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ABSTRACT

We propose Riemannian Denoising Diffusion Probabilistic Models (RDDPMs)
for learning distributions on submanifolds of Euclidean space that are level sets
of functions, including most of the manifolds relevant to applications. Existing
methods for generative modeling on manifolds rely on substantial geometric in-
formation such as geodesic curves or eigenfunctions of the Laplace-Beltrami op-
erator and, as a result, they are limited to manifolds where such information is
available. In contrast, our method, built on a projection scheme, can be applied to
more general manifolds, as it only requires being able to evaluate the value and
the first order derivatives of the function that defines the submanifold. We provide
a theoretical analysis of our method in the continuous-time limit, which elucidates
the connection between our RDDPMs and score-based generative models on man-
ifolds. The capability of our method is demonstrated on datasets from previous
studies and on new datasets sampled from two high-dimensional manifolds, i.e.
SO(10) and the configuration space of molecular system alanine dipeptide with
fixed dihedral angle.

1 INTRODUCTION

Diffusion models are generative models that learn data distributions by gradually perturbing data into
noise and then reconstructing data from noise using stochastic processes. Two primary frameworks
of diffusion models are Denoising Diffusion Probabilistic Models (DDPMs;jHo et al.| (2020)), where
the models are trained to minimize the variational bound in variational inference, and Score-based
Generative Models (SGMs;Song & Ermon|(2019);/Song et al.|(2021b))), where the models are trained
to learn the score function (Hyvirinen & Dayan, [2005). Both frameworks have achieved remarkable
success in various applied fields.

In recent years, there has been a growing interest in developing generative models for data on mani-
folds (De Bortoli et al.;,[2022; |Lou et al.| 2023 |Chen & Lipman, 2024} Jo & Hwangl| 2024). However,
existing methods on manifolds rely on substantial geometric information, e.g. geodesics (De Bortoli
et al., 2022), heat kernel or its approximations (De Bortoli et al., 2022} [Lou et al., [2023), or eigen-
functions and (pre)metrics (Chen & Lipman| 2024)). As a result, their applications are restricted to
manifolds where such information can be obtained.

In this work, we introduce Riemannian Denoising Diffusion Probabilistic Models (RDDPMs), an
extension of DDPMs to Riemannian submanifolds. A key ingredient is the projection scheme used
in Monte Carlo methods for sampling under constraints (Zappa et al., 2018; |[Lelievre et al., [2022),
which allows us to develop Markov chains on manifolds with explicit transition densities. The main
advantages of our method over existing methods are summarized below.

* Our method is developed for submanifolds that are level sets of smooth functions in Euclidean
space. This general setting includes most of the often studied manifolds such as spheres and
matrix groups. More importantly, it fits well with applications where constraints are involved, e.g.
applications in molecular dynamics and statistical mechanics.

* Our method only requires the computation of the value and the first order derivatives of the func-
tion that defines the submanifold. Therefore, it is applicable to more general manifolds.

* We present a theoretical analysis for the loss function of our method in the continuous-time limit,
elucidating its connection to the existing methods (De Bortoli et al., 2022). This analysis also
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shows the equivalence between loss functions derived from variational bound in variational infer-
ence and from learning score function.

We successfully apply our method to datasets from prior works, and to new datasets from the special
orthogonal group SO(10) and from alanine dipeptide with fixed dihedral angle, both of which are
challenging for existing methods due to their geometric complexity.

2 BACKGROUND

Riemannian submanifolds We consider the zero level set M = {z € R"|(z) = 0} of a
smooth function ¢ : R® — R"~4. We assume that M is non-empty and the matrix V() €
R™*("=d) je. the Jacobian of &, has full rank at each z € M. Under this assumption, M
is a d-dimensional submanifold of R™. We further assume that M is a smooth compact con-
nected manifold without boundary. The Riemannian metric on M is endowed from the stan-
dard Euclidean distance on R". For z € M, we denote by 7, M the tangent space of M at x.
The orthogonal projection matrix P(x) € R™*™ mapping T,R" = R" to T, M is given by
P(z) = I, — V&(x) (Vg(x)TVS(x))_lvg(x)T. Let U, € R™ 4 be a matrix whose column
vectors form an orthonormal basis of 7, M such that UJ U, = I;. It is straightforward to ver-
ify that P(z) = U,U, . The volume element over M is denoted by o . All probability den-
sities that appear in this paper refer to relative probability densities with respect to either o g
or the product of o over product spaces. For notational simplicity, we also use the shorthand
[ p(xEN)y dz(N) .= fM. . fM p(x®, 2@ 2N dop (M) dopg(2P) - - - dopg (M),

Denoising diffusion probabilistic models We formulate the DDPMs (Sohl-Dickstein et al., 2015},
Ho et al., |2020) to the general Riemannian manifold setting. Assume that the data distribution is
do(x)do a(x). DDPMs are a class of generative models built on Markov chains. Specifically, states

M ... x(N) € M are generated by gradually corrupting the data z(°) according to a Markov
chain on M, i.e. the forward process. The joint probability density of (1), ... 2(V) given 2(*) is
N-1
g 1 20) = T a=*+V [20) (D
k=0

The generative process, also called the reverse process, is a Markov chain on M that is learnt to
reproduce the data by reversing the forward process. Its joint probability density is

N—-1
po(z M) = p(a™) TT po(a™ [2*+1) )
k=0

where p(z(™M)) is a (fixed) prior density The probability density of z(°) generated by the reverse pro-
cess is therefore pg(z(?) = [po(x (0:N)y d2(1:N) | The learning objective is based on the standard
variational bound on the negative log- hkehhood. Specifically, using equations and applying
Jensen’s inequality, we can derive

qu( - logpe(x(o))) =E,, ( —log /pg(x(OZN)) dz(lzN))

po(z™M) (1:N) | .(0)y 4..(1:N)

. 3)
NCCR)! (
<Egw ( — log m)

(k) | p(k+1)
_ (N po(z'™) |z )
~Bqun  ~loga(a™) ZIO & (@D 2 ))7

where E,, Egv) denote the expectation with respect to the data distribution on M, and the expec-
tation with respect to the joint density q(x(O:N ) ), respectively.
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In order to derive an explicit training objective, we have to construct Markov chains on M with
explicit transition densities. We discuss how this can be achieved in the next section.

We conclude this section by reformulating the variational bound (3)) using relative entropy (see[Song
et al.| (2021a) for a similar formulation of score-based diffusion models) . Recall that the relative
entropy, or Kullback-Leibler (KL) divergence, from a probability density ()5 to another probability
density ()1 on the same measure space, where () is absolutely continuous with respect to ()2, is

defined as H(Q1|Q2) := Eqg, <log Q—;) For simplicity, we also use the same notation for two

probability measures. Adding the term E, (log go) to both sides of the inequality , we see that it
is equivalent to (the data processing inequality)

N

H(qo | po) < H@™ | 2{Y), )

where the upper bound is the relative entropy from the path measure IP’((,N) of the reverse process
<_

to the path measure Q (V) of the forward process (we include the arrow in the notation to indicate
that paths of the forward process are viewed backwardly). Therefore, learning DDPMs using the
variational bound (3) can be viewed as approximating probability measures in path space by the
cross-entropy method (Zhang et al.| 2014).

3 METHOD

3.1 PROJECTION SCHEME

We recall a projection scheme from Monte Carlo sampling methods on manifolds (Ciccotti et al.|
2008} |[Zappa et al.| 2018 [Lelievre et al.l [2022), and we show that it allows us to construct Markov
chains on M with tractable transition densities.

Given x € M and a tangent vector v € T, M that is drawn from the standard Gaussian distribution
on T, M, we compute the intermediate state 2’ = x + 02b(x) + ov € R", where 0 > 0 is a
positive constant and b : R™ — R™ is a smooth function. In general, 2’ does not belong to M. We
consider the projection y € M of x’ onto M along an orthogonal direction in the column space of
Vé(x). P;recisely, the projected state y is found by (numerically) solving the constraint equation for
ceR"™

y =2+ %b(x) + ov + VE(z)e, suchthat £(y) =0 R4, (5)
The choice of b will affect the final invariant distribution and the convergence rate to equilibrium (see
Section 3.5 for further discussion). There are n — d constraints in equation [5| with the same number
of unknown variables. In particular, when ¢ is scalar-valued, i.e. n — d = 1, solving equation
amounts to finding a root of a (nonlinear) scalar function.

In general, it is possible that for some vectors v there are either no solution or multiple solutions to
equation 5] When multiple solutions exist, we assume that the numerical solver finds one solution
in a deterministic way. This is true as long as a deterministic solver is adopted with fixed initial
condition ¢ = 0. Let F;, ,» be the set of v for which a solution can be found and denote by ¢(z;0) =
P(v ¢ Fy ), i.e. the probability that no solution can be found. Since e(x;0) = 0 when o = 0
(¢ = 0 is a solution for any v), we can expect that ¢(x; 0) — 0 as o decreases to zero. However, we
do not require this assumption in deriving our method. We denote M  the set of all states in M
that can be reached from x by solving equation E]with certain v € F ;.

To derive the transition density of y from x, we notice that, by applying the orthogonal projection
matrix P(x) to both sides of equation[5|and using the fact that P(z)V¢(x) = 0, we have the relation
ov = P(z)(y — x — 0?b(x)). This indicates that, given a state z € M and y € M, ,, there is a
unique tangent vector v € F, , C T, M that leads to y by solving equation El In other words, the
mapping from v € F, , toy € M, , is a bijection. Moreover, its inverse is explicitly given by

Gy Myo = Fro CTeM, Gu(y) = %P(x)(y — 2 —o?b(z)). (6)

Recall that U, U, € R™*4 denote the matrices whose columns form the orthonormal basis of T, M
and T, M, respectively. Using equation@ we can derive (see|Lelievre et al.[(2022) for more detailed
discussions)

det(DG,(y)) = 0~ det(U, U,), (7)
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where the left hand side denotes the determinant of the Jacobian DG (y) : TyM — T, T, M = R
of the map G, at y. Since v is a Gaussian variable in F;, , (with a normalizing constant rescaled by
(1 — e(z;0))~ 1Y), applying the change of variables formula for probability densities, we obtain the
probability density of landing at y from z:

_1P@)(y—w—o2b(z))|?

