
Under review as a conference paper at ICLR 2024

PROVABLE CONVERGENCE OF CLIPPED
NORMALIZED-GRADIENT HEAVY-BALL MOMENTUM
FOR ADVERSARIAL ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient-based adversarial attack is dominated by the sign-like regime. Specifi-
cally, the sign-momentum MI-FGSM, which is a variant of Polyak’s heavy-ball in
normalizing each gradient by itsL1-norm, has achieved remarkable empirical suc-
cess. However, the sign operation inevitably loses information about the magni-
tude as well as the direction of gradient or momentum, leading to non-convergence
even in simple convex cases. Gradient clipping is an effective rescaling technique
in optimization, and its potential has recently been demonstrated in accelerating
and stabilizing the training process for deep learning. In this paper, to circum-
vent the drawbacks of sign-like gradient-based attacks, we present a clipped mo-
mentum method, in which the normalized-gradient heavy-ball momentum (NGM)
is clipped as the update direction. By using a new radius-varying clipping rule,
the clipped NGM is proved to attain optimal averaging convergence for general
constrained convex problems. The experiments demonstrate that it remarkably
improves the performance of sign-like methods and verify that the clipping tech-
nique can serve as an alternative to the sign operation in adversarial attacks.

1 INTRODUCTION

Generating adversarial examples for a given learning model can be formulated as a constrained
optimization problem, in which the objective is to find a constrained perturbation for the input data
that maximizes the model’s loss function. To solve such an optimization problem, many gradient-
based methods have been proposed. Typical state-of-the-art algorithms include FGSM (Goodfellow
et al., 2015), I-FGSM (or Basic Iterative Method (BIM)) (Kurakin et al., 2017), PGD (Madry et al.,
2018), MI-FGSM (Dong et al., 2018) and NI-FGSM (Lin et al., 2020).

FGSM, I-FGSM and PGD are directly established upon the gradient descent principle. In contrast
to the regular formulation, each of them uses the sign of the gradient vector as its update direction.
In the stochastic setting, such a kind of method is usually referred to as signSGD (Bernstein et al.,
2018). Similar to signSGD, MI-FGSM (Dong et al., 2018) uses the sign of a variant of Polyak’s
heavy-ball (HB) momentum (Polyak, 1964) as its iterative direction, in which each past gradient
is normalized by its L1-norm. By accumulating the past gradients in such a normalized way, MI-
FGSM can stabilize update directions and then remarkably boost the transferability of adversarial
examples. With MI-FGSM, they won the first place in NIPS 2017 Non-targeted Adversarial Attack
and Targeted Adversarial Attack competitions (Dong et al., 2018).

So far, the gradient-based adversarial attack has been dominated by the sign-like regime. SignSGD
is popularly interesting due to its simplicity and effectiveness in rescaling and compressing the
gradient to alleviate the communication bottleneck in distributed optimization. For I-FGSM and
MI-FGSM, their sign operation enables each iterate to lie within the constrained domain by simply
restricting a small step-size. The convergence of sign-like methods has been established for smooth
functions (Bernstein et al., 2018). Despite its empirical and theoretical success, simple convex
counter-examples show that signSGD does not converge to the optimum. Even when it converges,
signSGD may generalize poorly in comparison with SGD (Karimireddy et al., 2019). These issues
arise because the sign operation sacrifices information about the magnitude as well as the direction of
gradient (Karimireddy et al., 2019). This may explain why I-FGSM usually leads to instability and
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inefficiency in adversarial optimization and why MI-FGSM and NI-FGSM are rarely used in pure
optimization. To circumvent these drawbacks, in this paper, we will employ the clipping technique
to rescale the iterative direction instead of the sign operation.

Gradient clipping has been long recognized as a rescaling technique in the development of gradient
methods, and it has been proved to be an effective technique for optimizing functions with rapid
growth (Alber et al., 1998). In contrast to the sign operation, it shrinks an individual gradient only
when its magnitude exceeds a predefined threshold while keeping the direction unchanged. Intu-
itively, by ensuring that the gradient magnitude is not too large, the convergence of iterates becomes
more well-behaved (Zhang et al., 2020b). Such an intuition has been made precisely in many recent
works (Menon et al., 2020). More recently, theoretical analysis reveals that the clipping technique
not only accelerates and stabilizes the optimization process but also dramatically improves the con-
vergence properties of SGD without adding any additional costs to the original update procedure
(Zhang et al., 2020b;a; Mai & Johansson, 2021). For training deep neural networks, it is efficient in
relieving the exploding gradient problem from empirical studies (Pascanu et al., 2013). Extensive
experiments on a variety of different learning tasks have illustrated that the clipping-like algorithms
consistently perform better than the vanilla ones (Zhang et al., 2020a; Mai & Johansson, 2021),
showing the potential of clipping operation in gradient rescaling for machine learning problems.

