
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RIEMANNIAN DENOISING DIFFUSION PROBABILISTIC
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Riemannian Denoising Diffusion Probabilistic Models (RDDPMs)
for learning distributions on submanifolds of Euclidean space that are level sets
of functions, including most of the manifolds relevant to applications. Existing
methods for generative modeling on manifolds rely on substantial geometric in-
formation such as geodesic curves or eigenfunctions of the Laplace-Beltrami op-
erator and, as a result, they are limited to manifolds where such information is
available. In contrast, our method, built on a projection scheme, can be applied to
more general manifolds, as it only requires being able to evaluate the value and
the first order derivatives of the function that defines the submanifold. We provide
a theoretical analysis of our method in the continuous-time limit, which elucidates
the connection between our RDDPMs and score-based generative models on man-
ifolds. The capability of our method is demonstrated on datasets from previous
studies and on new datasets sampled from two high-dimensional manifolds, i.e.
SO(10) and the configuration space of molecular system alanine dipeptide with
fixed dihedral angle.

1 INTRODUCTION

Diffusion models are generative models that learn data distributions by gradually perturbing data into
noise and then reconstructing data from noise using stochastic processes. Two primary frameworks
of diffusion models are Denoising Diffusion Probabilistic Models (DDPMs;Ho et al. (2020)), where
the models are trained to minimize the variational bound in variational inference, and Score-based
Generative Models (SGMs;Song & Ermon (2019); Song et al. (2021b)), where the models are trained
to learn the score function (Hyvärinen & Dayan, 2005). Both frameworks have achieved remarkable
success in various applied fields.

In recent years, there has been a growing interest in developing generative models for data on mani-
folds (De Bortoli et al., 2022; Lou et al., 2023; Chen & Lipman, 2024; Jo & Hwang, 2024). However,
existing methods on manifolds rely on substantial geometric information, e.g. geodesics (De Bortoli
et al., 2022), heat kernel or its approximations (De Bortoli et al., 2022; Lou et al., 2023), or eigen-
functions and (pre)metrics (Chen & Lipman, 2024). As a result, their applications are restricted to
manifolds where such information can be obtained.

In this work, we introduce Riemannian Denoising Diffusion Probabilistic Models (RDDPMs), an
extension of DDPMs to Riemannian submanifolds. A key ingredient is the projection scheme used
in Monte Carlo methods for sampling under constraints (Zappa et al., 2018; Lelièvre et al., 2022),
which allows us to develop Markov chains on manifolds with explicit transition densities. The main
advantages of our method over existing methods are summarized below.

• Our method is developed for submanifolds that are level sets of smooth functions in Euclidean
space. This general setting includes most of the often studied manifolds such as spheres and
matrix groups. More importantly, it fits well with applications where constraints are involved, e.g.
applications in molecular dynamics and statistical mechanics.

• Our method only requires the computation of the value and the first order derivatives of the func-
tion that defines the submanifold. Therefore, it is applicable to more general manifolds.

• We present a theoretical analysis for the loss function of our method in the continuous-time limit,
elucidating its connection to the existing methods (De Bortoli et al., 2022). This analysis also

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

shows the equivalence between loss functions derived from variational bound in variational infer-
ence and from learning score function.

We successfully apply our method to datasets from prior works, and to new datasets from the special
orthogonal group SO(10) and from alanine dipeptide with fixed dihedral angle, both of which are
challenging for existing methods due to their geometric complexity.

2 BACKGROUND

Riemannian submanifolds We consider the zero level set M = {x ∈ Rn|ξ(x) = 0} of a
smooth function ξ : Rn → Rn−d. We assume that M is non-empty and the matrix ∇ξ(x) ∈
Rn×(n−d), i.e. the Jacobian of ξ, has full rank at each x ∈ M. Under this assumption, M
is a d-dimensional submanifold of Rn. We further assume that M is a smooth compact con-
nected manifold without boundary. The Riemannian metric on M is endowed from the stan-
dard Euclidean distance on Rn. For x ∈ M, we denote by TxM the tangent space of M at x.
The orthogonal projection matrix P (x) ∈ Rn×n mapping TxRn = Rn to TxM is given by
P (x) = In − ∇ξ(x)

(
∇ξ(x)⊤∇ξ(x)

)−1∇ξ(x)⊤. Let Ux ∈ Rn×d be a matrix whose column
vectors form an orthonormal basis of TxM such that U⊤x Ux = Id. It is straightforward to ver-
ify that P (x) = UxU

⊤
x . The volume element over M is denoted by σM. All probability den-

sities that appear in this paper refer to relative probability densities with respect to either σM
or the product of σM over product spaces. For notational simplicity, we also use the shorthand∫
p(x(1:N)) dx(1:N) :=

∫
M· · ·

∫
M p(x(1), x(2), . . . , x(N)) dσM(x(1)) dσM(x(2)) · · · dσM(x(N)).

