : S × A → [0, 1], with probability at least 1 − δ/2, |V π,P,w − V π,P̂ ,w| ≤
ε/16 = εRFE. In a word, the assumption (a) in Proposition 1 holds with δRFE = δ/2 and εRFE = ε/16.

Secondly, we note that the assumption (b) in Proposition 1 holds by Lemma 4. More concretely, if the expert sample
complexity and interaction complexity satisfies

m ≳
H3/2|S|

ε
log

( |S|H
δ

)
, n′ ≳

H2|S|
ε2

log

( |S|H
δ

)
,

with probability at least 1− δ/2,
∑H

h=1 ∥d̃π
E

h − dπ
E

h ∥1 ≤ ε/16 = εEST. Hence, the assumption (b) in Proposition 1 holds
with δEST = δ/2 and εEST = ε/16.

Thirdly, we aim to verify that the assumption (c) in Proposition 1 holds with d̃π
E

h (s, a) and P̂ . When εRL ≤ ε/2 and
T ≳ |S||A|H2/ε2 such that 2H

√
2|S||A|/T ≤ ε/4, we have that

H∑
h=1

∥∥∥dπ,P̂h − d̃π
E

h

∥∥∥
1
−min

π∈Π

H∑
h=1

∥∥∥dπ,P̂h − d̃π
E

h

∥∥∥
1
≤ 3ε

4
= εOPT.

Therefore, the assumption (c) in Proposition 1 holds with εOPT = 3ε/4. Now, we summarize the conditions what we have
obtained.

• The assumption (a) in Proposition 1 holds with δRFE = δ/2 and εRFE = ε/16.

• The assumption (b) in Proposition 1 holds with δEST = δ/2 and εEST = ε/16.

• The assumption (c) in Proposition 1 holds with εOPT = 3ε/4.

Applying Proposition 1 finishes the proof. With probability at least 1− δ,

V πE − V π ≤ 2εRFE + 2εEST + εOPT = ε.

5 PROOF OF RESULTS IN SECTION 6

5.1 PROBLEM SETUP

To facilitate later analysis, we introduce some useful notations widely used in the literature [Li et al., 2006, Jiang et al.,
2015]. In this part, for a function f that operates on the original state space S , we add a superscript ϕ (i.e., fϕ) to denote the
counterpart that operates on the abstract state space Φ. Inversely, for a function fϕ that operates on the abstract state space,
we use [fϕ]M to denote its lifted version, which is defined as [fϕ]M (s) = fϕ(ϕ(s)). Notice that [fϕ]M is a function over S .

Definition 1 (Abstract MDP). Under Assumption 1, for the original MDPM = (S,A, P, r,H, ρ), we define the abstract
MDPMϕ = (Φ,A, Pϕ, rϕ, H, ρϕ). In particular,

• Pϕ
h (x

′|x, a) =∑s′∈ϕ−1
h (x′) Ph(s

′|s, a), for an arbitrary s ∈ ϕ−1
h (x).

• rϕh(x, a) = rh(s, a), for an arbitrary s ∈ ϕ−1
h (x).

• ρϕ(x) =
∑

s∈ϕ−1
1 (x) ρ(s, a).

Here ϕ−1
h (x) = {s ∈ S : ϕh(s) = x}.

We clarify that there is no ambiguity in Definition 1 because of Assumption 1. The bisimulation condition enables that
s ∈ ϕ−1

h (x) are equivalent under the reward-consistent and transition-consistent conditions. With the abstract MDPMϕ, for

any abstract policy πϕ, we utilize V πϕ,Mϕ

h (x) to denote the corresponding value function. Similarly, with the original MDP
M, for any policy π, we use V π,M

h (s) to denote the corresponding value function.



Definition 2 (Abstract Expert Policy). Under Assumption 1, for the original expert policy πE, we define the abstract expert
policy πE,ϕ. In particular, for any (x, h) ∈ Φ× [H], it holds that

πE,ϕ
h (x) = πE

h (s), for an arbitrary s ∈ ϕ−1
h (x).

Besides, for any policy π ∈ Π, we utilize dπ,ϕh ∈ ∆(Φ×A) to denote the abstract state-action distribution.

dπ,ϕh (x, a) = Pπ(ϕh(sh) = x, ah = a|P ) =
∑

s∈ϕ−1
h (x)

dπh(s, a).

For any abstract policy πϕ ∈ Πϕ and abstract transition function Pϕ, we utilize dπ
ϕ,Pϕ

h ∈ ∆(Φ×A) to denote the abstract
state-action distribution induced by πϕ in Pϕ. In particular,

dπ
ϕ,Pϕ

h (x, a) = Pπϕ

(xh = x, ah = a|Pϕ).

5.2 MB-TAIL WITH STATE ABSTRACTION

Before presenting MB-TAIL with state abstraction, we first develop a meta-algorithm for AIL with state abstractions when
the transition function is unknown.

Algorithm 2 Meta-algorithm for AIL with State Abstractions and Unknown Transitions

Input: Expert demonstrations D, a set of state abstractions {ϕh}Hh=1.
1: P̂ϕ ← Invoke a reward-free exploration method to collect n trajectories and learn an abstract transition model.
2: d̃π

E,ϕ
h ← Estimate the abstract expert state-action distribution.

3: πϕ ← Apply an AIL approach to perform imitation with the expert estimation d̃π
E,ϕ

h under transition model P̂ϕ.
Output: Policy [πϕ]M .

In the sequel, we present three main algorithmic designs that appeared in Line 1, Line 2 and Line 3 in Algorithm 2 in the
setting with state abstraction.

The Transition-aware Estimator with State Abstraction. Here we present the transition-aware estimator with state
abstraction. The key idea of the construction of the estimator is similar to that discussed in Section 5.2. However, unlike the
original estimator in (7), the transition-aware estimator with state abstraction is a distribution over the abstract space Φ×A.
We present our adaptions to the setting with state abstraction in the following part.

Similar to the procedure presented in Section 5.2, we randomly divide the expert dataset into two equal parts, i.e.,
D = D1 ∪ Dc

1 and D1 ∩ Dc
1 = ∅ with |D1| = |Dc

1| = m/2. First, with state abstractions {ϕh}Hh=1, we first apply
BC on D1 to learn the abstract policy π′,ϕ.