(1—e(z;o)) e 202 |det DG, (y)|

4
2

q(y|z) = (2m)”
_1P@)(y—z—a?b(=))|? ®)

= (2%02)_%(1 —e(z;0)) e 252 |det(U, U,)|, ye&M,.

3.2 FORWARD PROCESS

We construct the forward process in our model as a Markov chain on M whose transitions are
defined by the projection scheme in equation [Sl Specifically, given the current state z(*) € M at
step k, where k = 0,1,..., N —1, the next state (**1) € M is determined by solving the constraint
equation (for ¢ € R"~%):

2D = 20 4 5202 ®)) 4+ o™ £ VE(®)e, suchthat £(zFTD)=0e R, (9)

where o, > 0 and v*) ¢ T, M is a standard Gaussian variable in T, M. According to
equations|T]and 8] we obtain the joint probability density of the forward process as

N-1
a2 ®) = T] a4V 20,
k=0

where g(z(**1) |2) = (2m07) 7% (1 — e(a®; 03)) 7| det (U, Upcrsn))| (10)
|P(x®)) (20+D) — 2(0) — 52p(2(R))) |2
Xexp | — 5 .
207,

3.3 REVERSE PROCESS

The reverse process in our model is a Markov chain on M whose transitions (from FAGREDRTY x(k))
are defined by the constraint equation

a® = 2" g2 b )48 s (@) 48 1 0D 4 VE (M) e, such that £(2™)) = 0,

oy
fork=N—1,N—2,...,0, where ;41 > 0, 5**1) is a standard Gaussian variable in T}, (c+1) M,
and s(kﬂ)’g(x(k“)) € R"™ depends on the learning parameter §. Combining equations and we
obtain the joint probability density of the reverse process as

N-1

pe(x(O:N)) _ p(x(N)) H pe(f(k) |$(k+1)),
k=0

where pa(l‘(k) | x(k+1)) = (277612-',-1)7% (1 - ee(x(kJrl); Bk+1))_l| det(U;k+l)Uz(k))|
’P<x(k+l)) (z0) — g+ 4 B2, (b(zk D)) — gkt 1.0 (k1)) ’2
X exp | — B) )
26i41
(12)

and eg(2**+1); B, 1) denotes the probability of having 5(*+1) with which no solution to (11) can
be found.

3.4 TRAINING OBJECTIVE

The training objective follows directly from the variational bound (3) on the negative log-likelihood,
as well as the explicit expressions of transition densities in equations[T0]and[T2] Concretely, substi-
tuting equations[I0]and [T2]into the last line of (3), we get

qu(—logpg(a:(o))) < Loss(N)(H) + oW , (13)
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where

(N) 1 = 2 (k+1)\ [ (k+1),0 (. (k+1) (k+1) gk — (k)2
Loss'™/(6) = i]EQ(N) Z ﬁkH’P(x )(s Nz ) —b(z )+ 7”
k=0

B

(14)
is our objective for training the parameter ¢ in the reverse process (recall that Eqv) denotes the
expectation with respect to the forward process), the constant

1 N-—1
O = —Equ) [2 kz_o ok - b(x(k)))

o (St st

k=0

LB+ _ () 2

N1
+ logp(x(N))] +d Z log ZAHL
k=0 Tk

P(Jc(k))<

2
Ok

(15)
is independent of the training parameter 6, and we have used log(1 — eg(z*+1): B41) < 0in
deriving equation[I3]

3.5 ALGORITHMIC DETAILS

The algorithms for training and data generation are summarized in Algorithms|[T]and 2] respectively.
Algorithm for sampling the forward process, which is similar to Algorithm [2| and algorithm for
solving constraint equations are presented in Algorithms [3|and ] in Appendix [B] In the following,
we discuss several algorithmic details of our method. Further details are left in Appendix [B]

Generation of trajectory data The optimal parameter 6 is sought by minimizing the objective in
equation[I4] for which trajectory data of the forward process is required as training data. We sample
trajectories of the forward process in a preparatory step before training, and train the model with
min-batches sampled from this trajectory dataset. The trajectory dataset is updated by re-sampling
trajectories every several training epochs (see line 2 and lines 10-12 in Algorithm [T).

Choice of N, oy, and ;.1 The total number of steps NV should be large enough such that the for-
ward Markov chain is able to reach equilibrium (approximately) starting from the data distribution.
While larger o, Sk41 allow the Markov chains to make larger jumps, their size should be properly
chosen (depending on the manifold) such that the solution to the constraint equations [9] and [T1] can
be found with high probability.

Method for solving constraint equations [0 and [II] As in Monte Carlo sampling methods on
submanifolds (Ciccotti et al.l 2008} |Zappa et al., 2018; [Lelievre et al.l|2022), we employ Newton’s
method to solve the constraint equations[9]and This method has quadratic convergence (locally)
and its implementation is simple. In most cases, a solution with high precision can be found within
a few iteration steps (e.g. less than 5 steps). When no solution is found, one can re-generate the state
or the entire trajectory. Our implementation of Newton’s method is summarized in Algorithm 4]

Choices of b and sampling of the prior p(x(N )) For relatively simple manifolds, we can for
simplicity set b = 0 and choose the prior (see line 2 in Algorithm [2) as the uniform distribution on
M. When M is non-compact or when the convergence of Markov chain to equilibrium is slow with
b = 0, we can choose non-zero b such as b = —VV, i.e. the (full space) gradient of a function
V : R® — R in the ambient space. In this case, sampling the prior can be done by simulating
a single long trajectory of the forward process. See Section [6.4] and Appendix for a concrete
choice of nonzero b in practice.

4 THEORETICAL RESULTS

In this section, we study the continuous-time limit of our proposed method. Let 7" > 0 and g :
[0, 7] — R* be a continuous function. Define i = £ and consider the case where o}, = v'hg(kh),
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Algorithm 1 Training procedure

1: Input: training data (y')1<;< s, functions (s(’““)’e (z))o<k<n—1, constants oy, B > 0, func-
tionb : R® — R", integer IV, batch size B > 0, number of total training epochs Nepocn, integer
l¢ > 0, learning rate r > 0.

2: for each 2(0)% = 4/, generate a path (9%, (D 2(N):%) ysing Algorithm

3: for I =110 Nepocn do > loop over epochs
4 for j =1to |[M/B] do > loop over min-batches
5: sample a min-batch Z = (i1, 42, . . ., i ) from the set of indices {1,2,..., M}

6: calculate loss:

. _ 1 = (k+1),i (k+1),0 (,(k+1),i (k+1),i a(FH1),i g (k)i 2
7 6(0) = 217 Z Z ﬂk-«—l P(x )| s (55 ) — b(x ) + B2
1€Z k=0 k+1

8: 6 = optimizer_update(d, £(0),r) > ADAM optimizer
9: end for
10: if [ %l == 0 then > update trajectories every [y epochs
11: for each 2(°)* = y/7, re-generate paths (2(?)-* 21 2 (N):") using Algorithm 3
12: end if

13: end for
14: return 6

fork =0,1,...,N — 1. It is shown in[Ciccotti et al.| (2008) that the forward process (9) converges
strongly to the SDE on M

dX, = > () P(X)b(Xy)dt + g(t)dWM,  te[0,T], (16)

where WM is a Brownian motion over M. Denote by p(-,t) the probability density of X; with
respect to oo at time ¢ € [0, T].

We have the following result, which characterizes the loss function in equation[I4)as N — +oc.

Theorem 4.1. Let T > 0 and g : [0,T] — R™ be a continuous function. Define h = % and

ty, = kh, fork =0,1,...,N — 1. Assume that oy, = fr4+1 = Vhg(ty). Also assume that, for any
parameter 0, there is a C* function sg : R™ x [0,T] — R™ such that s*t1):0(z) = sy (2, tg41) for
allk =0,1,...,N —1and x € M. For the loss function defined in equation[I4} we have

1 T
—E[5 [ IPCCsu(Xert) = Vaelogp(Xe,t) (0 e

lim (LOSS(N)(H) - — 5

N—+o0
T
+ [ (POMEE) = 57 ToBp(X1.1)) - Ve lomp(X0,1) g2(0) ]

where Eq on the right hand side denotes the expectation with respect to the paths of SDE (16) and
V m denotes the gradient operator on M.

Based on Theorem[4.1] the variational bound (3), and its relative entropy formulation in (), we ob-
tain the following corollary, which elucidates the connection between our RDDPMs and Riemannian
score-based generative models (De Bortoli et al., 2022) as N — +o00.

Corollary 4.1. Under the same assumptions of Theorem we have, for any parameter 0,

lim H(Q® PM) =1k,

’ 2
N oo 2 / |P(X1)s0(Xt,t) — Vo logp(Xy, t)|"g* () dt

0 (17
—H(Q|Py),

where @ denotes the path measure of the time-reversal of SDE (@), and Py denotes the path mea-
sure of the SDE

dY; = g*(T — t)P(Y;) (= b(Yy) + so(Ys, T — t))dt + g(T — t)dW™, te€[0,T], (18)

starting from Yo = Xp.

The proofs of Theorem .| and Corollary .1] are presented in Appendix [A]



Under review as a conference paper at ICLR 2025

Algorithm 2 Sampling trajectory of reverse process

1: Input: trained functions (s**1)-¢(2))o<r<ny_1, constants 3, function b : R" — R”, and
integer N

2: draw sample () from the prior distribution p(z(M))

3: fork=N—-1to0Odo

4: sample 2*t1) ~ N(0,1,,) and set 051 = P(gp(k+1))z(k+1)

5. set p(k+3) = p(k+1) | BI%JrlP(x(kJrl))(S(k+1),9(m(k:+1)) _ b(:c(k:+1))) + B0k

6: ¢, flag = newton_solver(z(*+1) z(k+3); ¢) > solve by Algorithm@
7: if flag == true then

8: 2®) = gt3) 4 Ve (pkt)e

9: else

10: discard the trajectory and re-generate

11: end if

12: end for

13: return (z(V), 2 (N=1D 0 4(0))

5 RELATED WORK

Denoising diffusion probabilistic models DDPMs (Ho et al., 2020) employ a forward Markov
chain to perturb data into noise and a reverse Markov chain to incrementally recover data from noise.
The models are trained to minimize a variational bound on the negative log-likelihood. DDPMs
have made remarkable achievement in generative modeling on Euclidean space. However, to our
knowledge, prior to this study there was no successful extension of DDPMs to manifolds.