Denoising diffusion probabilistic models We formulate the DDPMs (Sohl-Dickstein et al., 2015;
Ho et al., 2020) to the general Riemannian manifold setting. Assume that the data distribution is
q0(x)dσM(x). DDPMs are a class of generative models built on Markov chains. Specifically, states
x(1), . . . , x(N) ∈ M are generated by gradually corrupting the data x(0) according to a Markov
chain onM, i.e. the forward process. The joint probability density of x(1), . . . , x(N) given x(0) is

q(x(1:N) |x(0)) =
N−1∏
k=0

q(x(k+1) |x(k)) . (1)

The generative process, also called the reverse process, is a Markov chain on M that is learnt to
reproduce the data by reversing the forward process. Its joint probability density is

pθ(x
(0:N)) = p(x(N))

N−1∏
k=0

pθ(x
(k) |x(k+1)) , (2)

where p(x(N)) is a (fixed) prior density. The probability density of x(0) generated by the reverse pro-
cess is therefore pθ(x(0)) =

∫
pθ(x

(0:N)) dx(1:N). The learning objective is based on the standard
variational bound on the negative log-likelihood. Specifically, using equations 1–2, and applying
Jensen’s inequality, we can derive

Eq0

(
− log pθ(x

(0))
)
=Eq0

(
− log

∫
pθ(x

(0:N)) dx(1:N)
)

=Eq0

(
− log

∫
pθ(x

(0:N))

q(x(1:N) |x(0))q(x
(1:N) |x(0)) dx(1:N)

)
≤EQ(N)

(
− log

pθ(x
(0:N))

q(x(1:N) |x(0))
)

=EQ(N)

(
− log p(x(N))−

N−1∑
k=0

log
pθ(x

(k) |x(k+1))

q(x(k+1) |x(k))
)
,

(3)

where Eq0 ,EQ(N) denote the expectation with respect to the data distribution onM, and the expec-
tation with respect to the joint density q(x(0:N)), respectively.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In order to derive an explicit training objective, we have to construct Markov chains on M with
explicit transition densities. We discuss how this can be achieved in the next section.

We conclude this section by reformulating the variational bound (3) using relative entropy (see Song
et al. (2021a) for a similar formulation of score-based diffusion models) . Recall that the relative
entropy, or Kullback-Leibler (KL) divergence, from a probability density Q2 to another probability
density Q1 on the same measure space, where Q1 is absolutely continuous with respect to Q2, is
defined as H(Q1 |Q2) := EQ1

(
log Q1

Q2

)
. For simplicity, we also use the same notation for two

probability measures. Adding the term Eq0(log q0) to both sides of the inequality (3), we see that it
is equivalent to (the data processing inequality)

H(q0 | pθ) ≤ H(
←−
Q (N) |P(N)

θ) , (4)

where the upper bound is the relative entropy from the path measure P(N)
θ of the reverse process

to the path measure
←−
Q (N) of the forward process (we include the arrow in the notation to indicate

that paths of the forward process are viewed backwardly). Therefore, learning DDPMs using the
variational bound (3) can be viewed as approximating probability measures in path space by the
cross-entropy method (Zhang et al., 2014).

3 METHOD

3.1 PROJECTION SCHEME

We recall a projection scheme from Monte Carlo sampling methods on manifolds (Ciccotti et al.,
2008; Zappa et al., 2018; Lelièvre et al., 2022), and we show that it allows us to construct Markov
chains onM with tractable transition densities.

Given x ∈ M and a tangent vector v ∈ TxM that is drawn from the standard Gaussian distribution
on TxM, we compute the intermediate state x′ = x + σ2b(x) + σv ∈ Rn, where σ > 0 is a
positive constant and b : Rn → Rn is a smooth function. In general, x′ does not belong toM. We
consider the projection y ∈ M of x′ ontoM along an orthogonal direction in the column space of
∇ξ(x). Precisely, the projected state y is found by (numerically) solving the constraint equation for
c ∈ Rn−d

y = x+ σ2b(x) + σv +∇ξ(x)c, such that ξ(y) = 0 ∈ Rn−d . (5)
The choice of bwill affect the final invariant distribution and the convergence rate to equilibrium (see
Section 3.5 for further discussion). There are n− d constraints in equation 5 with the same number
of unknown variables. In particular, when ξ is scalar-valued, i.e. n − d = 1, solving equation 5
amounts to finding a root of a (nonlinear) scalar function.