π′,ϕ
h (a|x) =

{
n1
h(x,a)

n1
h(x)

if n1
h(x) > 0

1
|A| otherwise

(4)

Here n1
h(x, a) =

∑
tr∈D1

I{ϕh(trh(·)) = x, trh(ah) = a} and n1
h(x) =

∑
tr∈D1

I{ϕh(trh(·)) = x}. Intuitively, n1
h(x, a)

(n1
h(x)) is the number of abstract-state-action (abstract state) pairs that appeared in D1 in step h.

Second, we utilize the lifted policy [π′,ϕ]M to interact with the environment to collect a new datasetD′
env. Notice that [π′,ϕ]M

is a policy defined in the original state space S. Finally, we can establish the following estimator with state abstractions
{ϕh}Hh=1.

d̃π
E,ϕ

h (x, a) =

∑
trh∈D′

env
I{ϕh(trh(·)) = x, trh(ah) = a, trh ∈ TrD1,ϕ

h }
|D′

env|

+

∑
trh∈Dc

1
I{ϕh(trh(·)) = x, trh(ah) = a, trh ̸∈ TrD1,ϕ

h }
|Dc

1|
. (5)



Here

TrD,ϕ
h = {trh = (s1, a1, . . . , sh, ah) : ϕℓ(sℓ) ∈ Φℓ(D),∀ℓ ∈ [h]}, Φh(D) = {x ∈ Φ : ∃tr ∈ D, ϕh(trh(·)) = x}.

Intuitively, Φh(D) is the set of abstract states visited in D in time step h. TrD,ϕ
h is the set of truncated trajectories of length

h, along which each abstract state is visited in D.

Reward-free Exploration with State Abstraction. In this part, we adapt the reward-free exploration method RF-Express
to the setting with state abstraction; see Algorithm 3. The main difference is that we learn the abstract transition model and
abstract exploration policy. Nevertheless, when interacting with the original environment, we need to transfer the abstract
policy πϕ,t+1 to the lifted version [πϕ,t+1]M .

Algorithm 3 RF-Express with State Abstraction

Input: A set of state abstractions {ϕh}Hh=1, failure probability δ, and function β(n, δ) = log(3|Φ||A|H/δ)+|Φ| log(8e(n+
1)).

1: for t = 0, 1, 2, · · · do
2: Update the abstract counter and abstract empirical transition model:

nt
h(x, a) =

t∑
i=1

I{ϕh(s
i
h) = x, aih = a}, nt

h(x, a, x
′) =

t∑
i=1

I{ϕh(s
i
h) = x, aih = a, ϕh+1(s

i
h+1) = x′},

P̂ϕ,t
h (x′|x, a) = nt

h(x, a, x
′)

nt
h(x, a)

, if nt
h(x, a) > 0 and P̂ϕ,t

h (x′|x, a) = 1

|S| , ∀x
′ ∈ Φ otherwise.

3: Define W t
H+1(x, a) = 0, ∀(x, a) ∈ Φ×A.

4: for h = H,H − 1, · · · , 1 do

5: W t
h(x, a) = min

(
H, 15H2 β(nt

h(x,a),δ)
nt
h(x,a)

+
(
1 + 1

H

)∑
x′∈Φ P̂ϕ,t

h (x′|x, a)maxa′ W t
h+1 (x

′, a′)

)
.

6: end for
7: Derive the greedy policy: πϕ,t+1

h (x) = argmaxa∈A W t
h(x, a),∀x ∈ Φ,∀h ∈ [H].

8: if 3e
√
W t

1(ϕ1(s1), π
ϕ,t+1
1 (ϕ1(s1))) +W t

1(ϕ1(s1), π
ϕ,t+1
1 (ϕ1(s1))) ≤ ε/2 then

9: break
10: end if
11: Rollout [πϕ,t+1]M to collect a trajectory τ t+1 = (st+1

1 , at+1
1 , st+1

2 , at+1
2 , · · · , st+1

H , at+1
H ).

12: end for
Output: Transition model P̂ϕ,t.

Gradient-based Optimization. For Line 3 in Algorithm 2, we aim to solve the following state-action distribution matching
problem.

min
πϕ∈Πϕ

H∑
h=1

∥∥∥d̃πE,ϕ
h − dπ

ϕ,P̂ϕ

h

∥∥∥
1
,

Notice that this is precisely the optimization problem of projecting d̃π
E,ϕ

h on the set of all feasible abstract state-action

distributions. We can still apply Algorithm 2 with inputs of P̂ϕ and d̃π
E,ϕ

h to solve this optimization problem.

Finally, we combine the above three algorithmic designs under the developed framework (Algorithm 2), which yields the
final algorithm.

5.3 PROOF OF THEOREM 2

Prior to proving Theorem 2, we provide a theoretical guarantee for the meta-algorithm presented in Algorithm 2. The
algorithm constructs an abstract transition model, an abstract state-action distribution and an abstract policy. Finally, the
algorithm outputs a policy that can operate in the original state space. To accomplish this, we introduce specialized analysis
tools to connect these concepts in both the original and abstract spaces.



Algorithm 4 Model-based Transition-aware AIL with State Abstractions

Input: Expert demonstrations D, and a set of state abstractions {ϕh}Hh=1.
1: Randomly split D into two equal parts: D = D1 ∪ Dc

1.
2: Learn an abstract policy π′,ϕ ∈ ΠBC (D1) by BC with {ϕh}Hh=1 and roll out [π′,ϕ]M to obtain dataset D′

env with
|D′

env| = n′ .
3: Obtain the abstract estimator d̃π

E,ϕ
h in (5) with D, D′

env and {ϕh}Hh=1.
4: Invoke Algorithm 3 to collect n trajectories and learn an abstract empirical transition function P̂ϕ.
5: πϕ ← Apply Algorithm 2 with the estimation d̃π

E,ϕ
h under transition model P̂ϕ.

Output: Policy [πϕ]M .

Proposition 1. Suppose that

(a) an algorithm A solves the reward-free exploration problem on the abstract MDPMϕ (see Definition 3) up to an error
εRFE with probability at least 1− δRFE.

(b) an algorithm B has an abstract state-action distribution estimator for dπ
E,ϕ

h , which satisfies
∑H

h=1 ∥d̃
πE,ϕ
h − dπ

E,ϕ
h ∥1 ≤

εEST, with probability at least 1− δEST;

(c) with the abstract transition model in (a) and the abstract estimator in (b), an algorithm C solves the following
optimization problem up to an error εOPT.

min
πϕ∈Πϕ

H∑
h=1

∥∥∥d̃πE,ϕ
h − dπ

ϕ,P̂ϕ

h

∥∥∥
1
, (6)

where Πϕ is the set of all abstract policies and dπ
ϕ,P̂ϕ

h is the abstract state-action distribution induced by the abstract
policy πϕ and abstract transition function P̂ϕ.