As far as we know, there is still no report on the application of gradient clipping in adversarial
attacks. On the other hand, we empirically find that rescaling each past gradient in the momentum
with its L1-norm plays a key role in preserving a high success rate of attacks for MI-FGSM (Dong
et al., 2018). Motivated by these facts, we will employ the gradient clipping technique to take the
place of sign operation in MI-FGSM. Unfortunately, the normalized-gradient causes some problems
in convergence analysis, which can also explain why the convergence for MI-FGSM and NI-FGSM
has not been established so far. To overcome this difficulty, we present a new radius-varying clipping
rule to guarantee its convergence. The use of the normalized-gradient with a radius-varying clipping
rule is an obvious difference from the existing clipping-like algorithms. The contributions in this
paper can be summarized as follows,

• We present a new clipped momentum method (called clipped NGM) for adversarial attacks,
in which the normalized-gradient momentum (NGM) is clipped as its update direction with
a radius-varying clipping rule.
• We prove that our clipped NGM attains its optimal averaging convergence for general

constrained convex problems, indicating that the clipping strategy theoretically guaran-
tees the stability of the whole optimization process and then fill the theory-practice gap for
momentum-based adversarial attacks.
• The experiments demonstrate that our clipped NGM can remarkably improve the perfor-

mance of the state-of-the-art gradient-based algorithms in adversarial attacks, verifying that
the clipping technique can empirically serve as an alternative to the sign operation.

2 RELATED WORK

In this section, we provide a brief overview of several typical gradient-based methods for optimiza-
tion and adversarial attacks.

2.1 MOMENTUM AND ITS CLIPPING

Consider
min f(w), s.t. w ∈ Q, (1)

where Q ⊆ RN is a closed convex set and f is a convex function on Q. Assume that w∗ is an
optimal solution and∇f(w) is a subgradient of f at w.

One of the most simple methods for solving the problem (1) is the projected subgradient (PSG)
algorithm (Dimitri P. et al., 2003). Its key iterative step is

wt+1 = PQ[wt − αt∇f(wt)], (2)

where PQ is the projection operator on Q (Dimitri P. et al., 2003). By selecting suitable αt > 0,
the online PSG achieves a data-dependant O(

√
t) regret bound (Zinkevich, 2003). With a standard
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online-to-batch conversion, PSG attains an optimal averaging convergence rate ofO( 1√
t
) for general

convex functions, i.e., f( 1t
∑t
k=1 wk)− f(w∗) ≤ O( 1√

t
).

The regular Polyak’s HB (Ghadimi et al., 2015) (Tao et al., 2021) for solving problem (1) is

wt+1 = PQ[wt − αt∇f(wt) + βt(wt −wt−1)]. (3)

With suitable αt and βt, it can achieve an optimal individual convergence rate, i.e., f(wt)−f(w∗) ≤
O( 1√

t
) (Tao et al., 2021). When Q = RN , HB (3) can be rewritten as a two-steps algorithm{

mt = βt mt−1 + αt ∇f(wt)
wt+1 = wt −mt

. (4)

In deep learning community, HB in the form of (4) is usually referred to as momentum method
(Ruder, 2016). In real applications, the momentum with an exponential moving average (EMA)
(Tieleman & Hinton, 2012) (Kingma & Ba, 2015) is popularly used instead of mt = βt mt−1 +
αt ∇f(wt) in (4), i.e.,

mt = βt mt−1 + (1− βt)∇f(wt). (5)

Based on the EMA momentum (5), the sign-momentum (Bernstein et al., 2018) can be described as{
mt = βt mt−1 + (1− βt)∇f(wt)
wt+1 = PQ[wt − αt sign(mt)]

. (6)

Specifically when βt ≡ 0, (6) becomes the signGD. Note that the i-th component of sign(∇f(w))

is ∇if(w)
|∇if(w)| . Generally, the direction of ∇f(w) is different from that of sign(∇f(w)). When f

is smooth without constraints, its convergence for nonconvex problems has been established under
some standard assumptions (Bernstein et al., 2018).

When momentum clipping is applied to (5) (Zhang et al., 2020a) (Mai & Johansson, 2021), it takes
the form {

mt = βt mt−1 + (1− βt)∇f(wt)
wt+1 = PQ[wt − αt clipγ(mt)mt]

, (7)

where clipγ : RN → RN and

clipγ(w) = min{1, γ

‖w‖
}. (8)

Here γ is the clipping-radius and ‖ · ‖ represents the L2-norm. It is easy to find that clipγ(w) is in
fact the projection of w on the ball {w : ‖w‖ ≤ γ}. Obviously, clipγ(∇f(w)) will not change
the direction of ∇f(w) and only shrinks its norm when ‖w‖ ≥ γ. For optimizing non-convex but
(L0, L1)-smooth functions, a tight convergence has been given in (Zhang et al., 2020a) showing
that clipping algorithm has the same order of complexity as SGD (Ghadimi & Lan, 2013) but with
a smaller factor. When f is convex, assume that f is quadratic growth, i.e., f(w) − f(w∗) ≥
µminw∗∈W∗ ‖w −w∗‖, it holds that minw∗∈W∗ ‖w −w∗‖ → 0 under some regular conditions
(Mai & Johansson, 2021), where µ > 0 and W∗ is the solution set of (1).

