
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for AdvML-Frontiers 2023

A. Related work
This section presents related works that use preprocessing and test-time inference methods for enhanced classification
robustness. The former preprocesses the image before sending it to the classifier, whereas the latter changes the inference
methodology, using an inference algorithm. Finally, we discuss several adversarial defense methods that aim at unseen
attacks.

The first work on prepossessing methods, which improve classification robustness, includes random resizing and padding
(Xie et al., 2017), thermometer encoding (Buckman et al., 2018), feature squeezing (Xu et al., 2017), defense GAN
(Samangouei et al., 2018) and masking and reconstructing (Yang et al., 2019). A newer line of preprocessing methods uses
probabilistic models. These methods aim to leverage their generative power to clear perturbations from an attacked image.
They perform it by projecting the attacked image back to the data manifold. This line of work includes purification by
pixelCNN (Song et al., 2017), EBM for restoring corrupt images (Du & Mordatch, 2019) and a density aware classifier
(Grathwohl et al., 2019). The most recent works in this field includes Langevin sampling (Hill et al., 2020) and a gradient
ascent score-based model (Yoon et al., 2021). Similarly, two recent studies utilize the generative power of diffusion models
(Nie et al., 2022; Blau et al., 2022).

Another group of adversarial defense schemes uses test-time methods. Cohen et al. (Cohen et al., 2019) and Raff et al. (Raff
et al., 2019) suggest multiple realizations of the augmented image to be performed during test-time, followed by averaging
the classification predictions. Schwinn et al. (Schwinn et al., 2022) suggest to analyze the robustness of a local decision
region nearby the attacked image. While (Cohen et al., 2019; Raff et al., 2019) require fine-tuning the model, Schwinn et al.
require neither fine-tuning nor access to the training data, similar to our method.

The last group of studies aims to provide robustness against unseen attacks. Laidlaw et al. (Laidlaw et al., 2020) provides a
latent space norm-bounded AT, and Blau et al. (Blau et al., 2022) uses a vanilla trained diffusion model as a preprocessing
step.

To the best of our knowledge, Schwinn et al. (Schwinn et al., 2022) offer the only test time method that enhances adversarially
trained robust classifiers without further training, similar to our method.

B. Background
Since the discovery of adversarial attacks (Szegedy et al., 2013; Goodfellow et al., 2014; Kurakin et al., 2016; Athalye et al.,
2018; Biggio et al., 2013; Carlini & Wagner, 2017; Kurakin et al., 2018; Nguyen et al., 2015), there has been a continuous
development of defense and attack techniques. In this section, we briefly overview key results starting with attacks, moving
to defense strategies, and finishing with the PAG property.

An adversarial attack is a perturbation δ, added to an image x, intended to push a classifier decision away from the correct
prediction. Many important studies researched adversarial attacks, of which it is important to mention Madry et al. (Madry
et al., 2017) who laid the foundation for many following works, including ours. Madry et al. introduced the projected
gradient descent (PGD) algorithm, which is an iterative optimization process that searches for the worst-case adversarial
example. PGD has access to the classifier’s weights, and is, therefore, able to find the worst-case adversary in a small radius
around a clean data sample. The allowed perturbation is defined by a threat model, characterized by an ℓp norm and a
radius ϵ, such that ||δ||p ≤ ϵ. There exist two variants for the loss term. The objective of the first variant is to maximize the
classification loss of the perturbed input, given the true label. In other words, the input image is manipulated in order to
increase the error, aiming for a wrong classifier decision (any class except the correct one). The second variant’s objective is
to minimize the classification loss of the perturbed image given a specific wrong class label y. As a result, the classifier is
more likely to predict label y. Our method utilizes the latter targeted PGD variant.

One of the leading robustification methods known as adversarial training (AT) (Madry et al., 2017; Zhang et al., 2019;
Rebuffi et al., 2021; Gowal et al., 2020; Salman et al., 2020; Goodfellow et al., 2014; Carlini & Wagner, 2017; Croce & Hein,
2020; Tramer et al., 2020). AT is a training method that robustifies a classifier against a specific attack. This is achieved
by introducing adversarial examples during the training process, and driving the classifier to learn to infer the true labels
of malicious examples. While training, the classifier weights are constantly being changed. As a result, the classifier’s
worst-case examples keep on changing as well. Hence, in every training batch, one must calculate new adversarial examples
that fit the current state of the classifier.