Then applying algorithms A, B and C under the framework in Algorithm 2 could return a policy [πϕ]M , which has a policy
value gap (i.e., V πE − V [πϕ]M ) at most 2εEST + 2εRFE + εOPT, with probability at least 1− δEST − δRFE.

Proof. The proof idea is similar to that in Section 4.1. Additionally, we leverage the analysis techniques in state abstraction.
We want to upper bound the imitation gap V πE,M−V [πϕ]M ,M, where V π,M represents the policy value of π on the original
MDPM. We consider the following two events.

EEST =

{
H∑

h=1

∥∥∥d̃πE,ϕ
h − dπ

E,ϕ
h

∥∥∥
1
≤ εEST

}
ERFE =

{
∀πϕ ∈ Πϕ, rϕ = (rϕ1 , . . . , r

ϕ
H), rϕh : Φ×A → [0, 1], |V πϕ,Pϕ,rϕ − V πϕ,P̂ϕ,rϕ | ≤ εRFE

}
.

With condition (a) and condition (b), we obtain P(EEST∩ERFE) ≥ 1−δRFE−δEST. The following analysis is established
on the event EEST ∩ ERFE.

By Lemma 6, we have V [πϕ]M ,M = V πϕ,Mϕ

, whereMϕ is the abstract MDP in Definition 1. Then we can upper bound
the term V πE,M − V πϕ,Mϕ

. On the event ERFE, we further have

V πE,M − V πϕ,Mϕ ≤ V πE,M − V πϕ,P̂ϕ,rϕ + εRFE

=

H∑
h=1

∑
(s,a)∈S×A

dπ
E

h (s, a)rh(s, a)−
H∑

h=1

∑
(x,a)∈Φ×A

dπ
ϕ,P̂ϕ

h (x, a)rϕh(x, a) + εRFE

=

H∑
h=1

∑
(x,a)∈Φ×A

dπ
E,ϕ

h (x, a)rϕh(x, a)−
H∑

h=1

∑
(x,a)∈Φ×A

dπ
ϕ,P̂ϕ

h (x, a)rϕh(x, a) + εRFE.



Here dπ
ϕ,P̂ϕ

h is the abstract state-action distribution of πϕ in P̂ϕ and dπ
E,ϕ

h (x, a) =
∑

s∈ϕ−1
h (x) d

πE

h (s, a). The last equation
holds due to the reward-consistent condition in (10). Then we can obtain

V πE,M − V πϕ,Mϕ ≤
H∑

h=1

∑
(x,a)∈Φ×A

dπ
E,ϕ

h (x, a)rϕh(x, a)−
H∑

h=1

∑
(x,a)∈Φ×A

dπ
ϕ,P̂ϕ

h (x, a)rϕh(x, a) + εRFE

(a)

≤
H∑

h=1

∥∥∥dπE,ϕ
h − dπ

ϕ,P̂ϕ

h

∥∥∥
1
+ εRFE

≤
H∑

h=1

∥∥∥dπE,ϕ
h − d̃π

E,ϕ
h

∥∥∥
1
+

H∑
h=1

∥∥∥d̃πE,ϕ
h − dπ

ϕ,P̂ϕ

h

∥∥∥
1
+ εRFE

(b)

≤
H∑

h=1

∥∥∥d̃πE,ϕ
h − dπ

ϕ,P̂ϕ

h

∥∥∥
1
+ εEST + εRFE.

Inequality (a) holds due to the dual representation of ℓ1-norm and inequality (b) holds due to the event EEST. Because πϕ

is an εOPT-optimal solution of the optimization problem in (6), we get that

V πE,M − V πϕ,Mϕ ≤ min
πϕ∈Πϕ

H∑
h=1

∥∥∥d̃πE,ϕ
h − dπ

ϕ,P̂ϕ

h

∥∥∥
1
+ εEST + εRFE + εOPT.

We consider the abstract expert policy πE,ϕ in Definition 2. Since πE,ϕ ∈ Πϕ, it holds that

V πE,M − V πϕ,Mϕ ≤
H∑

h=1

∥∥∥d̃πE,ϕ
h − dπ

E,ϕ,P̂ϕ

h

∥∥∥
1
+ εEST + εRFE + εOPT

≤
H∑

h=1

∥∥∥d̃πE,ϕ
h − dπ

E,ϕ,Pϕ

h

∥∥∥
1
+

H∑
h=1

∥∥∥dπE,ϕ,Pϕ

h − dπ
E,ϕ,P̂ϕ

h

∥∥∥
1
+ εEST + εRFE + εOPT

Then we upper bound the term
∑H

h=1 ∥d
πE,ϕ,Pϕ

h − dπ
E,ϕ,P̂ϕ

h ∥1
H∑

h=1

∥∥∥dπE,ϕ,Pϕ

h − dπ
E,ϕ,P̂ϕ

h

∥∥∥
1
= max

rϕ∈Wϕ

H∑
h=1

∑
(x,a)∈Φ×A

(
dπ

E,ϕ,Pϕ

h (x, a)− dπ
E,ϕ,P̂ϕ

h (x, a)
)
rϕh(x, a)

= max
rϕ∈Wϕ

V πE,ϕ,Pϕ,rϕ − V πE,ϕ,P̂ϕ,rϕ

≤ εRFE.

HereWϕ = {wϕ = (wϕ
1 , . . . , w

ϕ
H), wϕ

h : Φ × A → [0, 1],∀h ∈ [H]}. The last inequality holds due to the event ERFE.
Then we obtain

V πE,M − V πϕ,Mϕ ≤
H∑

h=1

∥∥∥d̃πE,ϕ
h − dπ

E,ϕ,Pϕ

h

∥∥∥
1
+ εEST + 2εRFE + εOPT.

Applying Lemma 7 on πE,ϕ and Pϕ yields dπ
E,ϕ,Pϕ

h = d
[πE,ϕ]M ,P,ϕ
h . Combined with [πE,ϕ]M = πE in Lemma 4, we obtain

V πE,M − V πϕ,Mϕ ≤
H∑

h=1

∥∥∥d̃πE,ϕ
h − dπ

E,ϕ,Pϕ

h

∥∥∥
1
+ εEST + 2εRFE + εOPT

=

H∑
h=1

∥∥∥d̃πE,ϕ
h − dπ

E,ϕ
h

∥∥∥
1
+ εEST + 2εRFE + εOPT

≤ 2εEST + 2εRFE + εOPT,

where the last inequality holds due to the event EEST. We finish the proof.