2.2 GRADIENT-BASED ATTACK METHODS

For a given classifier fw with a predefined w, generating an adversarial example xadv from a real
example x is usually formulated as the following constrained optimization problem (Madry et al.,
2018; Goodfellow et al., 2015),

max J(xadv, y), s.t. ‖xadv − x‖∞ ≤ ε, (9)

where Bε(x) = {xadv : ‖xadv − x‖∞ ≤ ε} and J(x, y) is a differentiable loss function w.r.t. x.

FGSM (Goodfellow et al., 2015) can be regarded as the first gradient-based attack method. Its update
is

xadv = x+ ε sign(∇xJ(x, y)). (10)
Obviously, FGSM (10) is a one-step signGD with step-size ε. By choosing the step-size ε, we can
easily get ‖xadv − x‖∞ ≤ ε.
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I-FGSM (Kurakin et al., 2017) is a specific signGD with step-size α. It can be described as

xadvt+1 = xadvt + α sign(∇xadvt
J(xadvt , y)), (11)

where xadv0 = x. The step-size is usually restricted to α = ε/T to guarantee ‖xadvt − x‖∞ ≤ ε for
each t ≤ T , where T is the total number of iterations.

PGD (Carlini & Wagner, 2017) (Madry et al., 2018) is a sign-gradient PSG but starting from a
random perturbation around the natural example, i.e.,

wt+1 = PBε [wt + αt sign(∇xadvt
J(xadvt , y))], (12)

Since the projection operator is used in PGD, it is not necessary to restrict the step-sized like I-
FGSM. Specifically, for an image xadv = (xadv1 , xadv2 , xadv3 ) which is typically 3-D tensor, its
projection is (Kurakin et al., 2017)

P εx(x
adv(xadv1 , xadv2 , xadv3 ))

= min{255,x(x1, x2, x3) + ε,max{0,x(x1, x2, x3)− ε,xadv(xadv1 , xadv2 , xadv3 )}}.
(13)

MI-FGSM (Dong et al., 2018) extends I-FGSM to momentum cases, mt = µmt−1 +
∇

xadvt
J(xadvt ,y)

‖∇
xadvt

J(xadvt ,y)‖1

xadvt+1 = xadvt + α sign(mt)
, (14)

where µ is the decay factor with m0 = 0 and α = ε/T . In contrast to the regular HB (4), each
past gradient in mt is normalized by its L1-norm. To make a difference, we call this modification a
normalized-gradient momentum (NGM). With such accumulation, its update direction sign(mt) is
stabilized and then the transferability of adversarial examples is boosted (Dong et al., 2018).

MI-FGSM has achieved higher success rates in both white-box and black-box attacks than other
algorithms, such as I-FGSM and PGD. This may be attributed to incorporating momentum with
normalized gradients, which helps to improve stability. Nevertheless, MI-FGSM still belongs to the
sign regime, which means it inevitably loses information about both the magnitude and direction
of momentum. In order to overcome this limitation, we incorporate the clipping technique into
MI-FGSM. In other words, our main idea in this work is to demonstrate, both theoretically and
empirically, that the addition of the clipping step can take the place of sign operation especially in
adversarial attacks.

3 THE PROPOSED CLIPPED NGM AND ITS OPTIMAL CONVERGENCE

Generally, the motivation behind the proposed clipped NGM is mainly derived from two facts. One
is the practical success of NGM in MI-FGSM. The other is the advantage of clipping technique over
sign operation.

For solving optimization problem (1), if we directly use the clipping technique to take the place of
sign operation in MI-FGSM (14), we can get{

mt = µmt−1 +
∇f(wt)
‖∇f(wt)‖1

wt+1 = PQ[wt − αt clipγ(mt)mt]
, (15)

To emphasize the more recent gradients, we employ the momentum in the form of EMA. (15)
becomes {

mt = βt mt−1 + (1− βt) ∇f(wt)
‖∇f(wt)‖1

wt+1 = PQ[wt − αtmin{1, γ
‖mt)‖}mt]

. (16)

Note that the regular Adam (Kingma & Ba, 2015) can be described as
mt = β1t mt−1 + (1− β1t)∇f(wt)

Vt = β2tVt−1 + (1− β2t)diag(∇f(wt)∇f(wt)
>
)

wt+1 = PQ[wt − αtV
− 1

2
t mt]

. (17)
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In appearance, (16) is similar to Adam. In fact, the clipped EMA momentum can be regarded as
a specific Adam but using the adaptive stepsize V −

1
2

t = min{1, γ
‖mt‖}IN . Unfortunately, it has

been pointed out that Adam suffers from the non-convergence issue (Reddi et al., 2018). This fact
indicates that the non-convergence (16) can be caused by the normalized-gradient.