Diffusion models on manifolds Riemannian Score-based Generative Models (RSGMs;De Bortoli
et al.| (2022) extend SGMs to Riemannian manifolds. A major difficulty of RSGMs is due to the fact
that the denoising score-matching objective involves heat kernel, which is not known analytically
except for very special manifolds. In addition, RSGMs also require sampling of geodesic curves
on manifolds. [De Bortoli et al.|[(2022) and |[Lou et al.|(2023) proposed to approximate heat kernel
by eigenfunction expansion or Varadhan’s approximation, but these approximations bring in extra
errors. In contrast, our method requires neither geodesic curves nor heat kernel.

The Riemannian Diffusion Model (RDMjHuang et al.|(2022))) adopts a variational diffusion model
framework on Riemannian manifolds. Similar to our method, RDM framework considers submani-
folds embedded in an Euclidean space and it also utilizes a variational upper bound on the negative
log-likelihood as loss function. However, RDM requires to sample SDEs on manifolds using closest-
point projection, which in general may be a difficult task. In contrast, the projection adopted in our
method is applicable to general submanifolds and the computational cost is lower.

Flow-based generative models on manifolds Riemannian continuous normalizing flow models
(Lou et al., 2020; Mathieu & Nickel, |2020; Rozen et al., [2021; Ben-Hamu et al.| [2022; |Chen &
Lipman, [2024)) extend the continuous-time flow framework (Chen et al., [2018)) to manifolds. In
particular, the methods proposed in [Rozen et al.| (2021); | Ben-Hamu et al.| (2022)); |Chen & Lipman
(2024) are simulation-free for manifolds with simple geometry. The method in |Chen & Lipman
(2024) can deal with manifolds with general geometry, but it is not feasible for high-dimensional
manifolds, where eigenfunctions of the Laplace-Beltrami operator are typically difficult to compute.
Our method requires sampling trajectories in order to evaluate loss function. However, the cost for
trajectory simulation can be alleviated by working with a pre-prepared trajectory set that is updated
during training with a tunable frequency. Our method does not use eigenfunctions nor metrics and
it can be easily applied to high-dimensional manifolds.

Markov Chain Monte Carlo on submanifolds Markov Chain Monte Carlo (MCMC) under
equality constraints has been studied in several works (Zappa et al, [2018; [Lelievre et al., 2019
2022). We adopt the same projection scheme from these works to develop our method.
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6 EXPERIMENTS

We evaluate our method on datasets from earth and climate science, mesh data on learned manifolds,
synthetic dataset of high-dimensional special orthogonal matrices, and dataset of molecular confor-
mations under constraints. The last two novel datasets have not been studied by existing methods.

6.1 EARTH AND CLIMATE SCIENCE DATASETS

We utilize public datasets (NOAA| [2020ajb; Brakenridge, |2017; [EOSDIS| [2020) on 2-D sphere,
which are compiled by Mathieu & Nickel (2020). Table [I| summarizes the negative log-likelihood
(NLL) of our method alongside results of prior methods. The learned densities are displayed in
Figure [4] of Appendix

We point out a general issue regarding model evaluation on these datasets. We notice that in each
dataset there are a few data points (i.e. isolated points) whose vicinity contains no other points,
and the size of dataset is relatively small compared to its complex distribution. For such datasets,
standard dataset splitting for cross-validation results in non-overlapping training/validation/test sets,
whose empirical distributions are considerably different. As a consequence, computing the NLL on
the test set either results in an overconfident assessment of the model (when the test set contains
no isolated points) or requires evaluating the model on isolated points that are completely unseen
during training (when the test set contains isolated points).

We argue that the phenomenon discussed above is general and should appear regardless of the meth-
ods employed. As a simple solution, we propose to identify the isolated points in validation and
test sets and include them into the training set. In particular, evident improvement is achieved when
isolated points are included in training set, as shown in the last line of Table[I} Further discussions
are provided in Appendix [B.T]

Table 1: Test negative log-likelihood (NLL) results on earth and climate science datasets. A smaller
value indicates better performance.

Volcano  Earthquake Flood Fire
Dataset size 827 6120 4875 12809
RCNF (Mathieu & Nickell 2020) -6.05+0.61 0.14+0.23 1.11+0.19  -0.80+0.54
Moser Flow (Rozenetallf021)  -4.21+0.17  -0.16+006  0.57+0.10 -1.28+0.05
CNFM (Ben-Hamu et al.| 2022) -2.38+0.17  -0.38+001  0.25+0.02 -1.40+0.02
RSGM (De Bortoli et al.| [2022) -4.92+025  -0.19+007 0.48+0.17 -1.33+0.06
RDM (Huang et al}[2022) -6.61+096  -0.40+0.05 0.43+007 -1.38+0.05
RFM (Chen & Lipman|[2024) -7.93+167  -0.28+008 0.42+005 -1.86+0.11
LogBM (lo & Hwang] 2024) -9.52+087  -0.30+006  0.42+008 -2.47+0.11

Ours

RDDPM -2.16+192  -0.17+010  0.49+009 -1.48+0.10

RDDPM w/ isolated points  -3.57+1.05  -0.29+004  0.43+005 -1.56+0.08

6.2 MESH DATA ON LEARNED MANIFOLDS

Our method can effectively handle manifolds with general geometries. For demonstration, we exam-
ine the Standard Bunny (Turk & Levoyl|1994) and Spot the Cow (Crane et al.,|2013)), two manifolds
defined by triangle meshes. The datasets are created according to the k-th eigenfunction of the
grid Laplacian operator using the same approach described in Jo & Hwang|(2024); |Chen & Lipman
(2024).

Similar to Rozen et al.|(2021), we first learn the function & : R3 — R, whose zero level set matches
the manifold. We adopt the approach in |Gropp et al.| (2020), where £ is represented by a neural
network and is trained such that on mesh data £ is close to zero and |V¢] is close to one. Using this
approach, we obtain a function ¢ whose value is at the order 102 on mesh data. Then, we perform
a further refinement to the dataset such that all points belong to the learned manifold M = {z €
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R3|£(z) = 0} up to a small error 10~°. The maximal distance between the original data and the
refined data is smaller than 0.017. Details for training ¢ and refining data are left in Appendix [B.2]

We perform the training with the learned function £. Table 2] shows that our learned models achieve
evident improvement over prior works in terms of NLL results. Figure[l] visualizes the agreement
between generated samples (learned distributions) and datasets (target distributions).

Table 2: Test negative log-likelihood (NLL) results on mesh datasets. A smaller value indicates
better performance.

Stanford Bunny Spot the Cow
k=50 k =100 k=50 k =100

RFM w/ Diff. (Chen & Lipman,2024) ~ 1.48+001 1.53+001 0.95+005 1.08+ 005

RFM w/ Bihar. (Chen & Lipman[2024) ~ 1.55+001  1.49+001 1.08+005 1.29+005

LogBM w/ Diff. (o & Hwangl 2024 142+ 001 1.41£000 0.99+003 0.97+0.03

LogBM w/ Bihar. (o & Hwangp024)  1.55+002  1.45+£001  1.09+006 0.97+0.02
Ours

RDDPM 1.36+000 1.31+001 0.84+000 0.77+0.00

Bunny (k = 50) Bunny (k = 100) Spot (k = 50) Spot (k = 100)

True

Learned

Figure 1: First row: datasets and true distributions. Second row: learned samples and distributions.

6.3 HIGH-DIMENSIONAL SPECIAL ORTHOGONAL GROUP

We apply our method to special orthogonal group SO(10), viewed as a 45-dimensional submanifold
embedded in R'®°. The synthetic dataset is sampled from a multimodal distribution on SO(10) with
m = 5 modes. To assess the quality of generated data, we consider the statistics tr(S), tr(5?),
tr(S4), and tr(S®), where tr denotes the trace operator of matrices. Further details for the construc-
tion of the dataset and the choice of statistics are provided in Appendix B3] Figure[2]indicates that
our learned model can generate the data distribution accurately. What is more, the distributions of
the forward process at intermediate steps are also faithfully reproduced.

6.4 ALANINE DIPEPTIDE

We apply our method to alanine dipeptide, a commonly studied model system in bio-physics. The
configuration of the system can be characterized by its two dihedral angles ¢ and ¢ (see Figure [3a).
In this study, we are interested in the configurations of the 10 non-hydrogen atoms of the system (in
R3%) with the fixed angle ¢ = —70°.

Since the manifold is unbounded, we choose a nonzero function b = —VV in the forward process,
where V' is proportional to the root mean squared deviation (RMSD) from a pre-selected reference
configuration z"**. Accordingly, the prior distribution p(z:(™)) is a single-well distribution centered
at 2!, Furthermore, we model s(*+1)-%(x) in the reverse process using a network that preserves
rotational equivariance and translational invariance. This, as well as our choice of b, guarantee that
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8

Figure 2: Results for SO(10) with m = 5. Histograms of the statistics tr(.9), tr(S?), tr(S*), and
tr(S°) for the forward process (solid line) and the learned reverse process (dashed line) at different
steps k = 0, 50, 200, 500, colored in black, red, green, and blue, respectively.

the distribution py(2(°)) generated by our model is invariant under SE(3) (Xu et al.,[2022). We refer
to Appendix [B-4]for implementation details and to Appendix [C]for theoretical support.

We employ three metrics to assess the quality of the generated configurations: the angle v, and two
RMSDs (denoted by RMSD; and RMSD») with respect to two pre-defined reference configurations
that are selected from two different wells. Figure[3b|illustrates the histograms of these three metrics
for the configurations generated by our model and the configurations in the dataset. The solid and
dashed lines show the agreement between the distributions of the learned reverse process and the
distributions of the forward process at different time steps k. In particular, the overlap between the
lines in black, which correspond to step k& = 0, demonstrates that the distribution of the generated
samples (dashed) closely matches the data distribution (solid).