Now, we proceed to prove Theorem 2.

Proof of Theorem 2. First, we verify condition (a) in Proposition 1. We want to demonstrate that Algorithm 3 is equivalent
to applying RF-Express (Algorithm 1) on the abstract MDPMϕ. The only difference lies in the data-collection process.
On one hand, in line 11 in Algorithm 3, we roll out the lifted policy [πϕ,t+1]M on the original MDPM. On the other
hand, when applying RF-Express (Algorithm 1) on the abstract MDPMϕ, we rollout the abstract policy πϕ,t+1 on the
abstract MDPMϕ. We will prove that in the above two data-collection processes, the corresponding abstract-state-action
distributions are actually the same. Consequently, Algorithm 3 can be regarded as applying RF-Express (Algorithm 1) on
the abstract MDPMϕ.

In the first process, conditioned on πϕ,t+1, we consider the probability distribution of (ϕh(s
t+1
h ), at+1

h ). Recall the definition:

d
[πϕ,t+1]M ,P,ϕ
h (x, a) := P

(
ϕh(s

t+1
h ) = x, at+1

h = a|[πϕ,t+1]M , P
)
=

∑
s∈ϕ−1

h (x)

P
(
st+1
h = s, at+1

h = a|[πϕ,t+1]M , P
)
.

By Lemma 7, we have that

d
[πϕ,t+1]M ,P,ϕ
h (x, a) = dπ

ϕ,t+1,Pϕ

h (x, a).

Notice that the distribution dπ
ϕ,t+1,Pϕ

h (x, a) is exactly the abstract state-action distribution of πϕ,t+1 in the abstract MDP
Mϕ. Therefore, in the mentioned two data-collection processes, the corresponding abstract-state-action distributions are
actually the same. Then we can apply Lemma 2 on the abstract MDP. When the number of trajectories collected by Algorithm
3 satisfies

n ≳
H3|Φ||A|

ε2

(
|Φ|+ log

( |Φ|H
δ

))
,

for any policy πϕ ∈ Πϕ and reward function rϕ = (rϕ1 , . . . , r
ϕ
H), rϕh : Φ×A → [0, 1], with probability at least 1− δ/2,

|V πϕ,Pϕ,rϕ − V πϕ,P̂ϕ,rϕ | ≤ ε/16 = εRFE. In summary, the assumption (a) in Proposition 1 holds with δRFE = δ/2 and
εRFE = ε/16.

Second, we verify the condition (b) in Proposition 1. Note that the assumption (b) in Proposition 1 holds by Lemma 8. More
concretely, if the expert sample complexity and interaction complexity satisfies

m ≳
H3/2|Φ|

ε
log

( |Φ|H
δ

)
, n′ ≳

H2|Φ|
ε2

log

( |Φ|H
δ

)
,

with probability at least 1 − δ/2,
∑H

h=1 ∥d̃
πE,ϕ
h − dπ

E,ϕ
h ∥1 ≤ ε/16 = εEST. Hence, the assumption (b) in Proposition 1

holds with δEST = δ/2 and εEST = ε/16.

Third, we validate the condition (c) in Proposition 1. In particular, we apply Algorithm 2 to solve the following abstract
state-action distribution matching problem.

min
πϕ∈Πϕ

H∑
h=1

∥∥∥d̃πE,ϕ
h − dπ

ϕ,P̂ϕ

h

∥∥∥
1
.

Therefore, we can apply Lemma 5. In particular, when εRL ≤ ε/2 and T ≳ |Φ||A|H2/ε2 such that 2H
√
2|Φ||A|/T ≤ ε/4,

we have that

H∑
h=1

∥∥∥d̃πE,ϕ
h − dπ

ϕ,P̂ϕ

h

∥∥∥
1
− min

πϕ∈Πϕ

H∑
h=1

∥∥∥d̃πE,ϕ
h − dπ

ϕ,P̂ϕ

h

∥∥∥
1
≤ 3ε

4
= εOPT.

In summary, we have established the following conditions:

• Assumption (a) in Proposition 1 holds with δRFE = δ/2 and εRFE = ε/16.

• Assumption (b) in Proposition 1 holds with δEST = δ/2 and εEST = ε/16.

• Assumption (c) in Proposition 1 holds with εOPT = 3ε/4.



By applying Proposition 1, we complete the proof. With probability at least 1− δ, we have

V πE − V [πϕ]M ≤ 2εRFE + 2εEST + εOPT = ε.

5.4 USEFUL LEMMAS

In this part, we develop specialized analysis tools for AIL with state abstraction. The below lemma indicates that under
Assumption 1, the lifted versions of the abstract reward function and abstract transition function are identical to the original
reward function and transition function, respectively.

Lemma 4. For the original MDPM = (S,A, P, r,H, ρ) and expert policy πE that satisfy Assumption 1, we consider the
abstract MDPMϕ = (Φ,A, Pϕ, rϕ, H, ρϕ) in Definition 1. Then we have that

∀h ∈ [H], (s, a) ∈ S ×A, x′ ∈ Φ, rh(s, a) = [rϕ]Mh (s, a),
∑

s′∈ϕ−1
h+1(x

′)

Ph(s
′|s, a) = [Pϕ]Mh (x′|s, a).

Here [rϕ]Mh (s, a) = rϕh(ϕh(s), a) and [Pϕ]Mh (x′|s, a) = Pϕ
h (x

′|ϕh(s), a). Furthermore, we consider the abstract expert
policy πE,ϕ in Definition 2. Then we have that

∀h ∈ [H], s ∈ S, πE
h (s) = [πE,ϕ]Mh (s),

where [πE,ϕ]Mh (s) = πE,ϕ
h (ϕh(s)).

Proof. For the reward function, we have

[rϕh ]M(s, a) = rϕh(ϕh(s), a)
x:=ϕh(s)

= rϕh(x, a).

Notice that rϕh(x, a) = rh(ŝ, a) for an arbitrary ŝ ∈ ϕ−1
h (x). Moreover, since s, ŝ ∈ ϕ−1

h (x) and r satisfies (10), we have
rh(ŝ, a) = rh(s, a).