Note that for a general convex f , we usually choose the monotonically decreasing step-size αt =
α√
t

to get optimal convergence of PSG (2) (Zinkevich, 2003). To guarantee the convergence of
momentum methods with EMA, we can select βt = β1λ

t−1 with 0 < λ < 1 (Reddi et al., 2018).
Based upon these facts, we propose a new clipped momentum method (called clipped NGM), the
detailed steps of which are given in Algorithm 1.

Algorithm 1 Clipped NGM

Input: The step-size parameter α > 0; momentum parameters 0 ≤ β1 < 1 and 0 < λ < 1;
clipping parameter 0 < γ ≤ 1 and total number of iteration T .

1: Initialize m0 = 0 and d0 = 1.
2: repeat
3: mt = βtmt−1 + (1− βt) ∇f(wt)‖∇f(wt)‖1
4: αt =

α√
t

5: βt = β1λ
t−1

6: dt = min{ γ
‖mt‖ , dt−1}

7: wt+1 = PQ[wt − αtdtmt]
8: until t = T

Output: wT+1.

Obviously, a main difference from MI-FGSM is that we employ clipping technique instead of the
sign operation in Algorithm 1. In contrast to the regular clipped momentum (7), we use NGM with
a new clipping strategy. To clearly understand our new clipping rule in Algorithm 1, we give
Lemma 3.1. Let {dt}Tt=1 be the sequence generated by Algorithm 1. Suppose 0 < γ ≤ 1. Then

dt ≥ γ, ∀t ≥ 1.

According to Algorithm 1, Lemma 3.1 tells us
γ ≤ dt ≤ dt−1 ≤ 1, ∀t ≥ 1,

which implies dt = min{ γ
‖mt‖ , dt−1} = min{1, γ

‖mt‖ , dt−1}, i.e., compared with the regular
clipping operator (8), there is an extra requirement dt ≤ dt−1 in Algorithm 1. Further,

dt =


dt−1, if ‖mt‖ ≤

γ

dt−1
γ

‖mt‖
, if ‖mt‖ ≥

γ

dt−1

, (18)

which means that the clipping radius is γ
dt−1

, i.e., the clipping radius is increased since γ
dt−1

≥ γ.
On the other hand, even if ‖mt‖ ≤ γ

dt−1
, we still shrink ‖mt‖ due to γ ≤ dt−1 ≤ 1. In general, the

proposed clipping rule in Algorithm 1 can shrink ‖mt‖ when its magnitude is big while keeping the
direction of always unchanged.

To discuss the convergence of Algorithm 1, throughout this paper, we need several assumptions.
Assumption 3.2. Assume that there exists a constant G > 0 such that

‖∇f(w)‖ ≤ ‖∇f(w)‖1 ≤ G, ∀w ∈ Q.

Assumption 3.3. Assume that there exists a constant D > 0 such that

‖w1 −w2‖ ≤ D,∀w1,w2 ∈ Q.

Theorem 3.4. Let Assumption 3.2 and 3.3 hold and let {wt}Tt=1 be generated by Algorithm 1.
Suppose 0 < β1 < 1, 0 < λ < 1 and 0 < γ ≤ 1. Then we have

f(w̄T )− f(w∗) ≤
GD2

2αγ(1− β1)
√
T

+
GD2

2αγ(1− β1)(1− λ)2T
+

2αγG

(1− β1)
√
T
,
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where w̄T = 1
T

∑T
t=1 wt.

The detailed proof Lemma 3.1 and Theorem 3.4 will be given in Appendix A.1. Obviously, Theo-
rem 3.4 indicates that the clipped NGM achieves optimal averaging convergence for general convex
problems, which avoids the non-convergence issue caused by the sign operation.

In particular, when β1 = 0, the clipped NGM becomes

wt+1 = PQ[wt − αtmin{γ‖∇f(wt)‖1
‖∇f(wt)‖

, dt−1}
∇f(wt)

‖∇f(wt)‖1
]. (19)

Specifically when γ = 1, we have γ
‖mt‖ ≥ 1. According to Algorithm 1, it holds that dt ≡ 1. The

key iterative step of clipped NGM becomes

wt+1 = PQ[wt −
α√
t
mt], (20)

which means we do not conduct the clipping operation. For convenience and comparison in the
experiments, we refer to (19) and (20) as clipped NG and NGM respectively.

4 EXPERIMENTS

In this section, we provide empirical evidence to illustrate the sign-operation in gradient-based ad-
versarial attack can be replaced by the clipping strategies. Since our algorithm is directly established
upon MI-FGSM, we will conduct the same experiments as that in (Dong et al., 2018). Typically,
by solving the optimization problem (9), we compare clipped NGM with I-FGSM, PGD and MI-
FGSM, in which the projection operator (13) is used. Besides, NGM without clipping (NGM (20))
and the clipped method without momentum (Clipped NG (19)) are also considered as the base-
lines. Comparison with the recent algorithm VMI-FGSM (Wang & He, 2021) can be seen in the
Appendix A.2.