¥ (degree) RMSD; (nm) RMSD, (nm)

i 5
0.04 {\ 1 15
12 ;

0.03

»  ©
©

0.02

6 6
0.01 j 3 3
0,00 /Bx; /’\ﬁ\

( —150—-100—=50 0 50 100 150 ((J,U 02 04 06 08 1.0 12 14 l().(i 02 04 06 08 1.0 1.2 14

(a) Alanine dipeptide (b) Results for alanine dipeptide

Figure 3: (a) Illustration of the system. Names and 1-based indices are shown for atoms that define
the dihedral angles. The dihedral angles ¢ and v are defined by atoms whose 1-based indices are
5,7,9,15and 7,9, 15, 17, respectively. (b) Histograms of the angle 1), RMSD;, and RMSD, for the
forward process (solid line) and the learned reverse process (dashed line) at steps & = 0, 10, 40, 200
are colored in black, red, green, blue, respectively. The 1) values of the two reference points that are
used to define RMSD; and RMSD, are —20° and 150°, respectively (as shown by the two vertical
dashed lines in the left panel).

7 CONCLUSION

We have proposed Riemannian Denoising Diffusion Probabilistic Models for generative modeling
on submanifolds. Our method does not rely on sophisticated geometric objects on manifold and it is
applicable to high-dimensional manifolds with nontrivial geometry. We have provided a theoretical
analysis of our method in the continuous-time limit, which elucidates its connection to Rieman-
nian score-based generative models. We have demonstrated the strong capability of our method on
datasets from previous studies and from high-dimensional manifolds that can not be easily studied
by existing methods.

10
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A PROOFS OF THE CONTINUOUS-TIME LIMIT

In this section, we prove Theorem .1 and Corollary @.T]in Section ]

For notation simplicity, we denote by 0; the derivative with respect to x; in the ambient space, and
by I the identity matrix of order n. We use subscripts to denote components of a vector and entries
of a matrix. Also recall that the orthogonal projection matrix P(xz) € R™*" is well defined for
2 € R™ and has the expression

Pyj(x) = 6;5 — Z 0ika(2)(VETVE) 10 (2)0i€ar(2), 1<i,j<n, (19)

a,a’=1
where §;; is the Dirac delta function.

First, we present the proof of Theorem 1]

Proof of Theorem Let us write the forward process in equation ] as

2D = (b +3) 4 we(zR)) (kD))
where z(Ft2) = (k) 4 U,%b(x(k)) + o4v® and the dependence of ¢ on 2(*+2) is made explicit.
Applying Lemmaﬂ]at the end of this section, we obtain the expansion, for 1 < ¢ < n,

(k+1)

(k) + Z Pi( ( (:Jc(k)) + Ukv](k)>

—&—% Z ((I = P)ir Py 6T/Prj)(x(k))<aibj(x(k)) I Ukv;k)) (oibl(m(k)) n Ukvl(k))
Jyl,ryr'=1

n

n—d
5 2 3 (06 Ben) ) (e o) (o o) (oD )

3lir=1n=1
+ O(|x(k+%) —2W?)

n 2 n
k k g k k
=" + oo + 07 Y Py(a™); @) + 55 3T (= Plar 8 Py) (@)ool

j=1 Jyrr'=1

+ iR + o(a}), (20)

where we have used the identity Z?:I Pij(a:(k))v](»k) = vgk) (since v®) is a tangent vector), and
Rl(k) is a term that satisfies Y _.,_, Pyir (x(k))RE,k) =0,forl <i<n.

With the expansion above, we compute the loss function in equation Using equation the
relation B41 = o = Vhg(kh), and the assumption that s(*+1-0(z(-+1)) = gp(z(B+D) (k4

13
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1)h) € R™, we can derive

k+1 k
B [P0 (sE4D0(a00) i) 4 2T

B
—akz ZP g kL) [ (:v(k“),(k—i—l)h)—bif(x(k“))—i-zn:P (2 8)b; (z*)
i=1"i'=1 j=1
1 i (I = P)ity 80Py (x (k)) (k) (k) (k) U R( ) 4 o(o )HQ
2”77“/ 1 i'r 7] o k k

= T+ Ty + I3 + o(o}),
2n
where the three terms on the last line are defined as

7=t Y| Pt (00) [0 (@, (k6 + 1)R) = by (@5 H) 4+ 37 Py (28 (28)
j=1

=1 "4¢=1

)

1 n 2
+3 Z (I = P)iry 00 Py, )(ﬂ“)aﬁ%ﬁ@ +0’kR§/k)}

7,rr'=1

- 2k (k) 2
T 2;(2113 +1)) )

n

T5 =20y, Z Py (zF+1) [ i (@FD (k4 1)) = by (2% + 3 7 P (W) by (M)

4,1/ =1 =
L Y k k k k
+§‘Zl((I—P),»/,.8,/PTj)( RORCRCIINCE

Jyryr!=

respectively. In the following, we derive the expansions of the three terms above. For Z;, expanding
the functions P, sy, b using equation[20] we can derive

=02 30| D2 P ™) [so. (0, ) — +ZP =)y ()
=1 "'4=1
1 ¢ £) () 2
+3 > (=P, By Pry) (2o F) o ] +o(1)
7,rr'=1
n n 2
=0,2C Z ‘ Z Pii'(f(k))897i/ (x(k), kh)‘ + 0(0,%) ,
=1 i'=1
z (22)

where we have used the relations P? = P and P (I P) = 0 satisfied by the orthogonal projection
matrix P to derive the second equality. For Z,, using the relation P? = P and equation [20] we can
compute

IQ == Z Pii’ (.’ﬂ(kJrl))’Ul(k)’Ug/k)

1,4’ =1

Z P (2™ 4 Z B, oy (2®) (20D — 2 (0)) 8,0

1,4/ =1 3,1, r=1

I & N, (B), (R) (o (k1) (k)R (R (k+1) _ .(k)|2
+§ Z Z arr’Pii/(‘T )Ui Uy (xr - Ly )(SCT/ = Ly )+O(|I -z | )

i,i/=1rr'=1

B2+ ST 0P (@®) (@D — 20y ®

v
7,3",r=1
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2 n
%k 2 (k) (k) (k), (k) (k) 2
5 E E 02, Py ( v v v 4+ o(og) - (23)

i,/ =1rnr'=1

Let’s compute the three terms in equation 23] Using the expression of P;; in (I9), the fact that
Z 1 0ia (;v(k )v; (k) _ = 0, and the product rule, it is straightforward to verify that, for 1 < r < n,

n n—d
> 0, Piir (aM) Wyt = Z Or ( > Bz‘fa(V§TV§);i,6i/fa/>(x(k))vfk)vi,k) =0.
iyi'=1 iyi'=1 =1
(24)
Similarly, we can verify that
2{: 02, Piis (27 0 (k) (k) (k)vif)
1,4 ,r,r'=1
(25)

n
— 2 3T (BT ) )b

i, r,r’'=1a,a’=1

Hence, substituting equations @-@into equation 23] we obtain

L =p P -0} Y Z (0262 (VETVELL 02,60 ) (@) 0P 0M0 ) 4 o(a?) .

i, rr'=1 a,a’=1

(26)
For Z3, we have
I3 =20y, Z Py (z®) |:50,7," (™) kh) — by (z®)) + ZP (CE(k))b (z®))
i,i'=1 j=1
1 < k) (k k)| (k
5 ST (=P 00 Py) )00l 4 0 R [0l
7,ryr'=1

+ 207} Z Or (P (80,50 — bir ))(x(k)7kh)v£k)v£k)
i, r=1
n
+207 D O Par(a™) Py ()b, (@) vl
i,i’ =1
+oi Y 9P (@)~ Py 0, Pyry) (aP)olP ol ou® 4 o(?)

i, g, g =1

=20} Z Py (x 591( (k) ,kh)v k —|—20k Z Or (Piis (s, — bir ))(x(k),kh)vﬁk)vgk)

1,1/ =1 3,1, r=1

£202 S 0P (@®) Py (a0 (08 o o)
61!y j=1
+ o} Z O, Py (x(k)) ((I — P 8T,Pj/j) (x(k))vj(-k)vﬁl,c) vﬁk)vgk) +o(0?), @27
i3 ,r,g,r,j =1
where we have used Taylor expansion with equation and the fact that |sg(z, (k + 1)h) —
sg(z,kh)| = O(h) = O(0}) to derive the first equality, and we have used the relations P? = P,

P(I-P)=0,and ) ,_, P, (x(k))Rg,k ) = 0 to derive the second equality. We further simplify
the last two terms in the expresswn above. Notice that, similar to equation 24} we can verify that

> 0P )P ) o <0, 1< <n, (28)

3,1, r=1
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For the last term in equation[27] we can derive
Z af,«P”/(iC(k)) ((I - P)i’j/ arlpj/j) (il'(k))’l)](k)'ljfﬂ]f) ’Ur(,k)’l}z(k)
1,1 ,r,g,r! 5 =1

n

= Z ((’)TPZ-/J»/ (%Pj/j) (x(k))vj(k)vgf) vﬁk)vf,k)

i r, g, g’ =1
n n—d
_ _ k) (k k
- X [ > (2a(VETVE Oy ) (956(VETVE Mnf)} (Mo v ool
i rgr' =1 ~a,a’ mn' =1
n n—d
k) (k k
= Y | X (RT3 6) | ol
i,rg,r'=1 -a,n=1
(29)
where the first equation follows by applying the product rule to the identity P(I — P) = 0 and using
the relation ) ", HZ‘/’UZ( ) = v(/ ), the second equation follows from the expression lb and the fact

that several terms vanish due to the orthogonality relation Y ;- ;¢4 (:z:(k))vgk) = 0, and the last
equation follows from the fact that Z;L,Zl 0j1€ar0j:&y = (VETVE) 41,y . Combining equations
[28] and29] we obtain