For the transition function, we have

[Pϕ]Mh (x′|s, a) = Pϕ
h (x

′|ϕh(s), a)
x:=ϕh(s)

= Pϕ
h (x

′|x, a).

According to Definition 1, we have Pϕ
h (x

′|x, a) =
∑

s′∈ϕ−1
h+1(x

′) Ph(s
′|s̃, a) for an arbitrary s̃ ∈ ϕ−1

h (x). Furthermore,

because s, s̃ ∈ ϕ−1
h (x) and P satisfies (11), we have∑

s′∈ϕ−1
h+1(x

′)

Ph(s
′|s̃, a) =

∑
s′∈ϕ−1

h+1(x
′)

Ph(s
′|s, a).

Finally, for the expert policy, it holds that

[πE,ϕ]Mh (s) = πE,ϕ
h (ϕh(s))

x:=ϕh(s)
= πE,ϕ

h (x).

According to Definition 2, we have πE,ϕ
h (x) = πE

h (s̃) for an arbitrary s̃ ∈ ϕ−1
h (x). Notice that s, s̃ ∈ ϕ−1

h (x) and πE

satisfies (12). Therefore, we have πE,ϕ
h (x) = πE

h (s). We finish the proof.

Lemma 5. For any function f : Φ → R, g : S → R and an state abstraction ϕ : S → Φ, we define gϕ(x) :=∑
s∈ϕ−1(x) g(s), then we have ∑

x∈Φ

gϕ(x)f(x) =
∑
s∈S

g(s)[f ]M (s),

where [f ]M (s) = f(ϕ(s)).



Proof. ∑
x∈Φ

gϕ(x)f(x) =
∑
x∈Φ

∑
s∈ϕ−1(x)

g(s)f(x)

=
∑
x∈Φ

∑
s∈S

I
{
s ∈ ϕ−1(x)

}
g(s)f(x)

=
∑
s∈S

∑
x∈Φ

I {x = ϕ(s)} g(s)f(x)

=
∑
s∈S

g(s)f(ϕ(s))

=
∑
s∈S

g(s)[f ]M (s).

We complete the proof.

Lemma 6 indicates that for any abstract policy πϕ ∈ Πϕ, the value function of [πϕ]M on P equals the lifted version of the
value function of πϕ on Pϕ.

Lemma 6. For the original MDPM = (S,A, P, r,H, ρ) and expert policy πE that satisfy Assumption 1, we consider the
abstract MDPMϕ = (Φ,A, Pϕ, rϕ, H, ρϕ) in Definition 1. Then, for any abstract policy πϕ ∈ Πϕ, we have

V
[πϕ]M ,M
h (s) = [V πϕ,Mϕ

]Mh (s),∀s ∈ S, h ∈ [H],

where [V πϕ,Mϕ

]Mh (s) := V πϕ,Mϕ

h (ϕh(s)), [πϕ]Mh (a|s) = πϕ
h(a|ϕh(s)). V

πϕ,Mϕ

h (s) is the value function of πϕ onMϕ

and V
[πϕ]M ,M
h (s) is the value function of [πϕ]M onM. Furthermore, it holds that V [πϕ]M ,M = V πϕ,Mϕ

.

Proof. The proof is based on backward induction. For the base case, we prove that

V
[πϕ]M ,M
H (s) = [V πϕ,Mϕ

]MH (s), ∀s ∈ S.

In particular,

[V πϕ,Mϕ

]MH (s) = V πϕ,Mϕ

H (ϕH(s))

=
∑
a∈A

πϕ
H(a|ϕH(s))rϕH(ϕH(s), a)

=
∑
a∈A

[πϕ]MH (a|s)[rϕ]MH (s, a)

(a)
=
∑
a∈A

[πϕ]MH (a|s)rH(s, a)

= V
[πϕ]M ,M
H (s).

Equation (a) follows Lemma 4. We finish the proof of the base case and continue to prove the induction stage. Assume that

V
[πϕ]M ,M
h+1 (s) = [V πϕ,Mϕ

]Mh+1(s),∀s ∈ S, we consider the time step h.

[V πϕ,Mϕ

]Mh (s) = V πϕ,Mϕ

h (ϕh(s))

= Ea∼πϕ
h(·|ϕh(s))

[
rϕh(ϕh(s), a) + Pϕ

h+1V
πϕ,Mϕ

h+1 (ϕh(s), a)
]
.

Here Pϕ
h+1V

πϕ,Mϕ

h+1 (ϕh(s), a) = Ex′∼Pϕ
h+1(·|ϕh(s),a)

[
V πϕ,Mϕ

h+1 (x′)
]
. For the first term in RHS, we have

Ea∼πϕ
h(·|ϕh(s))

[
rϕh(ϕh(s), a)

]
= Ea∼[πϕ]Mh (·|s)

[
[rϕ]Mh (s, a)

]
= Ea∼[πϕ]Mh (·|s) [rh(s, a)] .



The last equation utilizes Lemma 4. For the term Pϕ
h+1V

πϕ,Mϕ

h+1 (ϕh(s), a), we obtain

Pϕ
h+1V

πϕ,Mϕ

h+1 (ϕh(s), a) =
∑
x′∈Φ

Pϕ
h+1(x

′|ϕh(s), a)V
πϕ,Mϕ

h+1 (x′)

=
∑
x′∈Φ

 ∑
s′∈ϕ−1

h (x′)

Ph+1(s
′|ϕh(s), a)

V πϕ,Mϕ

h+1 (x′),

=
∑
x′∈Φ

 ∑
s′∈ϕ−1

h (x′)

Ph+1(s
′|s̃, a)

V πϕ,Mϕ

h+1 (x′), for an arbitrary s̃ ∈ ϕ−1
h (x).

In the last equation, we define x = ϕh(s). According to s, s̃ ∈ ϕ−1
h (x) and (11) in Assumption 1, we have

Pϕ
h+1V

πϕ,Mϕ

h+1 (ϕh(s), a) =
∑
x′∈Φ

 ∑
s′∈ϕ−1

h (x′)

Ph+1(s
′|s̃, a)

V πϕ,Mϕ

h+1 (x′)

=
∑
x′∈Φ

 ∑
s′∈ϕ−1

h (x′)

Ph+1(s
′|s, a)

V πϕ,Mϕ

h+1 (x′).