The performance of each concerned algorithm is mainly evaluated in terms of its success rates and
stability. The success rate of each attack denotes its misclassification rate of the corresponding
models with adversarial examples as inputs.

4.1 DATASETS, MODELS AND PARAMETERS

We use the same dataset as that in (Dong et al., 2018; Lin et al., 2020), i.e., 1000 images cover-
ing 1000 categories are randomly selected from ILSVRC 2012 validation set (Russakovsky et al.,
2015). Like that in (Dong et al., 2018; Lin et al., 2020), the attacked models cover both normally
and adversarially trained models. For normally trained models, we consider Inception-v3 (Inc-v3)
(Szegedy et al., 2016), Inception-v4 (Inc-v4), Inception-Resnet-v2 (Res-v2) (Szegedy et al., 2017)
and ResNet-v2-101 (Res-101) (Ilyas et al., 2018). For adversarially trained models, we select Inc-
v3ens3(v3ens3), Inc-v3ens4(v3ens4), IncRes-v2ens(v2ens) and Inc-v3Adv(v3Adv)(Tramèr et al.,
2018).

Among all the experiments, the parameters of the optimization problem (9) are fixed, i.e., the max-
imum perturbation is ε = 16 and the total number of iteration is T = 10 (Dong et al., 2018). For
I-FGSM and MI-FGSM, as stated in Section 2.2, the constant step-size is set to α = ε/T to make
the generated adversarial examples satisfy the l∞ ball constraints, and the decay factor in MI-FGSM
µ = 1 (Dong et al., 2018). As usual, we set β1 = 0.9 and λ = 0.99 in NGM and clipped NGM.

4.2 SELECTING α AND γ

In contrast to setting the constant learning rate and constant clipping radius in the existing algo-
rithms, we essentially adopt the time-varying learning rate αt and time-varying clipping radius dt
for clipped NGM in all our experiments, which completely coincides with our theoretical analysis
in 3.4. Note that only two important parameters left to be adjusted, i.e., the step-size parameter α
and clipping parameter γ.

To select suitable α and γ, we use clipped NGM to attack Inc-v3 by grid search, in which α ranges
from 2 to 30 and γ ranges from 0.1 to 1.0. We show the success rates of the generated adversarial
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Table 1: Attack success rates (%) of adversarial attacks against baseline methods. The adversarial examples
are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-101 respectively using I-FGSM, PGD, MI-FGSM, NGM,
clipped NG and clipped NGM. ∗ indicates the white-box attacks.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 v3ens3 v3ens4 v2ens v3Adv

Inc-v3

I-FGSM 100.0∗ 22.3 18.0 15.0 5.1 5.1 2.6 6.5
PGD 100.0∗ 31.3 26.8 23.6 6.6 8.0 4.2 9.1

MI-FGSM 100.0∗ 44.3 42.1 36.1 14.3 13.7 6.2 18.9
NGM 100.0 ∗ 38.8 36.0 31.5 8.1 7.7 3.2 20.6

Clipped NG 100.0 ∗ 39.2 37.5 29.0 15.8 14.4 6.8 21.9
Clipped NGM 100.0 ∗ 48.8 45.9 38.9 16.2 14.6 7.1 23.9

Inc-v4

I-FGSM 32.1 99.8∗ 20.5 19.6 6.0 6.4 3.0 6.3
PGD 38.4 100.0∗ 28.5 26.3 7.5 7.4 5.0 9.0

MI-FGSM 56.8 99.7∗ 46.4 42.5 16.6 14.7 8.0 18.4
NGM 53.5 100.0∗ 40.2 36.5 8.6 8.5 4.0 19.2

Clipped NG 48.9 100.0∗ 38.0 33.7 17.4 14.9 9.7 19.5
Clipped NGM 57.3 99.9∗ 47.8 42.1 19.2 15.0 7.6 21.5

IncRes-v2

I-FGSM 33.7 25.6 98.3 ∗ 20.2 7.8 6.3 4.4 7.9
PGD 41.1 32.6 100.0∗ 27.0 8.6 8.1 6.0 10.6

MI-FGSM 60.0 50.6 98.0 ∗ 44.1 21.6 16.4 11.3 23.0
NGM 56.9 42.1 99.2 ∗ 35.0 9.6 8.6 4.6 22.4

Clipped NG 51.1 44.0 98.7∗ 34.9 22.2 16.4 14.4 23.2
Clipped NGM 60.0 52.9 99.0∗ 44.0 24.3 18.8 13.7 29.0

Res-101

I-FGSM 30.9 25.1 23.2 99.3 ∗ 8.0 7.6 4.6 9.0
PGD 43.9 35.1 33.7 99.3∗ 10.8 10.1 6.7 11.0

MI-FGSM 56.6 51.6 48.7 99.3 ∗ 24.1 22.0 12.1 24.9
NGM 55.9 47.9 46.7 99.5 ∗ 11.5 9.9 5.7 23.1

Clipped NG 48.3 42.7 40.8 99.3∗ 24.9 22.3 16.1 26.9
Clipped NGM 59.6 53.5 51.4 99.3 ∗ 29.3 24.4 16.4 34.4

examples against Inc-v3 (white-box) and seven black-box attacks in Fig.1. Considering all the
black-box attacks, we set α = 18 and γ = 0.8 for our clipped NGM throughout all the experiments.