It has been recently discovered that some classifiers exhibit an intriguing property called perceptually aligned gradients

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for AdvML-Frontiers 2023

(PAG) (Engstrom et al., 2019; Etmann et al., 2019; Ross & Doshi-Velez, 2018; Tsipras et al., 2018). PAG is manifested
through the classification loss gradients, with respect to the input image, appearing visually meaningful to humans, and
resembling one of the dataset classes. The structure of the gradients is different when performing untargeted vs. targeted
PGD. When performing untargeted PGD, the attack is not leading to a specific class; therefore, the gradients transform
the image arbitrarily. When performing targeted PGD, however, the gradients transform the image into the target class,
removing current class features. Using this property, our method enables, one to transform an image into a target class, as
used by our method.

C. Experimental setup
In this part, we provide some details about our methods. We are performing AutoAttack (Croce & Hein, 2020) on the base
classifier, then performing our defense method. Similar to previous works such as (Schwinn et al., 2022). We use N = 30
steps of TETRA and perform hyperparameter tuning, finding the best step size α and γ for every classifier. We use these
parameters for all the evaluations, clean images and all of the attacks. We state both α and γ for every dataset in Tables 4
to 6.

We evaluated the other test-time defense, DRQ (Schwinn et al., 2022), with the official code using the reported parameters.

Method Architecture TTM α γ

Madry et al. (Madry et al., 2017) + TETRA RN50 L2, ϵ = 0.5 1.5 200

Rebuffi et al. (Rebuffi et al., 2021) + TETRA WRN28-10 L2, ϵ = 0.5 0.5 400

Rebuffi et al. (Rebuffi et al., 2021) + TETRA WRN28-10 L∞, ϵ = 8/255 0.1 300

Gowal et al. (Gowal et al., 2020) + TETRA WRN70-16 L∞, ϵ = 8/255 0.3 300

Vanila + TETRA WRN28-10 - 0.05 300

Table 4. CIFAR10 params. In the first column, we state the method. In the next columns, we state the architecture, the trained threat
model (TTM), α which is the step size and γ which is the regularization weight.

Method Architecture TTM α γ

Rebuffi et al. (Rebuffi et al., 2021) + TETRA WRN28-10 L∞, ϵ = 8/255 0.1 300
Rebuffi et al. (Rebuffi et al., 2021) + FETRA WRN28-10 L∞, ϵ = 8/255 0.1 300

Gowal et al. (Gowal et al., 2020) + TETRA WRN70-16 L∞, ϵ = 8/255 0.1 100
Gowal et al. (Gowal et al., 2020) + FETRA WRN70-16 L∞, ϵ = 8/255 0.1 100

Table 5. CIFAR100 params. In the first column, we state the method. In the next columns, we state the architecture, the trained threat
model (TTM), α which is the step size and γ which is the regularization weight.

Method Architecture TTM α γ

Madry et al. (Madry et al., 2017) + FETRA RN50 L2, ϵ = 3.0 6.0 5500

Salman et al. (Salman et al., 2020) + FETRA WRN50-2 L2, ϵ = 3.0 6.0 3000

Madry et al. (Madry et al., 2017) + FETRA RN50 L∞, ϵ = 4/255 1.0 6000

Salman et al. (Salman et al., 2020) + FETRA WRN50-2 L∞, ϵ = 4/255 1.0 3000

Table 6. ImageNet params. In the first column, we state the method. In the next columns, we state the architecture, the trained threat
model (TTM), α which is the step size and γ which is the regularization weight.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for AdvML-Frontiers 2023

D. Transformed images
We proceed to the visualization of the TETRA transformation, supplying an intuitive explanation of what the transformation
looks like and why our method works.

First, we compare our method to PGD. As shown in Figure 2, PGD transforms the image’s appearance significantly in
order to change its classification. TETRA also modifies the image appearance to the target class, however, it keeps the
transformed image pixel-wise close to the input image. The transformation is performed in a rather artistic way, as it is
almost imperceptible that the toucan appears on the lorikeet’s wing.

TETRA relies on the hypothesis that the extent of the image modification relates to the probability of belonging to a
certain class. Therefore, it is important to supply visual evidence and intuition. To this end, we present Figure 3, where
we demonstrate TETRA transformation towards multiple classes. In the first column, we present the clean image. In the
following four columns, we transform the image into target classes. First, to the true class, then to a similar class, and
finally to two entirely different class categories. This figure emphasizes that a transformation of an image to the true class,
or similar ones, requires minor changes. However, when transforming an image into a different category, the image is
modulated considerably by adding some features belonging to the target class.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for AdvML-Frontiers 2023

Clean Target class

True class Dissimilar classSimilar class

honeycomb (14.38)lorikeet (0.063) toucan (11.22) Egyptian cat (15.68)

dragonfly (3.03) mixing bowl (13.78)damselfly (0.08) necklace (12.68)

salt shaker (0.46) vase (3.60) sunglass (7.28)spoonbill (11.78)

Figure 3. Visualization of TETRA’s transformation. Clean images from the ImageNet dataset (Deng et al., 2009) (left column) are
transformed by TETRA into (left-to-right): the true class, a class from the same category, and two classes from different categories.
Pixel-level distance is more noticeable as the perceptual distance to the target class grows (presented in the images’ titles as the ℓ2
distance).