Applying Lemma 5 with f(x) = V πϕ,Mϕ

h+1 (x), g(s′) = Ph+1(s
′|s, a), ϕ = ϕh+1 yields that

Pϕ
h+1V

πϕ,Mϕ

h+1 (ϕh(s), a) =
∑
s′∈S

Ph+1(s
′|s, a)

[
V πϕ,Mϕ

]M
h+1

(s′)

(a)
=
∑
s′∈S

Ph+1(s
′|s, a)V [πϕ]M ,M

h+1 (s′)

= Ph+1V
[πϕ]M ,M
h+1 (s, a).

In equation (a), we leverage the assumption in time step h+ 1. Then we obtain

[V πϕ,Mϕ

]Mh (s) = Ea∼πϕ
h(·|ϕh(s))

[
rϕh(ϕh(s), a) + Pϕ

h+1V
πϕ,Mϕ

h+1 (ϕh(s), a)
]

= Ea∼[πϕ]Mh (·|s)

[
rh(s, a) + Ph+1V

[πϕ]M ,M
h+1 (s, a)

]
= V

[πϕ]M ,M
h (s).

We prove the induction stage and thus finish the proof of the first claim. Furthermore, according to the definition of ρϕ, we
have

V πϕ,Mϕ

= Ex∼ρϕ

[
V πϕ,Mϕ

1 (x)
]
=
∑
x∈Φ

ρϕ(x)V πϕ,Mϕ

1 (x) =
∑
s∈S

ρ(s)
[
V πϕ,Mϕ

]M
1

(s).

In the last equation, we apply Lemma 5 with f(x) = V πϕ,Mϕ

1 (x), g(s) = ρ(s) and ϕ = ϕ1. We have proved that

[V πϕ,Mϕ

]M1 (s) = V
[πϕ]M ,M
1 (s). Then it holds that

V πϕ,Mϕ

=
∑
s∈S

ρ(s)V
[πϕ]M ,M
1 (s) = V

[πϕ]M ,M
1 ,

which completes the proof.



Lemma 7. For the original MDPM = (S,A, P, r,H, ρ) and expert policy πE that satisfy Assumption 1, we consider the
abstract MDPMϕ = (Φ,A, Pϕ, rϕ, H, ρϕ) in Definition 1. Then, for any abstract policy πϕ ∈ Πϕ,

∀h ∈ [H], (x, a) ∈ Φ×A, dπ
ϕ,Pϕ

h (x, a) = d
[πϕ]M ,P,ϕ
h (x, a).

Here dπ
ϕ,Pϕ

h (x, a) = P(xh = x, ah = a|πϕ, Pϕ) and d
[πϕ]M ,P,ϕ
h (x, a) = P(ϕh(sh) = x, ah = a|[πϕ]M , P ) =∑

s∈ϕ−1
h (x) d

[πϕ]M ,P
h (s, a).

Proof. We first prove that for any fixed x ∈ Φ, h ∈ [H],

dπ
ϕ,Pϕ

h (x) = d
[πϕ]M ,P,ϕ
h (x),

where dπ
ϕ,Pϕ

h (x) = P
(
xh = x|πϕ, Pϕ

)
and d

[πϕ]M ,P,ϕ
h (x) = P

(
ϕh(sh) = x|[πϕ]M , P

)
. Consider any fixed x ∈ Φ, h ∈

[H], we construct an abstract reward function r̃ϕ.

r̃ϕh(x, a) = 1,∀a ∈ A,
r̃ϕℓ (x̃, a) = 0,∀x̃ ∈ Φ \ {x}, a ∈ A, ℓ ∈ [H] \ {h}.

Furthermore, we consider [r̃ϕ]M , which is the lifted version of r̃ϕ.[
r̃ϕ
]M
h

(s, a) = 1,∀s ∈ ϕ−1
h (x), a ∈ A,[

r̃ϕ
]M
ℓ

(s, a) = 0,∀s ∈ S \ ϕ−1
h (x), a ∈ A, ℓ ∈ [H] \ {h}.

On the one hand, according to the dual formulation of policy value in (1), we can get that dπ
ϕ,Pϕ

h (x) = V πϕ,Pϕ,r̃ϕ . On the
other hand, it holds that

d
[πϕ]M ,P,ϕ
h (x) =

∑
s∈ϕ−1

h (x)

d
[πϕ]M ,P
h (s) = V [πϕ]M ,P,[r̃ϕ]M .

The last equation still follows the dual representation of policy value. Notice that [r̃ϕ]M satisfies the reward-consistent
condition (i.e., (10) in Assumption 1). With Lemma 6, we get that V [πϕ]M ,P,[r̃ϕ]M = V πϕ,Pϕ,r̃ϕ , which implies that
dπ

ϕ,Pϕ

h (x) = d
[πϕ]M ,P,ϕ
h (x). Then we have that

dπ
ϕ,Pϕ

h (x, a) = dπ
ϕ,Pϕ

h (x)πϕ
h(a|x) = d

[πϕ]M ,P,ϕ
h (x)πϕ

h(a|x) = d
[πϕ]M ,P,ϕ
h (x)

[
πϕ
]M
h

(a|s) = d
[πϕ]M ,P,ϕ
h (x, a),

where s ∈ ϕ−1
h (x). We finish the proof.

Lemma 8. Given the expert dataset D, let D be divided into two equal subsets, i.e., D = D1 ∪ Dc
1 and D1 ∩ Dc

1 = ∅ with
|D1| = |Dc

1| = m/2. Let π′,ϕ be the abstract BC’s policy on D1. Fix π′,ϕ, let D′
env be the dataset collected by [π′,ϕ]M and

|D′
env| = n′. Fix ε ∈ (0, 1) and δ ∈ (0, 1); suppose H ≥ 5. Consider the abstract state-action distribution estimator d̃π

E,ϕ
h

shown in (5), if the expert sample complexity (m) and the interaction complexity (n′) satisfy

m ≳
H3/2|Φ|

ε
log

( |Φ|H
δ

)
, n′ ≳

H2|Φ|
ε2

log

( |Φ|H
δ

)
,

then with probability at least 1− δ, we have

H∑
h=1

∥∥∥d̃πE,ϕ
h − dπ

E,ϕ
h

∥∥∥
1
≤ ε.