Ig :20k Z Pii’ (.T(k))SQ,Z‘/(Q?(k), k/’h)’Ul(k) + 20‘,2c Z 8T(P”‘/ (89’1‘1 - bi/))(m(k), k/’h)’l)gk)’l)l(k)

7 ol — y al —
1,0/ =1 1,8",r=1

n n—d
+or > {Z (af,rga(vﬁvg)a;afrg)](x<k>)v§’“>v£i“>v§k>v§,’”+o(a,3). (30)

it rgr'=1 tan=1

Substituting equations 22] 26| and [30]into equation [21] we obtain (after cancellation of terms in Z
and 7Z3)

k+1 k
Bi_ﬂ’P(x(k+1))(S(k+1),0(x(k+1)) _ b(x(kﬂ)) n al )2_ al )>
B

=T) + Iy + I3 + o(0})

20'2|P($(k))59(x(k),kh)’2 + |U( " + 207 Z Or (P (80,0 — byr ))(x(k),kh)vfnk)vgk) G

7,4, r=1
+20 > Pur(@™)sg,i (@™, kh)o) + o(a?) .
i,i'=1

Since v(*) is a standard Gaussian random variable in T, (x) M, taking expectation in equation [31|and
substituting it into equation T4} we obtain

) gy = Vd N 2 (L o (o) P
Loss™)(6) === + Equw Zo'k(§|P(”f )so (), kh)|
k=0 (32)
+ Z - (Pii (0,00 — bir ))(sc““),kh)m(x(’“)))]+0<1>.
1,4, r=1

In the above, we have used the identities E(v\")) = 0, E(jv®)|2) = d, and E(v{”v*) = P,;(2®),
where the last one can be verified using the fact that v*) = P(2(*))z(*), with z(k) being a standard
Gaussian random variable in R™.

Taking the limit N — o0, and using the fact that the forward process #(*) converges to the
SDE (16) (Ciccotti et al.} 2008), we can derive
Nd

Wlm (Lo ™60) =)
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N—-1

: 1 S
= NLHEOO Egv [ ;0 or (§|P(z(k))59(x(k), kh)}Q + Z_l Oy (Pyir (59,50 — bir) ) (x™, kh)PM(g;(k)))]

=Eg /OT |:;|P(Xt)39(Xt,t)|2 + divag (P(so — b))(Xt,t)} g2 (t)dt

=[] Gir@sate. 7 + dssa (Ploo =) @)oo dosa(a)] 201

:/T [/ (% P(a)so(x,t)|” — P(x) (so(w, ) —b(@)) - V.ru logp(x,t)>p(x,t) do’/\/l(l’)]gz(t) it
o L/m

=5 [ | ] 1P@sata0) - aatouplo. 0ot ) dosate) | 2(0)

_|_

/ [ ((P(fv)b(w) - %VM log p(z,1)) - V a log p(z, t))p(rm t) dam(x)} g°(t)dt
0 M

T
=Eq %/0 ’P(Xt)SQ(Xt,t) -V m logp(Xt,t)|2gg(t) dt

T
+ [ (POOXD - 5T alogp(Xi,0)) - Vaalogp(Xe, 0 9°(0) .

where we have used integration by parts on M, and the expression divpyf = > _, PO, f; for

i,r=1

f: M — R"™ (which can be verified using Lemma A.1 in|[Zhang| (2020)). O
Next, we present the proof of Corollary [4.1]

Proof of Corollaryd.1} Using the assumption (541 = o}, the projection scheme in equation [9| and
the relation P(z(*))V¢(2(F)) = 0, we can simplify the constant C(V) in equationas

N1 N-1
1
N N k)2 k).
o) — —Eqm (logp(m( )+ 3 kE_O l®)|2 4 ,;_0 log (1 — e(a ),ak))). (33)

Therefore, using the definition of relative entropy (see equation ), the loss function in equation[T4]
the constant C™) in equation and applying Theorem 4.1| we have

%
. (N) | ()
i 13 12)

N-1
= NEIEOO [LOSS(N)(G) +cW) 4 Egwv ( kz_o log (1 — eg (", Uk))) + Eqo (log qo)
: (V) Ny, L = (k)2 - 1—e(z™;0y)
:NLHEOO Loss' ™ (0) — Eqwv) | logp(z'™)) + 3 ,;) [v']% + kZ:O log T ep (@10 o) + E,, (log q0)
. Nd
:Ngr_rgoo (LOSS(N) (0) — Equv log p(z™)) — 7) + Ey, (log q0)
1 T
ZE@[logp(Xo,O) —logp(Xr,T) + 5/ | P(X¢)s6(X1,1) — Valog p(Xe, 1) g2 (1) dt
0
+ (P(Xt)b(Xt) - §VM IOgP(Xtat)) -V logp(Xe, t) g°(t) dt| ,
0
(34

where the third equality follows because the terms containing e(2*); o) and e (z(*+1); 5,) vanish
and limy o0 Egov) (ZIJCVQOI |v(F)|2 — Nd) = 0, both of which can be verified using the asymptotic
expression of complementary error function. Note that the density p(x,t) of SDE solves the
Fokker-Planck equation

g°(t)

= (z,t) = —g*(t)divp (P(z)b(z)p(2, 1)) + ?AMp(x,t), reM, tel0,T]. (35)
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Therefore, we have
Eq [logp(Xo, 0) — log p(Xr, T)}

:/ log p(z, 0)p(x, 0) daM(m)—/ log p(z, T)p(x, T) doa(x)
M M

=— /OT c(lit(/M log p(x,t) p(x,t) d(TM(:L‘)) dt

:_/OT /M(logp(x,t)+1)?Z(x,t)doM(x)}dt

= /0 -/M (logp(z,t) +1) ( — g2(t)divpy (P(z)b(z)p(z,t)) + g 2(t) Amp(w,t))daM(x)} dt

A

=—Eg {/OT (P(Xt)b(Xt) - %VM logp(Xt,t)> -V mlogp(Xy,t) 92(t) dt} )

/M ((P(w)b(w) - %VM log p(,1)) - V logp(:vvt)) p(z,t) dam(x)}f(t) dt

(36)
where we have used equation[33]to derive the fourth equality and integration by parts on M to derive
the fifth equality. Combining equations [34]and [36] we obtain

T
Jlim (@) =5 [ P50 - Vadlorn(Xe 0P 0at | @
—+00 0

%
Finally, note that @ is the path measure of the time-reversal Y; = Xp_; of SDE , which
satisfies (De Bortoli et al., 2022, Theorem 3.1)

4y, = gQ(T—t)<—P(Yt)b(Xt)+VM 1ogp(Yt,T—t)) dt+g(T—t)dWwM, te[0,T], (38)

and PPy is the path measure of SDE (I8). Applying Girsanov’s theorem (Hsul 2002| Theorem 8.1.2),
we obtain

dP T
te =exp (/ g (T — t)(P(Y)sg(Ye, T —t) — Vaqlogp(Ye, T —t)) - dWM
dQ 0 (39)

1

T
—5/ |P(Y)s6(Y, T — t) — Valog p(Ye, T — t)|*g*(T — 1) dt)7
0

where VVt/V1 is a Brownian motion on M under @ Therefore, we have

d@)

<
H(Q [Py) :Ef@(logm

:EE(;/OTyP(n)se(nT—t)—VMlogp(Yt,T—t)|2gQ(T—t)dt) (40)
T
~Eo(3 | IPOX)s(X0t) — Taalogp(Xe 0 ' (01 )

where the second equality follows from the fact that the stochastic integration in equation [39| van-
ishes after taking logarithm and expectation, and the third equality follows by a change of variable
t +— T — t and the fact that Y; = Xp_;. The conclusion is obtained after combining equations
and O

Finally, we present the technical lemma on the projection scheme in equation [5] which was used in
the proof of Theorem 4. 1

Lemma 1. Given x € M and 2’ € R", the solution to the problem

y=2a' +Ve(x)e(z'), c(a’) € R, suchthat £(y) =0 41)
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has the following expansion as x' approaches to x

jcy(x Z (VETVE)pa(2)dia(x), 1<j<m,

o § 42)
ey (x Z (VETVE),4 (@) Y (06ad Py P (@), 1< j0<m,

a=1 r,r'=1

for 1 < n < n—d. Moreover, as ¥’ approaches to x, the following expansion of vy in equation
holds

w=ait Y Py~ )+ 5 X | 30 (0= PhPn0 ) @) ) - ) - )
j=1

J,l=1 =rpr'=1
n n—d
Z (Z% e <>><w;—m(x;—xl>(x;—xr>+o<|x’—x3>,
]lrl

43)
where 1 <1 < n.

Proof. Differentiating (with respect to z”) the constraint equation
a2’ + VE(2)c(x)) =0, a=1,....,n—d,

we get

Zarga(x'+v§(:c)( (5M+Za§n )dscn(x )):o, 1<j<n. @4

Setting 2’ = z in equation 44 . (notice that ¢(z') = 0 when a’ = z)and multlplylng both sides by
(VETVE) ™ (x), we obtain the first identity in equation In particular, using equation E
have

n—d n—d
by + D &y (@)0jen(@) = by — 3 (0,6,(VETVEL060 ) (8) = Prgle) . 1< 7 <.
n=1 n,a=1

45
Next, we show the second identity in equation Differentiating equationagain, setting ' = x
and using equation[d3] we get, for1 <o <n—dand1 < j,1 <n,

0= zn: 33Tf§ (5r3+28§n acn )( ’l+28 577 alcﬁ )>

ror/=1

+Zar5a (Zaﬁn L)
— zn: (afr,gaPrjPT,l)(x) + Z ((Vé“TVOana?zCn)(x)a

ror'=1

from which we can solve, for 1 <n <n—dand1 < j,l <n,

Grenr) =~ 3 ((VE€7VE), 402, 80 Pos Pt ) ()

a=1ryr'=1
n—d n
> Z ((VE7V)0 060 Pry Pt ) (),

where the second equality follows from the product rule and the identity Y _'_, P,;0,&, = 0. This
shows the second identity in equation 2]

19



Under review as a conference paper at ICLR 2025

Lastly, we prove the expansion in equation 43| Note that the second identity in equation 2] and

equation [T9]implies
n—d n
> (0i&05e) (@) = > (I = P)ir Py 0 Prj)(z), 1<i, 5,1 <n. (46)
n=1 rr'=1

By expanding c(z’) at 2’ = x to the third order, noticing that ¢(z) = 0, and using equations[45]and
[4g] for the first and second order derivatives respectively, we can derive

n—d
yi =) + Z 9i&y () cy(2')
=i + (; — ;) +Z(9€n [Za cy(@ Z Fien (@) (2 — ;) (2] — a1)

]J 1

1S Pe(o) (@)~ ) oh — e —m} T ofla’ — af*)

Jl’f 1
n |:
J,l=1

Ly (Zasn <>)<x;xj><x;xz><x;zr>+o<x’z|3>7

j l,r=1 “n=1
which proves equation [43] O

N | =

—xl—f—ZP” .T —-Z'J + Z (I_P)irar’PrjPT'l)(x)](x;_xj)<x;_xl)
r’'=1

r,

B DETAILS OF ALGORITHMS AND EXPERIMENTS

We present the algorithms for sampling the forward process and for solving constraint equations in
Algorithms[3|and ] respectively. In the following, we discuss several further algorithmic details (see
Section [3.5) that are common in our experiments. Specific details of each experiment are discussed
in the subsections below.