(a) (b)
Figure 1: Attack success rates (%) of the adversarial examples generated for Inc-v3 (white-box) against Inc-v4,
IncRes-v2, Res-101, v3ens3, v3ens4, v2ens and v3Adv (black-box). (a) α = 0.8. (b) γ = 18.

4.3 ATTACKING A SINGLE MODEL

The success rates of attacks against normally and adversarially trained models are reported in Table
1. From this table, several interesting phenomena can be observed. First of all, NGM obtains the
best success rate on each white-box attack. However, it is consistently inferior to MI-FGSM on all
the black-box attacks. Secondly, clipped NG gets a better success rate than that of MI-FGSM on
each adversarially trained model. Unfortunately, it is consistently inferior to MI-FGSM on all the
normally trained models. Fortunately, we observe that our clipped NGM achieves the best success
rates for almost all the attacks among all the algorithms, demonstrating the advantages over sign-like
algorithms and their baselines.
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4.4 STABILITY OF CLIPPED NGM

It has been indicated that MI-FGSM can stabilize update directions due to integrating the momentum
term into the iterative process (Dong et al., 2018). To make a comparison of stability between MI-
FGSM and clipped NGM, we investigate the changing behaviour of success rates with respect to the
number of iterations. Typically, we only consider generating adversarial examples on Inc-v3.

As can be seen in Fig.(2), when the number of iterations increases, both MI-FGSM and clipped
NGM can obtain a near 100% success rate on white-box attacks. Note in Section 4.5, we only report
the success rates of each concerned algorithm at T = 10 like that in (Dong et al., 2018). From
Fig.(2), we indeed find that the overall best black-box success rate of MI-FGSM is obtained when
T approaches 10. However, this success rate will decrease when t becomes larger. Fortunately, our
clipped NGM can maintain the success rate in a relatively high level even when T > 10, exhibiting
its better stability.

(a) (b)
Figure 2: Attack success rates (%) of the adversarial examples generated for Inc-v3 (white-box) against Inc-v4,
IncRes-v2, Res-101, v3ens3, v3ens4, v2ens and v3Adv (black-box).

4.5 ATTACKING AN ENSEMBLE OF MODELS

It has been shown that attacking multiple models at the same time can improve the transferability
of generated adversarial examples (Liu et al., 2017). To further compare with I-FGSM, PGD and
MI-FGSM, we apply clipped NGM to attack an ensemble of models. As pointed out in (Dong
et al., 2018), the ensemble in logits outperforms the ensemble in predictions and the ensemble in
loss consistently among all the attack methods and different models in the ensemble for both the
white-box and black-box attacks. Therefore, we only focus on attacking an ensemble of normally
trained models in logits (including Inc-v3, Inc-v4, IncRes-v2 and Res-101) with equal weights. We
report the success rates of attack against adversarially trained models in Table 2.

By comparing the experimental results in Table 1 and 2, it is easy to find that our clipped NGM under
the multi-model setting can similarly improve the transferability. Fortunately, our clipped NGM
remarkably outperforms I-FGSM, PGD and MI-FGSM when attacking an ensemble of models.

Table 2: Attack success rates (%) of adversarial attacks under multi-model setting. ∗ indicates the white-box
attacks.

Attack Inc-v3∗ Inc-v4∗ IncRes-v2∗ Res-101∗ v3ens3 v3ens4 v2ens v3Adv

I-FGSM 100.0 100.0 99.6 100.0 19.1 16.7 9.0 16.2
PGD 100.0 99.6 98.9 99.8 20.7 16.9 10.4 17.7

MI-FGSM 100.0 99.6 99.4 99.9 48.2 42.9 27.9 43.2
Clipped NGM 100.0 99.9 99.8 100.0 53.6 47.3 33.2 59.7

4.6 VISUALIZATION OF ADVERSARIAL EXAMPLES

We show 6 randomly selected benign images and their corresponding adversarial images, which
are generated by I-FGSM, PGD, MI-FGSM and clipped NGM for Inc-v3. As can be seen in 3, the

8



Under review as a conference paper at ICLR 2024

generated noise in each image is human-imperceptible. Further, whether the background is simple or
complex, there is little difference observed between the adversarial images generated by MI-FGSM
and that generated by our clipped NGM.
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Figure 3: Visualization of randomly picked benign images and their corresponding adversarial images.