In general, it is possible that for some vectors v there are either no solution or multiple solutions to
equation 5. When multiple solutions exist, we assume that the numerical solver finds one solution
in a deterministic way. This is true as long as a deterministic solver is adopted with fixed initial
condition c = 0. Let Fx,σ be the set of v for which a solution can be found and denote by ϵ(x;σ) =
P(v /∈ Fx,σ), i.e. the probability that no solution can be found. Since ϵ(x;σ) = 0 when σ = 0
(c = 0 is a solution for any v), we can expect that ϵ(x;σ)→ 0 as σ decreases to zero. However, we
do not require this assumption in deriving our method. We denoteMx,σ the set of all states inM
that can be reached from x by solving equation 5 with certain v ∈ Fx,σ .

To derive the transition density of y from x, we notice that, by applying the orthogonal projection
matrix P (x) to both sides of equation 5 and using the fact that P (x)∇ξ(x) = 0, we have the relation
σv = P (x)(y − x − σ2b(x)). This indicates that, given a state x ∈ M and y ∈ Mx,σ , there is a
unique tangent vector v ∈ Fx,σ ⊆ TxM that leads to y by solving equation 5. In other words, the
mapping from v ∈ Fx,σ to y ∈Mx,σ is a bijection. Moreover, its inverse is explicitly given by

Gx :Mx,σ → Fx,σ ⊆ TxM, Gx(y) =
1

σ
P (x)(y − x− σ2b(x)) . (6)

Recall that Ux, Uy ∈ Rn×d denote the matrices whose columns form the orthonormal basis of TxM
and TyM, respectively. Using equation 6, we can derive (see Lelièvre et al. (2022) for more detailed
discussions)

det(DGx(y)) = σ−d det(U⊤x Uy) , (7)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where the left hand side denotes the determinant of the Jacobian DGx(y) : TyM→ TvTxM∼= Rd

of the map Gx at y. Since v is a Gaussian variable in Fx,σ (with a normalizing constant rescaled by
(1 − ϵ(x;σ))−1), applying the change of variables formula for probability densities, we obtain the
probability density of landing at y from x:

q(y |x) = (2π)−
d
2 (1− ϵ(x;σ))−1e−

|P (x)(y−x−σ2b(x))|2

2σ2 |detDGx(y)|

= (2πσ2)−
d
2 (1− ϵ(x;σ))−1e−

|P (x)(y−x−σ2b(x))|2

2σ2 |det(U⊤x Uy)| , y ∈Mx .

(8)

3.2 FORWARD PROCESS

We construct the forward process in our model as a Markov chain on M whose transitions are
defined by the projection scheme in equation 5. Specifically, given the current state x(k) ∈ M at
step k, where k = 0, 1, . . . , N−1, the next state x(k+1) ∈M is determined by solving the constraint
equation (for c ∈ Rn−d):

x(k+1) = x(k) + σ2
kb(x

(k)) + σkv
(k) +∇ξ(x(k))c, such that ξ(x(k+1)) = 0 ∈ Rn−d , (9)

where σk > 0 and v(k) ∈ Tx(k)M is a standard Gaussian variable in Tx(k)M. According to
equations 1 and 8, we obtain the joint probability density of the forward process as

q(x(1:N) |x(0)) =
N−1∏
k=0

q(x(k+1) |x(k)) ,

where q(x(k+1) |x(k)) = (2πσ2
k)
− d

2

(
1− ϵ(x(k);σk)

)−1|det(U⊤x(k)Ux(k+1))|

× exp

(
−
∣∣P (x(k)) (x(k+1) − x(k) − σ2

kb(x
(k))
)∣∣2

2σ2
k

)
.