Neural networks and training setup As described in Theorem [.1] the functions
(sFH+1:9(2))g<p<n—1 are represented by a single function sg(z, ) with parameter 6, which is in
turn modeled by a multilayer perceptron (MLP). We employ SiLLU as the activation function. We do
not require that the output of the neural network belongs to the tangent space, thanks to the presence
of the projection in both the forward and the reverse processes. Alternative strategies for designing
neural networks with outputs in tangent space are proposed in De Bortoli et al.| (2022]).

We train our models using PyTorch, where we employ the Adam optimizer with fixed learning rate
r =5 x 10~% and we clip the gradients of the parameters when the 2-norm exceeds 10.0. We also
implement an exponential moving average for the model weights (Polyak & Juditsky, [1992) with a
decay rate of 0.999. All experiments are run on a single NVIDIA A40 GPU with 48G memory.

NLL calculation Following De Bortoli et al.| (2022) and |Chen & Lipman| (2024}, for each experi-
ment we train our model in five different runs with random seed values ranging from 0 to 4. In each
run, the dataset is divided into training, validation, and test sets with ratio 80:10:10. We compute
the test NLL (i.e. NLL on test set) using the model that yields the best validation NLL during the
training. On both validation set and test set, the NLL is calculated by (see the second line in (3))

(k+1)

- Inge(x(O)) —log Eqw) { H W ‘JS(O)} ) (47)
where the conditional expectation is estimated by samphng multiple (50 or 100) paths of the forward
process starting from each z(°), and we replace both e(z(*); 5. in equation and eg(xFtD): B 1)
in equation [12] by zero (which is valid since o and fyy; are small in our experiment). We use
equation compute NLLs in the experiments where the prior distribution p(q;(N )) is uniform
distribution.
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Algorithm 3 Sampling trajectory of forward process

1: Input: 29 e M, constants ok, function b : R — R"™, and integer NV
2: fork=0to N —1do
3: generate z(*) ~ A(0,I,,) and set v* = P(x())2(*)

4 setz®t2) = 2 ®) 4 o2p(2®) 4 gpo®)
5: ¢, flag = newton_solver(z(*), zk+2); £). > solve (@) by Algorithm@
6: if flag == true then
7: set z(kHD) = 2(k+3) 4 e (zk)e
8: else
9: discard the trajectory and re-generate
10: end if
11: end for
12: return (z(@, 2 2(V)
Algorithm 4 newton_solver(x, z’; ) > solve &(z' + VE&(x)c) = 0 by Newton’s method

Input: z € M, 2’ e R", £ : R" — R”~< maximal iteration Steps Ngtep, tolerance tol > 0
Initialization: set c = 0 € R~ and flag=false
for £ = 0 to ngtep — 1 do

Solve linear equation [V¢ (2 + Vf(m)c)TVﬂx)]u = —¢(2' 4+ VE(z)c) foru € R"4
c<c+tu
if |£(2' + V&(z)c)| < tol then
set flag=true, and go to Step[I0]
end if
end for
return c, flag

VRN RE LR

—

Model parameters As in Theorem [4.1) we choose T' > 0, integer N > 0, function g(t) =
Ymin + 7 (Ymax — Ymin) fOF SOME Yinax > Ymin > 0, and parameters o), = 11 = Vhg(kh),

where h = % and kK = 0,1,...,N — 1. We choose b = 0 in all experiments except the alanine
dipeptide.

Generation of standard Gaussian variables in 7, M. Let z be a standard Gaussian random
variable in R™. It is straightforward to verify that v = P(x)z is a standard Gaussian random variable
in T, M, where P(x) is the orthogonal projection matrix to the tangent space 7, M. We use this
fact to generate tangent vectors in the forward and reverse processes (see line 3 of Algorithm |3[and
line 4 of Algorithm 2] respectively).

Values of all the parameters in our experiments are summarized in Table 3]

B.1 EARTH AND CLIMATE SCIENCE DATASETS

The unit sphere is viewed as a submanifold of R?, which is defined by the zero level set of the
function £(x) = |x| — 1, for # € R3. Newton’s method is not necessary for the projection steps @)
and (TT), since the general scheme (3] has the closed-form solution:

y=(1-|0*P(z)b(z) + 0"U|2)% x + o*P(x)b(z) + ov, (48)
as long as |02 P(z)b(z) + ov| < 1.

In the following, we present a careful study on the dataset splitting and the NLL calculation for
these datasets. In fact, the datasets in this example contain isolated data points and the distributions
of the data points are complex. Consequently, the training, validation, and test sets obtained from
the standard data splitting method exhibit significant differences in their distributions, leading to in-
accurate evaluation results and an increased risk of overfitting. Specifically, the presence of isolated
data points in the validation set or in the test set (therefore not in the training set) can significantly
affect the final test results. Figure [5a]illustrates this phenomenon in the case of the volcano dataset,
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Table 3: Parameters in our experiments.
l¢, Nepoch, B are the parameters in Algorithm Niode; Nayer are the numbers of the hidden nodes
per layer and the hidden layers of the neural networks, respectively.

Datasets “Ymin Ymax N T lf Nepoch B Nnode Nlayer
Volcano 0.01 1.0 400 4.0 1 20000 128 512 5
Earthquake 0.01 1.0 400 40 1 20000 512 512 )
Flood 0.01 1.0 400 4.0 1 20000 512 512 )
Fire 0.01 1.0 400 4.0 1 20000 512 512 5
Bunny, k£ = 50 0.07 0.07 800 8.0 100 2000 2048 256 )
Bunny, &£ = 100 0.07 0.07 500 5.0 100 2000 2048 256 5
Spot, k = 50 0.1 0.1 500 5.0 100 2000 2048 256 )
Spot, k£ = 100 0.1 0.1 300 3.0 100 2000 2048 256 )
SO(10),m =3 0.2 2.0 500 1.0 100 2000 512 512 3
SO(10),m =5 0.2 2.0 500 1.0 100 2000 512 512 3
Alanine dipeptide 1.0 1.0 200 0.1 100 5000 512 512 5

Ymins Ymax, IV, T are the parameters in our model,;

where the model is not trained on points in the vicinity of the three (one) isolated points in the test
(validation) set, since there is no training data in that area. Accordingly, the loss and NLL values
computed on different sets are significantly different, as shown by the solid lines in Figures

To resolve this issue, we propose to include the isolated points in the validation set and the test set to
the training set. These points can be identified by binning the data points according to their latitude
and longitude values. Figure [5b] shows that the NLL values computed on different sets become
closer within a single run when the isolated points are included in the training set, and Figure

shows that the NLL values become smaller (better) among five different runs.

Volcano Earthquake
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Figure 4: The learned densities on earth and climate science datasets, with the standard dataset
splitting. Darker green color indicates areas of higher likelihood. Red dots and blue dots show
points in test set and generated samples, respectively.

B.2 MESH DATA ON LEARNED MANIFOLDS
To create the datasets, we adopt the approach described byJo & Hwang| (2024) and|Chen & Lipman

(2024). The data is generated according to the density defined by the k-th clamped eigenfunction of
the Laplacian operator on a mesh that has been upsampled threefold.
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Figure 5: Volcano dataset. (a) Red, blue, and green points represent the training set, validation set,
and test set, respectively, obtained from the standard dataset splitting with random seed 4. Triangles
indicate the isolated points in the validation set and in the test set. (b) The training NLL, the vali-
dation NLL, and the test NLL during the training with random seed 4. The solid lines correspond
to the training where the standard dataset splitting is employed. The dashed lines correspond to the
training where the isolated points (triangles in (a)) are included in the training set. (c) The best NLLs
for five different runs with random seeds 0, 1, 2, 3, and 4.

The function ¢ : R?* — R is modeled by a MLP with 3 hidden layers, each of which has 128 nodes.
Different from the activation function in our model, here we use Softplus activation function, where
the parameter S is set to 10. The loss function for learning € is

e = > e+ B

> (IVEW) - 1), (49)

yeD’

where A = 0.1, D denotes the set of vertices of a high-resolution mesh, and the set D’ contains
samples near the manifolds that are obtained by perturbing samples x € D according to y = x + ce,
with € ~ N(0, I3) and ¢ = 0.05. The first term in equation 49| imposes that £ is close to zero
on vertices, whereas the second term serves as a regularization term and ensures that £ has non-
vanishing gradient near the manifold. The neural network is trained for 200000 steps using Adam
optimizer, with batch size 512 and learning rate 10~%.

With the learned function &, we consider the manifold defined by M = {x € R3|¢{(x) = 0}. The
values of ¢ on the dataset are at the order 10~2. To ensure that the data is on M with high precision,
we refine the dataset by solving the following ordinary differential equation (ODE):

dzy
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starting from each point in the dataset until the condition |£(z;)| < 1075 is reached (notice that
equationis a gradient flow and lim;_, o |{(2+)| = 0). This ensures that the refined points conform
to the manifold accurately.