Proof. First, we can obtain that

H∑
h=1

∥∥∥d̃πE,ϕ
h − dπ

E,ϕ
h

∥∥∥
1
=

H∑
h=1

∑
(x,a)∈Φ×A

∣∣∣d̃πE,ϕ
h (x, a)− dπ

E,ϕ
h (x, a)

∣∣∣
=

H∑
h=1

∑
x∈Φ

∣∣∣d̃πE,ϕ
h (x, πE,ϕ

h (x))− dπ
E,ϕ

h (x, πE,ϕ
h (x))

∣∣∣ .
Here πE,ϕ is the abstract expert policy in Definition 2. The last equation holds since πE is a deterministic policy and satisfies
(12) in Assumption 1. Recall the abstract state-action distribution estimator d̃π

E,ϕ
h shown in (5).

d̃π
E,ϕ

h (x, πE,ϕ
h (x)) =

∑
trh∈D′

env
I{ϕh(trh(·)) = x, trh(ah) = πE,ϕ

h (x), trh ∈ TrD1,ϕ
h }

|D′
env|

+

∑
trh∈Dc

1
I{ϕh(trh(·)) = x, trh(ah) = πE,ϕ

h (x), trh ̸∈ TrD1,ϕ
h }

|Dc
1|

.

Given D1, for dπ
E,ϕ

h , we have the following decomposition.

dπ
E,ϕ

h (x, πE,ϕ
h (x))

=
∑
trh

PπE

(trh)I{ϕh(trh(·)) = x, trh(ah) = πE,ϕ
h (x)}

=
∑

trh∈Tr
D1,ϕ

h

PπE

(trh)I{ϕh(trh(·)) = x, trh(ah) = πE,ϕ
h (x)}

+
∑

trh ̸∈Tr
D1,ϕ

h

PπE

(trh)I{ϕh(trh(·)) = x, trh(ah) = πE,ϕ
h (x)}.

Then we have that

|d̃π
E,ϕ

h (x, πE,ϕ
h (x))− dπ

E,ϕ
h (x, πE,ϕ

h (x))|

≤
∣∣∣∣
∑

trh∈D′
env

I{ϕh(trh(·)) = x, trh(ah) = πE,ϕ
h (x), trh ∈ TrD1,ϕ

h }
|D′

env|

−
∑

trh∈Tr
D1,ϕ

h

PπE

(trh)I{ϕh(trh(·)) = x, trh(ah) = πE,ϕ
h (x)}

∣∣∣∣
+

∣∣∣∣
∑

trh∈Dc
1
I{ϕh(trh(·)) = x, trh(ah) = πE,ϕ

h (x), trh ̸∈ TrD1,ϕ
h }

|Dc
1|

−
∑

trh ̸∈Tr
D1,ϕ

h

PπE

(trh)I{ϕh(trh(·)) = x, trh(ah) = πE,ϕ
h (x)}

∣∣∣∣.
We denote the first term in RHS as EAh(x) and the second term in RHS as EBh(x). We have that

H∑
h=1

∥∥∥dπE,ϕ
h − d̃π

E,ϕ
h

∥∥∥
1
≤

H∑
h=1

∑
x∈Φ

EAh(x)︸ ︷︷ ︸
Error A

+

H∑
h=1

∑
x∈Φ

EBh(x)︸ ︷︷ ︸
Error B

.

First, we analyze the term Error A. Let E′x
h be the event that trh agrees with expert policy at abstract state x in time step h

and appears in TrD1,ϕ
h . Formally,

E′x
h = I{ϕh(trh(·)) = x ∩ trh(ah) = πE,ϕ

h (x) ∩ trh ∈ TrD1,ϕ
h }.



Then we leverage Chernoff’s bound to upper bound EAh(x). By Lemma 2, for each x ∈ S and h ∈ [H], with probability at
least 1− δ

2|Φ|H over the randomness of D′, we have

EAh(x) ≤
√

PπE (E′x
h)

3 log (4|Φ|H/δ)

n′ .

By union bound, with probability at least 1− δ
2 over the randomness of D′

env, we have

H∑
h=1

∑
x∈Φ

EAh(x) ≤
H∑

h=1

∑
x∈Φ

√
PπE (E′x

h)
3 log (4|Φ|H/δ)

n′

≤
H∑

h=1

√
|Φ|
√∑

x∈Φ

PπE (E′x
h)

3 log (4|Φ|H/δ)

n′

The last inequality follows the Cauchy-Schwartz inequality. It remains to upper bound
∑

x∈Φ PπE

(Ex
h) for all h ∈ [H]. To

this end, we define the event G′D1

h that expert policy πE visits abstract states covered in D1 up to time step h. Formally,
G′D1

h = I{∀h′ ≤ h, ϕh′(sh′) ∈ Φh′(D1)}, where Φh(D1) is the set of abstract states in D1 at time step h. Then, for all
h ∈ [H], we have ∑

x∈Φ

PπE (
E′x

h

)
= PπE

(G′D1

h ) ≤ P(G′D1

1 ).

The last inequality holds since G′D1

h ⊆ G′D1

1 for all h ∈ [H]. Then we have that

H∑
h=1

∑
x∈Φ

EAh(x) ≤ H

√
3|Φ| log (4|Φ|H/δ)

n′ .

When the interaction complexity satisfies that n′ ≳ |Φ|H2

ε2 log
(

|Φ|H
δ

)
, with probability at least 1− δ

2 over the randomness

of D′, we have
∑H

h=1

∑
x∈Φ EAh(x) ≤ ε

2 .

Second, we upper bound the term Error B. Similarly, we can leverage Chernoff’s bound to characterize its concentration
rate. For a trajectory trh, let Ex

h be the event that trh agrees with expert policy at abstract state x at time step h but is not in
TrD1,ϕ

h , that is,

Ex
h = {ϕh(trh(·)) = x ∩ trh(ah) = πE,ϕ

h (x) ∩ trh ̸∈ TrD1,ϕ
h }.

We consider Ex
h is measured by the stochastic process induced by the expert policy πE. Accordingly, its probability is

denoted as PπE

(Ex
h). We see that PπE

(Ex
h) is equal to the second term in EBh(x). Moreover, the first term in EBh(x) is an

empirical estimation for PπE

(Ex
h). After applying Chernoff’s bound, with probability at least 1− δ/(2|Φ|H) with δ ∈ (0, 1)

(over the randomness of the expert demonstrations Dc
1), for each h ∈ [H], x ∈ Φ, we have

EBh(x) ≤
√

PπE (Ex
h)

3 log(4|Φ|H/δ)

m
.