(10)

3.3 REVERSE PROCESS

The reverse process in our model is a Markov chain onM whose transitions (from x(k+1) to x(k))
are defined by the constraint equation

x(k) = x(k+1)−β2
k+1b(x

(k+1))+β2
k+1s

(k+1),θ(x(k+1))+βk+1v̄
(k+1)+∇ξ(x(k+1))c, such that ξ(x(k)) = 0 ,

(11)
for k = N−1, N−2, . . . , 0, where βk+1 > 0, v̄(k+1) is a standard Gaussian variable in Tx(k+1)M,
and s(k+1),θ(x(k+1)) ∈ Rn depends on the learning parameter θ. Combining equations 2 and 8, we
obtain the joint probability density of the reverse process as

pθ(x
(0:N)) = p(x(N))

N−1∏
k=0

pθ(x
(k) |x(k+1)) ,

where pθ(x
(k) |x(k+1)) = (2πβ2

k+1)
− d

2

(
1− ϵθ(x(k+1);βk+1)

)−1|det(U⊤x(k+1)Ux(k))|

× exp

(
−
∣∣P (x(k+1))

(
x(k) − x(k+1) + β2

k+1

(
b(x(k+1))− s(k+1),θ(x(k+1))

))∣∣2
2β2

k+1

)
,

(12)
and ϵθ(x(k+1);βk+1) denotes the probability of having v̄(k+1) with which no solution to (11) can
be found.

3.4 TRAINING OBJECTIVE

The training objective follows directly from the variational bound (3) on the negative log-likelihood,
as well as the explicit expressions of transition densities in equations 10 and 12. Concretely, substi-
tuting equations 10 and 12 into the last line of (3), we get

Eq0(− log pθ(x
(0))) ≤ Loss(N)(θ) + C(N) , (13)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where

Loss(N)(θ) =
1

2
EQ(N)

[N−1∑
k=0

β2
k+1

∣∣∣P (x(k+1))
(
s(k+1),θ(x(k+1))− b(x(k+1)) +

x(k+1) − x(k)
β2
k+1

)∣∣∣2]
(14)

is our objective for training the parameter θ in the reverse process (recall that EQ(N) denotes the
expectation with respect to the forward process), the constant

C(N) =− EQ(N)

[
1

2

N−1∑
k=0

σ2
k

∣∣∣∣P (x(k))(x(k+1) − x(k)
σ2
k

− b(x(k))
)∣∣∣∣2 + log p(x(N))

]
+ d

N−1∑
k=0

log
βk+1

σk

− EQ(N)

(N−1∑
k=0

log
(
1− ϵ(x(k);σk)

))
(15)

is independent of the training parameter θ, and we have used log(1 − ϵθ(x
(k+1));βk+1) ≤ 0 in

deriving equation 13.

3.5 ALGORITHMIC DETAILS

The algorithms for training and data generation are summarized in Algorithms 1 and 2, respectively.
Algorithm for sampling the forward process, which is similar to Algorithm 2, and algorithm for
solving constraint equations are presented in Algorithms 3 and 4 in Appendix B. In the following,
we discuss several algorithmic details of our method. Further details are left in Appendix B.

Generation of trajectory data The optimal parameter θ is sought by minimizing the objective in
equation 14, for which trajectory data of the forward process is required as training data. We sample
trajectories of the forward process in a preparatory step before training, and train the model with
min-batches sampled from this trajectory dataset. The trajectory dataset is updated by re-sampling
trajectories every several training epochs (see line 2 and lines 10–12 in Algorithm 1).

Choice of N , σk, and βk+1 The total number of steps N should be large enough such that the for-
ward Markov chain is able to reach equilibrium (approximately) starting from the data distribution.
While larger σk, βk+1 allow the Markov chains to make larger jumps, their size should be properly
chosen (depending on the manifold) such that the solution to the constraint equations 9 and 11 can
be found with high probability.

Method for solving constraint equations 9 and 11 As in Monte Carlo sampling methods on
submanifolds (Ciccotti et al., 2008; Zappa et al., 2018; Lelièvre et al., 2022), we employ Newton’s
method to solve the constraint equations 9 and 11. This method has quadratic convergence (locally)
and its implementation is simple. In most cases, a solution with high precision can be found within
a few iteration steps (e.g. less than 5 steps). When no solution is found, one can re-generate the state
or the entire trajectory. Our implementation of Newton’s method is summarized in Algorithm 4.

Choices of b and sampling of the prior p(x(N)) For relatively simple manifolds, we can for
simplicity set b = 0 and choose the prior (see line 2 in Algorithm 2) as the uniform distribution on
M. WhenM is non-compact or when the convergence of Markov chain to equilibrium is slow with
b = 0, we can choose non-zero b such as b = −∇V , i.e. the (full space) gradient of a function
V : Rn → R in the ambient space. In this case, sampling the prior can be done by simulating
a single long trajectory of the forward process. See Section 6.4 and Appendix B.4 for a concrete
choice of nonzero b in practice.