For the Newton’s method in generating paths, we set tol = 10~ and ngte, = 10 in Algorlthml
Due to the complex geometry of the objects, there is a small portion of paths (less than 1.0%) that can
not be successfully generated. Apart from these paths, the Newton’s method reaches convergence
within 3 iteration steps.

B.3 HIGH-DIMENSIONAL SPECIAL ORTHOGONAL GROUP

We view the group SO(10) as a 45-dimensional submanifold of R1% that corresponds to (a con-
nected component of) the zero level set of the map ¢ : R'%° — R55, whose components consist of
the upper triangle portion of the matrix S TS — I, where S is a 10 x 10 matrix.

The dataset is constructed as a mixture of m wrapped normal distributions, each of which is the
image (under the exponential map) of a normal distribution in the tangent space of a center .S; €
SO(10), 1 <4 < m. To ensure multimodality, we define the centers S; as follows. We initially

™ ] s
. cosT  sin
define a 2 x 2 matrix Ag := | " 5x ,r} , which represents a rotation by % radians. We then
3 3

construct block diagonal matrices of order 10 by incorporating A, and the identity matrix I in
various combinations:

X1 = diag{Ao, IQ, IQ, 12, IQ}, X2 = diag{Ao, Ao, IQ, IQ, IQ}, X3 = diag{Ao, Ao, Ao, IQ, 12},
Xy = diag{ Ao, Ao, Ao, Ao, I}, X5 = diag{ Ao, Ao, Ao, Ao, Ao}
(5D
The centers S; of the m wrapped normal distributions are chosen as .S; = QiT XiQ,;, where ); €
SO(10) are randomly drawn from the uniform distribution. According to equation | the statistics
n(S) = (tr(S), tr(S?),tr(S%), tr(S°) )r of the centers can be explicitly computed (using the trace
identities tr(AB) = tr(BA and tr X;Q;) = tr(X;)) as

77(51) = (97 77, 9); 77(52) - (8’45478)7 7](53) = (77 1,1, 7)a

52
77(54) = (65 _27 _27 6)7 77(55) = (55 _57 _57 5) ( )

To generate data in the dataset, we select a center .S; with equal probability, sample tangent vectors
Y from the normal distribution (in the tangent space at .S;) with zero mean and standard deviation

0.05, and then compute their images S under the exponential map, that is, S' = SieszT Y,
Due to our choice of Ay, the distribution of tr(S®) is narrowly concentrated at its local peaks. To
see this, using S = Q, X?Q; and the fact that S;' Y is anti-symmetric, we can compute
tr(S®) :tr(SieSiTYSiesiTYSiesiTY)
=tr (S? +3(S)S Y + O(|Y]?))
=tr(S7) +3tr (X7 QS YQ[) + O(IY )
=tx(S7) + O(IY "),

(53)

where we have used the trace identity tr(AB) = tr(BA), the expansion of matrix exponential, and
the fact that the diagonal elements of X3Q;S," Y@, are all zero (hence its trace equals zero), since
X3 is a diagonal matrix and Q;S;' Y@, is anti-symmetric. Therefore, we omit tr(5%) in our choice
of statistical analysis for clear presentation.

For the Newton’s method, we set tol = 10~6 and Ngtep = 10 1in Algorithm For this example, the
convergence is always reached within 3 iteration steps.

We also examine the dataset with m = 3 modes, in which case we use centers defined as S; =
Q] X;Q; for i = 1,2,3 (the random matrices (Q; are different from those in the case of m =
5). Figure [6] shows that the distributions of the learned reverse processes match the corresponding
distributions of the forward process at different Markov chain jump steps.
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Figure 6: Results for SO(10) with m = 3. Histograms of the statistics tr(S), tr(5?), tr(S*), and
tr(S°) for the forward process (solid line) and the learned reverse process (dashed line) at different
steps. Colors black, red, green, and blue correspond to steps k£ = 0, 50, 200, 500, respectively.

B.4 ALANINE DIPEPTIDE

To generate the dataset, we initially perform a constrained molecular simulation of alanine dipeptide
in water for 1ns using the molecular dynamics package GROMACS (Van Der Spoel et al., [2005)
with step-size 1fs. We apply the harmonic biasing method in COLVARS module (Fiorin et al.,
2013)), where the collective variable is chosen as the dihedral angle ¢ and the harmonic potential is
centered at ¢ = —70° with the force constant 5.0. Further simulation details are omitted since they
are similar to those in [Lelievre et al|(2024). In total, 10* configurations are obtained by recording
every 100 simulation steps. We exclude the hydrogen atoms and work with the coordinates of the
10 non-hydrogen atoms in the system (see Figure [3a). In a final preparatory step, we apply the
refinement technique in Appendix[B.2|(see equation [50) to the recorded coordinates, so that the data
in the datasset lives in the manifold M = {z € R3°|¢(z) = —70°} up to a small numerical error of
order 107°.

Since M is unbounded, we adopt a nonzero function b in our model to make sure that the Markov
chain processes stay in bounded region. To this end, we choose a reference configuration ' from
the dataset and define the potential function

V(2) = 3IRi@ —w)) — a2, ¢ eR™, (54)

with k = 50, where R}, w are the optimal rotation and the optimal translation that minimize the
RMSD (see equation [56). The function b is defined as (the negative gradient of V' in full space)
b=-VV(z) = -k (Ri(z —w}) — x“’f) , (55)

x

where the second equality follows by differentiating V' in equation [54] and using the first order
optimality equations satisfied by R, and w}, (also see|Coutsias et al.| (2004)).

We also build our model to make sure that the generated distribution is SE(3)-invariant (i.e. invariant
under rotations and translations). For this, we rely on the theoretical results in |Xu et al.| (2022) and

in Appendix

One can check that V() is SE(3)-invariant and b satisfies property (#) in Appendix [C} that is, b is
equivariant under rotations and invariant under translations. This guarantees that the prior distribu-
tion p(x(N)), which we choose as the invariant distribution of the forward process, is SE(3)-invariant
as well.

We still need to make sure that the transition densities of the reverse Markov chain are SE(3)-
invariant. For this purpose, in the reverse process we set s*t1:9(z) = (R)T fo(R:(x —
wk), (ng\})T), where fp : R3? x R — R3° is modeled by a single MLP with parameter 6, and both
R and b, are computed by the Kabsch algorithm (Kabsch,|1976). With this choice, s(*+1):¢ () sat-
isfies property @) by Proposition [I]in Appendix and the transition density of the reverse process
C
)

is SE(3)-invariant by Proposition [2|in Appendix |C} Since the prior p(z(™)) is also SE(3)-invariant,
we conclude that the learned distribution pg(z(%)) is SE(3)-invariant (Xu et al., 2022). Compared
to the commonly used equivariant networks (Satorras et al., 2021)), our network fits our experiment
better thanks to its lower computational cost and reduced memory usage.
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For the Newton’s method, we set tol = 10~° and Ngtep = 10 In Algorithm@ For all but one point,
the convergence is reached within 2 steps.

C THEORETICAL RESULTS ON NEURAL NETWORKS FOR MOLECULAR
SYSTEMS

In this section, we present theoretical results for the neural network architecture we employed in
studying alanine dipeptide.

Assume that the system consists of M atoms, where the coordinates of thee i-th atom are denoted
by z; € R, fori = 1,2,..., M. Let x € R>M be the vector consisting of all the coordinates
X1 T2, ..., 2y € R3. For simplicity, given a rotation matrix R € SO(3) and a translation vector
w € R3, we use the conventional notation Rz + w to denote the vector in R3M that consists of
the transformed coordinates Rx; + w, Rxo + w, ..., Rxar +w € R3. We say that a function f
defined in R3M is SE(3)-invariant, if f(Rz + w) = f(z), for all R € SO(3), w € R3, and for all
x € R?M . We say that function f : R3M — R3M possesses property (#), if it is both equivariant
under rotations and invariant under translations, i.e.

f(Rx +w) = Rf(z), forall R € SO(3),w € R? and all z € R3M. #)

Assume that a configuration 2™ is chosen as reference. Given x, the optimal rotation matrix and the
optimal translation vector, which minimize the RMSD

1
2

RMSD (z; 2"f) = (%|R(a} —w) — xref\2> (56)

from the reference 2™, are denoted by R’ and w, respectively.

The following result characterizes functions that are both equivariant under rotations and invariant
under translations.

Proposition 1. The following two claims are equivalent.

* Function s : R3M — R3M possesses property (@)

s There is a function f : R?M — R3M such that s(z) = (R:)T f(R:(x — w?)), for all
T € R3M,

Proof. 1t is straightforward to verify that the first claim implies the second claim. In fact, setting
R = R, w = —Rw}, and using the identity R" R = I3, we obtain from the first claim that
s(z) = (R%)Ts(R:(x — w?)). Hence, the second claim holds with f = s. To show that the second

claim also implies the first one, we use the fact that the optimal rotation R%, ,,, and the optimal

translation wk,, Lws which minimize the RMSD of the state Rz + w from the reference z'<f, are

givenby R}, ., = RiR" and w}, ., = Rw} + w, respectively. This fact can be directly checked
using equation[56] In particular, we have

R}k%x+w(Rx +w— w}k%m+w) = R;(.’E - ’UJ;) .

Therefore, for the function s defined in the second claim, we can compute, for any R € SO(3),
w € R%, and any z € R3M |

S(RI + ’LU) :(R*Rw+w)Tf(R*Rw+w (Rl‘ + w — w}c%w-l-w))
=R(R;)" f(Ry(z — wy))
=Rs(x),

which shows the first claim. ]

The following result guarantees the SE(3)-invariance of the transition densities of our diffusion
model.
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Proposition 2. Assume that £ is SE(3)-invariant and b possesses property (@) Then, the transition
density of the forward process in equation|10|is SE(3)-invariant. Further assume that the function
s+ possesses property @) for 0 < k < N — 1. Then, the transition density of the reverse
process in equation|[12|is also SE(3)-invariant.