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for AdvML-Frontiers 2023

E. RPGD analysis

100 101

Top K

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y

CIFAR10 - Accumulated Accuracy
PGD
RPGD

100 101

Top K

0.10

0.05

0.00

0.05

0.10

Di
ffe

re
nc

e(
PG

D,
 R

PG
D)

CIFAR10 - Difference (PGD, RPGD)

Difference(PGD, RPGD)

Figure 4. CIFAR10 top k accuracy comparison PGD vs RPGD. the x-axis of the left figure represents the top k group size that we select,
using Madry et al. (Madry et al., 2017) ℓ2, ϵ = 0.5. The y-axis represents the top k accuracy, the probability that the true label is contained
in the top k group. On the right figure, we present the difference between the two graphs of the left figure, PGD −RPGD.

100 101 102

Top K
0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y

CIFAR100 - Accumulated Accuracy
PGD
RPGD

100 101 102

Top K

0.04

0.02

0.00

0.02
Di

ffe
re

nc
e(

PG
D,

 R
PG

D)
CIFAR100 - Difference (PGD, RPGD)

Difference(PGD, RPGD)

Figure 5. CIFAR100 top k accuracy comparison PGD vs RPGD. the x-axis of the left figure represents the top k group size that we select,
using Madry et al. (Rebuffi et al., 2021) ℓ∞, ϵ = 8/255. The y-axis represents the top k accuracy, the probability that the true label is
contained in the top k group. On the right figure, we present the difference between the two graphs of the left figure, PGD −RPGD.

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for AdvML-Frontiers 2023

100 101 102 103

Top K

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y

ImageNet - Accumulated Accuracy
PGD
RPGD

100 101 102 103

Top K

0.10

0.05

0.00

0.05
Di

ffe
re

nc
e(

PG
D,

 R
PG

D)
ImageNet - Difference (PGD, RPGD)

Difference(PGD, RPGD)

Figure 6. ImageNet top k accuracy comparison PGD vs RPGD. the x-axis of the left-hand side of the figure represents the top k group
size that we select, using Madry et al. (Madry et al., 2017) ℓ2, ϵ = 3.0. The y-axis represents the top k accuracy, the probability that the
true label is contained in the top k group. For example, if we examine k = 20 it means that we seek the probability that the true label is
in one of the top 20 predictions of the classifier, which is around 60%. On the right-hand side of the figure, we present the difference
between the two graphs of the left-hand side, PGD −RPGD.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for AdvML-Frontiers 2023

F. Ablation study
In this part, we discuss the ablations that we performed in order to better understand the contribution of different parts of our
method. In Appendix F.1 we discuss the necessity of the PAG property in the TETRA algorithm, next in Appendix F.2 we
discuss different options for the distance metric used for classification.

F.1. Vanila classifier

TETRA can be applied to any differentiable classifier. We claim, however, that it enhances the classifier robustness only
over classifiers that possess PAG. In this part, we empirically support this claim.

In Table 7, we present TETRA accuracy on CIFAR10 dataset, where the classifier is vanilla trained. As we can see, TETRA
achieves an accuracy of around 1% for all of the attacks. When applying TETRA to PAG classifiers, it achieves much
better results, as presented in Table 1. Meaning that TETRA performs well only when applied to classifiers that possess
the PAG property. The reason is that our method heavily relies on the generative power of PAG, which does not exist in
vanilla-trained classifiers.

Method Architecture TTM Standard
Attack

L∞ L2

8/255 16/255 0.5 1.0

Vanila
WRN28-10 None

95.26% 00.00% 00.00% 00.00% 00.00%
DRQ (Schwinn et al., 2022) 10.95% 11.31% 11.04% 11.75% 11.38%
TETRA 93.04% 01.11% 01.12% 01.24% 01.10%

Table 7. CIFAR10 vanilla classifier results. In the first column, we state the method. We report three consecutive lines of results. One for
the base method and then two test time boosting methods: DRQ (Schwinn et al., 2022) and TETRA. In the next columns, we state the
architecture, the trained threat model (TTM), and four attacks with different threat models.

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Submission and Formatting Instructions for AdvML-Frontiers 2023

F.2. Distance metrics

In TETRA’s second phase, we calculate the distance between the input image and the transformed images, and we classify
based on the shortest one. Hence, the distance metric that we use for the classification is important. Different metrics have
different properties, and we aim at a distance metric that is able to measure the semantic distance between images.