5 CONCLUSION

In this paper, we use clipping technique to overcome the limitations of sign operation in state-
of-the-art gradient-based adversarial attack methods. To obtain better practical success rates, the
normalized-gradient momentum is employed. To guarantee convergence, the radius-varying clip-
ping rule is proposed. From the point of view of both theoretical analysis and empirical study, our
clipping technique can serve as an alternative to the sign operation in adversarial attacks. Getting
provable convergence of Nesterov’s momentum from NI-FGSM (Lin et al., 2020) for adversarial
attacks will be investigated in our future work.
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A APPENDIX

A.1 CONVERGENCE ANALYSIS OF CLIPPED NGM

Proof of Lemma 3.1

Note that mt is a convex combination of each ∇f(wi)
‖∇f(wi)‖1 , and ‖∇f(wi)‖

‖∇f(wi)‖1 ≤ 1 (i = 1, 2, · · · , t). We
have

‖mt‖ ≤ 1.

Then γ
‖mt
‖ ≥ γ and Lemma 3.1 can be obtained by simple induction.

Proof of Theorem 3.4

From the non-expansiveness of the projection operator, we know

‖wt+1 −w∗‖2 ≤ ‖wt − αtdtmt −w∗‖2

= ‖wt −w∗‖2 + ‖αtdtmt‖2 − 2αtdt〈mt,wt −w∗〉

= ‖wt −w∗‖2 + ‖αtdtmt‖2 − 2αtdt〈βtmt−1 + (1− βt)
∇f(wt)

‖∇f(wt)‖1
,wt −w∗〉.

Rearrange the inequality, we have

2αtdt(1− βt)
‖∇f(wt)‖1

〈∇f(wt),wt −w∗〉

≤‖wt −w∗‖2 − ‖wt+1 −w∗‖2 + ‖αtdtmt‖2 − 2αtdtβt〈mt−1,wt −w∗〉,

i.e.,

1

‖∇f(wt)‖1
〈∇f(wt),wt −w∗〉 ≤‖wt −w∗‖2 − ‖wt+1 −w∗‖2

2αtdt(1− βt)
+
αtdt‖mt‖2

2(1− βt)
− βt〈mt−1,wt −w∗〉

(1− βt)

≤‖wt −w∗‖2 − ‖wt+1 −w∗‖2

2αtdt(1− βt)
+
αtdt‖mt‖2

2(1− βt)
+
αtdtβt‖mt−1‖2

2(1− βt)

+
βt‖wt −w∗‖2

2αtdt(1− βt)
.

Using the property of convex functions,

〈∇f(wt),wt −w∗〉 ≥ f(wt)− f(w∗).

Then

f(wt)− f(w∗)
G

≤‖wt −w∗‖2 − ‖wt+1 −w∗‖2

2αtdt(1− βt)
+
αtdt‖mt‖2

2(1− βt)
+
αtdtβt‖mt−1‖2

2(1− βt)

+
βt‖wt −w∗‖2

2αtdt(1− βt)
.

Summing this inequality from t = 1 to T , we obtain

1

G

T∑
t=1

[f(wt)− f(w∗)] ≤
T∑
t=1

‖wt −w∗‖2 − ‖wt+1 −w∗‖2

2αtdt(1− βt)︸ ︷︷ ︸
P1

+

T∑
t=1

βt‖wt −w∗‖2

2αtdt(1− βt)︸ ︷︷ ︸
P2

+

T∑
t=1

αtdt‖mt‖2

2(1− βt)
+

T∑
t=1

αtdtβt‖mt−1‖2

2(1− βt)
.︸ ︷︷ ︸

P3

12
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To bound P1, we have

P1 =

T∑
t=1

‖wt −w∗‖2 − ‖wt+1 −w∗‖2

2αtdt(1− βt)

=

T∑
t=2

(
1

2αtdt(1− βt)
− 1

2αt−1dt−1(1− βt−1)

)
‖wt −w∗‖2

+
‖w1 −w∗‖2

2α1d1(1− β1)
− ‖wT+1 −w∗‖2

2αT dT (1− βT )

≤
T∑
t=2

(
1

2αtdt(1− βt)
− 1

2αt−1dt−1(1− βt−1)

)
D2 +

D2

2α1d1(1− β1)

=
D2

2αT dT (1− βT )
≤ D2

√
T

2αγ(1− β1)
.

(21)

To bound P2, according to Lemma 3.1, we have

P2 =

T∑
t=1

βt‖wt −w∗‖2

2αtdt(1− βt)
≤ 1

γ

T∑
t=1

βt‖wt −w∗‖2

2αt(1− βt)
≤ D2

2αγ

T∑
t=1

βt
√
t

(1− βt)

≤ D2

2αγ(1− β1)

T∑
t=1

λt−1
√
t ≤ D2

2αγ(1− β1)

T∑
t=1

λt−1t ≤ D2

2αγ(1− β1)(1− λ)2
.