Proof. We consider the transition density in equation Recall that U, € R™*9 is a matrix whose
columns form an orthonormal basis of T, M. Since £ is SE(3)-invariant, we have £ (Rx+w) = £(x),
for all rotations R and translation vectors w, which implies that Rx + w € M, if and only if
x € M. Differentiating the identity {(Rz + w) = &(z) with respect to x, we obtain the relation
VE&(Rx + w) = RVE(x), from which we see that Ug can be chosen such that Ug, 4., = RU,.
For the orthogonal projection matrix P in equation using the identity RT R = I3, we can
compute

P(Ra + w) =I,, — V&(Rz + w) (VE(Rx + w) TVE(Re + w)) VE(Rz +w) T
—I,, — RVE(2) (VE(x) TVE()) T VE) TRT
=RP(z)R" .
Moreover, since both b and V¢ satisfy the property (@), we also have e(Rz®) +w; o) = e(2F); 0y,)

(i.e. the probabilities of having no solution are the same). Therefore, for the transition density in
equation we can derive, for any R € SO(3) and w € R?,

q(Rz™ Y 4w | Re™ + w)
:(2%0,3)’% (1- e(Rz™® + w; O’k))71| det(ng(k)_,’_wURw(kﬁ—l)_;’_w)‘

| pre® 1) (Ra D) o) (e ) 1) |’

X e 2513
2
|rr ) RT (Re (D)~ Ralk) o2 mua ()|

da — —

=(2mo}) "2 (1 - e(z®; or)) ! ’det(Um—r(k)RTRUz(k+l))‘ e 2%

’p(z(k‘))(z(kJrl)_z(k)_g%b(z(k))) ‘2

da — —

=(2mo}) "2 (1 - e(z®; or)) ' |det(U;k) Upein)| e 2k

ZQ(x(k+1) |x(k)) )

which shows the SE(3)-invariance of the transition density of the forward process. The invariance of
the transition density of the reverse process in equation |12|can be proved using the same argument,
assuming that s(**1)-¢ satisfies the relation s(**1)-( Rz + w) = Rs*+1):9(z), O

D SUPPLEMENTARY EXPERIMENTAL RESULTS

This section presents additional experimental results. In Section [D.I] we present the computation
time for the experiments in the main text. Section[D.2]analyzes the computational complexity of our
projection scheme and the non-convergence rate of trajectories. Finally, in Section[D.3] we conduct
an ablation study on the Flood dataset, investigating the impact of the total number of steps N and
the trajectory update frequency (proportional to [;- b.

D.1 COMPUTATION TIME FOR THE EXPERIMENTS IN THE MAIN TEXT

In Table 4] we present the simulation time 7Tg;,,, and training time T};,;n, With the percentages of
the total runtime T}t shown in parentheses. For the mesh, SO(10), and the dipeptide datasets, we
update the dataset every 100 epochs (i.e. [y = 100), resulting in the simulation time accounting for
less than 2% of the total runtime in mesh and dipeptide datasets, and the simulation time account-
ingfor approximately 11% of the total runtime in the SO(10) datasets due to the high co-dimension
of the manifold. In contrast, for the earth and climate science datasets, the dataset is updated at every
epoch (i.e. [y = 1), leading to a higher proportion of simulation time.

27



Under review as a conference paper at ICLR 2025

Table 4: Detailed runtime metrics in our experiments. We report Tin, Tirain, and Tiotar as the time
for path generation, time for training, and total runtime, respectively, with the percentages of the
total runtime T}ota) Shown in parentheses. The parameter I determines the frequency of trajectory
updates. The final column Tepcn shows the training time per epoch, calculated as Tirain /Nepoch-
All time metrics are reported in seconds.

Datasets lf Nepoch Tsim Ttrain Ttotal Tcpoch
Volcano 1 20000  3946(67.0%)  1943(33.0%) 5889 0.10
Earthquake 1 20000 4591(24.2%) 14395(75.8%) 18986  0.72
Flood 1 20000 4414(29.0%) 10814(71.0%) 15228 0.54
Fire 1 20000 5666(14.0%) 34893(86.0%) 40559 1.74
Bunny, k£ = 50 100 2000 252(1.8%) 14120(98.2%) 14372 7.06
Bunny, £ = 100 100 2000 142(1.6%) 8718(98.4%) 8860 4.36
Spot, £ = 50 100 2000 113(1.3%) 8751(98.7%) 8864 4.38
Spot, k£ = 100 100 2000 70(1.3%) 5189(98.7%) 5259 2.59
SO(10),m =3 100 2000  2414(11.2%) 19042(88.8%) 21456  9.52
SO(10),m =5 100 2000  2426(11.2%) 19289(88.8%) 21715  9.64
Alanine dipeptide 100 5000 159(1.1%) 14299(98.9%) 14458  2.86

D.2 MORE DETAILS ABOUT THE PROJECTION SCHEME

Computational complexity of the projection scheme. Let ki, denote the number of Newton
iterations, and C¢ be the computational cost of evaluating V. The complexity of solving the linear
equations in Algorithm [4]is O((n — d)3) at maximum, where n — d is the co-dimension of the
manifold. Thus, the total complexity of Newton’s method is O (kiter (Ce + (n — d)?)).

In our examples, we have Ce = O(1), except for the mesh datasets, where neural network propa-
gation is required. In most cases, n — d = 1, while for the SO(10) datasets, n — d = 55. When
Newton’s method converges, the number of iterations kit is no more than 3.

Failure rate of trajectory generation. As discussed in Section equation [5| may not have
solutions for some vectors v. In such case, the corresponding trajectories are discarded. Table [3]
reports the failure rate of trajectory generation in our experiments. For the earth and climate sci-
ence datasets, the general scheme in equation [5]is computed analytically using equation 8] and no
trajectories are discarded with parameters in Table [3} For the mesh dataset, due to the complex ge-
ometry of the manifolds, a small portion of trajectories (less than 1.0%) fail. For SO(10), trajectory
generation always succeeds. In the alanine dipeptide experiment, only one out of 8000 trajectories
fails.

Furthermore, we investigate the impact of the step-size o on the failure rate of Newton’s method.
Specifically, as shown in Table[6] we conduct experiments on the Bunny dataset with & = 100, using
various values of N, where N and o are related by o ~ 1/ V/N. As the total number of steps N
decreases (i.c., as the step-size o increases), the proportion of failed trajectories increases.

D.3 ABLATION STUDIES

In Table [/ we investigate the impact of the total number of steps N in the Markov chain on the
runtime for the Flood dataset. In Table [8] we analyze the effect of the trajectory update frequency
during training on the Flood dataset.

As shown in Table [7] as the total number of steps IV decreases (i.e., as the step-size o increases),
the Newton-based projection scheme may fail to find a solution in some cases. Specifically, when
N = 50 and N = 100, the failure rates are 0.55% and 0.0001%, respectively. When N = 200
and N = 400, no failure is observed. Additionally, as IV decreases, both the training time and the
simulation time reduce accordingly. The best NNL value is achieved when N = 100. However, in
the main text, we point out the issue of NNL value in this example and choose N = 400 to ensure
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Table 5: Failure rate of trajectory generation. Riai) fwd and Ryl bwd represent the percentages of
discarded trajectories when sampling the forward and reverse process, respectively. o,ax denotes
the maximum value of (o )o<k<nN—_1.

Datasets Omax Rfail,fwd Rfail,bwd
Volcano 0.100  0.00% 0.00%
Earthquake 0.100 0.00% 0.00%
Flood 0.100  0.00% 0.00%
Fire 0.100  0.00% 0.00%

Bunny, k£ = 50 0.007  1.00% 0.82%
Bunny, £ = 100 0.007  0.65% 0.55%
Spot, k = 50 0.010 0.15% 0.25%
Spot, & = 100 0.010 0.11% 0.10%

SO(10),m =3 0.089  0.00% 0.00%
SO(10),m =5 0.089  0.00% 0.00%

Alanine dipeptide  0.022  0.01% 0.00%

Table 6: Failure rate of trajectory generation for the Bunny dataset with & = 100 under various N.
Here, o denotes the step-size and Ry, rwqa represents the proportion of failed forward trajectories.

N 100 200 300 400 500 600 700

o 1.57e-2  1.11e-2 090e-2 0.78¢-2 0.70e-2 0.64e-2 0.5%-2
Reaitgwa 351%  230% 1.49% 097%  0.66%  0.46%  0.17%

that all trajectories are successfully generated. Furthermore, as shown in Table [§] increasing the
frequency of trajectory updates (decreasing [ ;) leads to longer computational time.

Table 7: Ablation study on the total number of steps N in the Markov chain for the Flood dataset.
The parameter Ry,;) wq denotes the percentage of discarded trajectories when simulating the forward
process. The definitions of T, Tirain, Ttotal, Tepoch ¢an be found in the caption of Table

N Omax Rfail,fwd Tsim Ttrain Ttot al Tepoch NLL

50 0.28 0.55% 643(30.8%) 1442(69.2%) 2085 0.07  0.48+0.08
100 020  0.00%  1151(29.1%)  2801(70.9%) 3952 0.14  0.45+0.07
200 0.14  0.00%  2245(29.0%)  5497(71.0%) 7742 0.27  0.46+0.07
400 0.10 0.00%  4414(29.0%) 10814(71.0%) 15228 0.54  0.49+0.09
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Table 8: Ablation study on the trajectory update frequency (proportional to [; 1) for the Flood dataset
with N = 100. The definitions of Ryon ¢, Tsim» Ttrains Ttotal, Tepoch can be found in the caption of

Table

Zf Tsim Ttrain Ttotal Tepoch NLL

1 1151(29.1%)  2801(70.9%) 3952 0.14 0.45+0.07
2 556(16.6%) 2792(83.4%) 3348  0.14  0.49+009
3 366(11.4%)  2838(88.6%) 3204 0.14  0.49+0.08
5 230(7.6%) 2787(92.4%) 3017 0.14 0.48+0.09

10 111(29%)  3682(97.1%) 3793  0.18  0.45+007
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