Therefore, with probability at least 1− δ/2, we have

H∑
h=1

∑
x∈Φ

EBh(x) ≤
H∑

h=1

∑
x∈Φ

√
PπE (Ex

h)
3 log(4|Φ|H/δ)

m

≤
H∑

h=1

√∑
x∈Φ

PπE (Ex
h)

3|Φ| log(4|Φ|H/δ)

m
,

where the last step follows the Cauchy–Schwarz inequality. It remains to upper bound
∑

x∈Φ PπE

(Ex
h) for all h ∈ [H]. To

this end, we define the event GD1

h : the expert policy visits certain abstract states uncovered in D1 up to time step h. Formally,



GD1

h = {∃h′ ≤ h, ϕh′(sh′) ̸∈ Φh′(D1)}, where Φh′(D1) is the set of abstract states in D1 at time step h. Then, for all
h ∈ [H], we have ∑

x∈Φ

PπE

(Ex
h) = PπE

(
GD1

h

)
≤ PπE

(
GD1

H

)
,

where the first equality is true because ∪x∈ΦE
x
h corresponds to the event that πE has visited some state uncovered in D1,

and the last inequality holds since GD1

h ⊆ GD1

H for all h ∈ [H]. Conditioned on D1, we further have

P(GD1

H ) ≤
H∑

h=1

∑
x∈Φ

dπ
E,ϕ

h (x)I {x /∈ Φh(D1)} .

We first consider the expectation E[
∑H

h=1

∑
x∈Φ dπ

E,ϕ
h (x)I {x /∈ Φh(D1)}], where the expectation is taken over the expert

dataset D1.

E

[
H∑

h=1

∑
x∈Φ

dπ
E,ϕ

h (x)I {x /∈ Φh(D1)}
]
≤

H∑
h=1

∑
x∈Φ

dπ
E,ϕ

h (x)
(
1− dπ

E,ϕ
h (x)

)m/2

≤ 8|Φ|H
9m

,

where the last step uses the numerical inequality1 maxx∈[0,1] x(1 − x)m ≤ 1/(1 +m) · (1− 1/m)
m ≤ 4/(9m). With

[Rajaraman et al., 2020, Lemma A.3], with probability at least 1− δ with δ ∈ (0,min{1, H/5}), we have

H∑
h=1

∑
x∈Φ

dπ
E,Φ

h (x)I {x /∈ Φh(D1)} ≤
8|Φ|H
9m

+
6
√
|Φ|H log(H/δ)

m
.

Then we have

H∑
h=1

∑
x∈Φ

EBh(x) ≤
H∑

h=1

√√√√(8|Φ|H
9m

+
6
√
|Φ|H log(2H/δ)

m

)
3|Φ| log(4|Φ|H/δ)

m

≤ H3/2|Φ|
m

log1/2
(
4|Φ|H

δ

)√
8

3
+ 18 log(2H/δ).

When the expert sample complexity satisfies that m ≳ H3/2|Φ|
ε log

(
|Φ|H
δ

)
, with probability at least 1 − δ

2 over the

randomness of D, we have
∑H

h=1

∑
x∈Φ EBh(x) ≤ ε

2 . Then, with union bound, with probability at least 1 − δ, we can
obtain

H∑
h=1

∥∥∥d̃πE,ϕ
h − dπ

E,ϕ
h

∥∥∥
1
≤

H∑
h=1

∑
x∈Φ

EAh(x) +

H∑
h=1

∑
x∈Φ

EBh(x) ≤ ε,

which completes the proof.

6 EXPERIMENT DETAILS

Environment. The Reset Cliff MDP is from [Rajaraman et al., 2020, Xu et al., 2021]. The state space S = {1, 2, · · · , |S| −
1, b} and action space |A| = {1, 2, . . . , |A| − 1, aE}, where b is a unique absorbing state and aE is the expert action. An
example with there states and two actions are shown in Figure 1, where the expert action is shown in green. Only the
expert action has a reward +1. All non-expert actions have the same transitions and rewards. The initial state distribution
ρ = (1/m, 1/m, 1− |S|/m+ 2/m, 0).

In our experiments, we implement the Reset Cliff MDP with 20 states and 5 actions. The planning horizon is 20. All
algorithms are provided with 100 expert trajectories. All experiments run with 20 random seeds.

1The first inequality is based on the basic calculus and the second inequality is based on the fact that (1− 1/x)x ≤ 1/e ≤ 4/9 while
x ≥ 1.
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Figure 1: An example of Reset Cliff with three states and two actions. Arrows indicate the transitions and digits indicate the
reward values.

Algorithm Implementation. BC directly estimates the expert policy from expert demonstrations. Since the expert policy
is deterministic, BC copies the expert action on visited states and takes a uniform policy on non-visited states. The
implementation of FEM and GTAL follows the description in [Abbeel and Ng, 2004] and [Syed and Schapire, 2007],
respectively.

MB-TAIL first establishes the estimator in Equation (7) with 20% of the environment interactions and learns an empirical
transition model by invoking RF-Express [Ménard et al., 2021] to collect the remaining 80% trajectories. Subsequently,
MB-TAIL performs policy and reward optimization with the recovered transition model. In particular, MB-TAIL utilizes
value iteration to obtain the optimal policy (Line 2 of Algorithm 2). Besides, MB-TAIL utilizes online gradient descent to
update the reward function. To utilize the optimization structure, we implement an adaptive step size [Orabona, 2019] rather
than the constant step size:

ηt =
D√∑t

i=1

∥∥∇wf (i)
(
w(i)

)∥∥2
2

,

where D =
√
2H|S||A| is the diameter of the set W . Conclusions about the sample complexity and computational

complexity do not change by this adaptive step size. The number of iterations T of MB-TAIL is 500.

To encourage exploration, OAL adds a bonus function to the Q-function. The bonus function used in the theoretical
analysis of [Shani et al., 2022] is too big and impractical. Therefore, we simplify their bonus function from bkh(s, a) =√

4H2|S| log(3H2|S||A|n/δ)
nk
h(s,a)∨1

to bkh(s, a) =
√

log(H|S||A|n/δ)
nk
h(s,a)∨1

, where n is the total number of interactions, δ is the failure

probability, nk
h(s, a) is the number of times visiting (s, a) at time step h until episode k, and nk

h(s, a)∨1 = max{nk
h(s, a), 1}.

With the learned transition model and Q-function, OAL uses mirror descent (MD) to optimize the policy and reward function.
The step sizes of MD are set by the results in the theoretical analysis of [Shani et al., 2022]. The number of iterations T of
OAL is also 500.
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