(22)

To bound P3, we have

P3 =

T∑
t=1

αtdt‖mt‖2

2(1− βt)
+

T∑
t=1

αtdtβt‖mt−1‖2

2(1− βt)

≤
T∑
t=1

αtdt‖mt‖2

2(1− βt)
+

T∑
t=1

αt−1dt−1βt‖mt−1‖2

2(1− βt)

≤ 1

2(1− β1)

T∑
t=1

αtdt‖mt‖2 +
1

2(1− β1)

T∑
t=1

αt−1dt−1βt‖mt−1‖2

≤ 1

(1− β1)

T∑
t=1

αtdt‖mt‖2 ≤
αγ

(1− β1)

T∑
t=1

1√
t
≤ 2αγ

√
T

(1− β1)
.

(23)

Combining Equation (21), Equation (22) and Equation (23), we have

T∑
t=1

[f(wt)− f(w∗)] ≤
GD2

√
T

2αγ(1− β1)
+

GD2

2αγ(1− β1)(1− λ)2
+

2αγG
√
T

(1− β1)
.

Thus

1

T

T∑
t=1

[f(wt)− f(w∗)] ≤
GD2

2αγ(1− β1)
√
T

+
GD2

2αγ(1− β1)(1− λ)2T
+

2αγG

(1− β1)
√
T
.

By convexity of f(w), we obtain

f(w̄T )− f(w∗) ≤
GD2

2αγ(1− β1)
√
T

+
GD2

2αγ(1− β1)(1− λ)2T
+

2αγG

(1− β1)
√
T
. (24)

13



Under review as a conference paper at ICLR 2024

Table 3: Attack success rates (%) of adversarial attacks against baseline methods. The adversarial examples are
crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-101 respectively using VMI-FGSM and Clipped VMI-FGSM. ∗

indicates the white-box attacks.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 v3ens3 v3ens4 v2ens v3Adv

Inc-v3 VMI-FGSM 100.0∗ 71.6 68.7 59.9 32.4 30.5 18.0 36.2
Clipped VMI-FGSM 100.0 ∗ 75.2 74.9 65.2 34.5 32.1 18.3 46.7

Inc-v4 VMI-FGSM 76.7 99.7∗ 70.7 63.2 38.2 36.8 23.5 34.7
Clipped VMI-FGSM 81.6 100.0 ∗ 75.3 67.1 43.1 39.0 25.2 45.6

IncRes-v2 VMI-FGSM 77.8 72.2 97.9 ∗ 67.2 47.0 39.9 34.7 43.0
Clipped VMI-FGSM 81.9 77.6 98.1 ∗ 70.8 53.5 45.2 39.0 56.6

Res-101 VMI-FGSM 75.0 69.1 69.9 99.3 ∗ 45.5 42.1 30.5 42.9
Clipped VMI-FGSM 79.1 74.0 72.9 99.5 ∗ 50.0 44.6 35.3 55.8

A.2 COMPARISON WITH RECENT VMI-FGSM

In Wang & He (2021), a variance tuning technique is proposed to enhance the class of iterative gra-
dient based attack methods and improve their attack transferability. Specifically, at each iteration
for the gradient calculation, instead of directly using the current gradient for the momentum accu-
mulation, they use the gradient variance of the previous iteration to tune the current gradient so as
to further stabilize the update direction and escape from poor local optima. When this technique is
integrated into MI-FGSM, VMI-FGSM can be obtained Wang & He (2021).

As indicated in Wang & He (2021), the variance tuning technique is generally applicable to any
gradient-based attack method. Similarly, by using the gradient variance of the previous iteration to
tune the current gradient in clipped NGM, we can get clipped VMI-FGSM. The detailed steps of
clipped VMI-FGSM are given in Algorithm 2, where xadv,it = xadvt + ri, ri ∼ U [−(β · ε)d, (β ·
ε)d] with the upper bound of neighborhood β, and U [ad, bd] stands for the uniform distribution
in d dimensions. The success rates of attacks against normally and adversarially trained models
are reported in Table 3. The experimental results can further verify that the sign-operation can be
replaced by the clipping strategies.

Algorithm 2 Clipped VMI-FGSM

Input: The step-size parameter α > 0; momentum parameters o ≤ β1 < 1 and 0 < λ < 1;
clipping parameter 0 < γ ≤ 1; number of example for variance tuning N and total number of
iteration T .

1: Initialize m0 = 0 and d0 = 1.
2: repeat

3: mt = βtmt−1 + (1− βt)
∇

xadvt
J(xadvt ,y)+vt

‖∇
xadvt

J(xadvt ,y)+vt‖1

4: vt+1 = 1
N

∑N
i=1∇xadv,it

J(xadv,it , y)−∇xadvt
J(xadvt , y)

5: αt =
α√
t

6: βt = β1λ
t−1

7: dt = min{ γ
‖mt‖ , dt−1}

8: xadvt+1 = PQ[xadvt + αtdtmt]
9: until t = T

Output: xadvT+1.
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