We compare ℓ2, ℓ1 and LPIPS (Zhang et al., 2018) distances over CIFAR10 dataset, and presente the results in Table 8. We
compare the results using the following defense methods (Madry et al., 2017; Rebuffi et al., 2021; Gowal et al., 2020). As
demonstrated, ℓ2 distance metric performs better, therefore is a favorable choice.

Method Architecture TTM Standard
Attack

L∞ L2

8/255 16/255 0.5 1.0

AT (Madry et al., 2017)

RN50 L2, ϵ = 0.5

90.83% 29.04% 00.93% 69.24% 36.21%
TETRA LPIPS 85.91% 54.49% 17.46% 78.70% 61.68%
TETRA L1 85.91% 54.55% 17.64% 78.70% 61.68%
TETRA L2 85.76% 54.55% 17.64% 78.74% 61.87%
Rebuffi et al. (Rebuffi et al., 2021)

WRN28-10 L2, ϵ = 0.5

91.79% 47.85% 05.00% 78.80% 54.73%
TETRA LPIPS 87.31% 58.57% 09.97% 85.30% 67.03%
TETRA L1 87.31% 58.57% 09.97% 85.30% 67.03%
TETRA L2 88.33% 59.74% 11.06% 85.57% 66.01%

Rebuffi et al. (Rebuffi et al., 2021)

WRN28-10 L∞, ϵ = 8/255

87.33% 60.77% 25.44% 66.72% 35.01%
TETRA LPIPS 80.97% 66.49% 33.54% 74.73% 59.25%
TETRA L1 80.97% 66.49% 33.54% 74.73% 59.25%
TETRA L2 84.86% 66.96% 35.15% 74.84% 53.32%

Gowal et al. (Gowal et al., 2020)

WRN70-16 L∞, ϵ = 8/255

91.10% 65.88% 25.95% 66.44% 27.22%
TETRA LPIPS 83.41% 71.51% 38.49% 76.53% 58.60%
TETRA L1 83.41% 71.51% 38.49% 76.56% 58.60%
TETRA L2 87.58% 72.00% 40.44% 75.65% 49.22%

Table 8. CIFAR10 results. In the first column, we state the method. For every base method, we report three consecutive lines of results.
One for the base method and then two TETRA distance metric variations used for classification: L2 and LPIPS (Zhang et al., 2018). In
the next columns, we state the architecture, the trained threat model (TTM), and four attacks with different threat models.

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Submission and Formatting Instructions for AdvML-Frontiers 2023

G. Runtime analysis
In this part, we compare the inference time of the test-time methods that we used, over CIFAR10 and CIFAR100. For
CIFAR10 we compare TETRA to DRQ (Schwinn et al., 2022), and for CIFAR100 we compare FETRA to DRQ (Schwinn
et al., 2022). As can be seen, for both of the datasets, our method is slower than the baseline. Our method, however, is faster
than DRQ (Schwinn et al., 2022). These experiments were performed using one GeForce RTX 3080 with batch size = 1.

Method Architecture TTM Inference time

AT (Madry et al., 2017)
RN50 L2, ϵ = 0.5

×1
DRQ (Schwinn et al., 2022) ×160
TETRA ×23
Rebuffi et al. (Rebuffi et al., 2021)

WRN28-10 L2, ϵ = 0.5
×1

DRQ (Schwinn et al., 2022) ×117
TETRA ×26
Rebuffi et al. (Rebuffi et al., 2021)

WRN28-10 L∞, ϵ = 8/255
×1

DRQ (Schwinn et al., 2022) ×119
TETRA ×26
Gowal et al. (Gowal et al., 2020)

WRN70-16 L∞, ϵ = 8/255
×1

DRQ (Schwinn et al., 2022) ×290
TETRA ×127

Table 9. Inference time comparison over CIFAR10. In this table we perform an inference time comparison between 3 defense methods.
For every base classifier, we report three consecutive lines of inference time. One for the base method, next we present DRQ, and finally
TETRA. In the first column we present the method name. Next we present the architecture, and the trained threat model (TTM), and
finally we present the inference time. This value stands for how much time it takes for every method to perform.

Method Architecture TTM Inference time

Rebuffi et al. (Rebuffi et al., 2021)
WRN28-10 Linf , ϵ = 8/255

×1
DRQ (Schwinn et al., 2022) ×686
FETRA ×27
Gowal et al. (Gowal et al., 2020)

WRN70-16 L∞, ϵ = 8/255
×1

DRQ (Schwinn et al., 2022) ×1380
FETRA ×121

Table 10. Inference time comparison over CIFAR100. In this table we perform an inference time comparison between 3 defense methods.
For every base classifier, we report three consecutive lines of inference time. One for the base method, next we present DRQ, and finally
TETRA. In the first column we present the method name. Next we present the architecture, and the trained threat model (TTM), and
finally we present the inference time. This value stands for how much time it takes for every method to perform.