4 THEORETICAL RESULTS

In this section, we study the continuous-time limit of our proposed method. Let T > 0 and g :
[0, T]→ R+ be a continuous function. Define h = T

N and consider the case where σk =
√
hg(kh),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Training procedure

1: Input: training data (yi)1≤i≤M , functions (s(k+1),θ(x))0≤k≤N−1, constants σk, βk > 0, func-
tion b : Rn → Rn, integerN , batch sizeB > 0, number of total training epochsNepoch, integer
lf > 0, learning rate r > 0.

2: for each x(0),i = yi, generate a path (x(0),i, x(1),i, . . . , x(N),i) using Algorithm 3
3: for l = 1 to Nepoch do ▷ loop over epochs
4: for j = 1 to ⌊M/B⌋ do ▷ loop over min-batches
5: sample a min-batch I = (i1, i2, . . . , iB) from the set of indices {1, 2, . . . ,M}
6: calculate loss:

7: ℓ(θ) = 1
2|I|

∑
i∈I

N−1∑
k=0

β2
k+1

∣∣∣∣P (x(k+1),i)

(
s(k+1),θ(x(k+1),i)− b(x(k+1),i) + x(k+1),i−x(k),i

β2
k+1

)∣∣∣∣2
8: θ = optimizer update(θ, ℓ(θ), r) ▷ ADAM optimizer
9: end for

10: if l% lf == 0 then ▷ update trajectories every lf epochs
11: for each x(0),i = yi, re-generate paths (x(0),i, x(1),i, . . . , x(N),i) using Algorithm 3
12: end if
13: end for
14: return θ

for k = 0, 1, . . . , N − 1. It is shown in Ciccotti et al. (2008) that the forward process (9) converges
strongly to the SDE onM

dXt = g2(t)P (Xt)b(Xt)dt+ g(t)dWMt , t ∈ [0, T] , (16)

where WMt is a Brownian motion over M. Denote by p(·, t) the probability density of Xt with
respect to σM at time t ∈ [0, T].

We have the following result, which characterizes the loss function in equation 14 as N → +∞.
Theorem 4.1. Let T > 0 and g : [0, T] → R+ be a continuous function. Define h = T

N and
tk = kh, for k = 0, 1, . . . , N − 1. Assume that σk = βk+1 =

√
hg(tk). Also assume that, for any

parameter θ, there is a C1 function sθ : Rn × [0, T]→ Rn such that s(k+1),θ(x) = sθ(x, tk+1) for
all k = 0, 1, . . . , N − 1 and x ∈M. For the loss function defined in equation 14, we have

lim
N→+∞

(
Loss(N)(θ)− Nd

2

)
=EQ

[1
2

∫ T

0

∣∣P (Xt)sθ(Xt, t)−∇M log p(Xt, t)
∣∣2g2(t) dt

+

∫ T

0

(
P (Xt)b(Xt)−

1

2
∇M log p(Xt, t)

)
· ∇M log p(Xt, t) g

2(t) dt
]
,

where EQ on the right hand side denotes the expectation with respect to the paths of SDE (16) and
∇M denotes the gradient operator onM.

Based on Theorem 4.1, the variational bound (3), and its relative entropy formulation in (4), we ob-
tain the following corollary, which elucidates the connection between our RDDPMs and Riemannian
score-based generative models (De Bortoli et al., 2022) as N → +∞.
Corollary 4.1. Under the same assumptions of Theorem 4.1, we have, for any parameter θ,

lim
N→+∞

H
(←−
Q (N) |P(N)

θ

)
=
1

2
EQ

[∫ T

0

∣∣P (Xt)sθ(Xt, t)−∇M log p(Xt, t)
∣∣2g2(t) dt]

=H(
←−
Q |Pθ) ,

(17)

where
←−
Q denotes the path measure of the time-reversal of SDE (16), and Pθ denotes the path mea-

sure of the SDE

dYt = g2(T − t)P (Yt)
(
− b(Yt) + sθ(Yt, T − t)

)
dt+ g(T − t)dWMt , t ∈ [0, T] , (18)

starting from Y0 = XT .

The proofs of Theorem 4.1 and Corollary 4.1 are presented in Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Sampling trajectory of reverse process

1: Input: trained functions (s(k+1),θ(x))0≤k≤N−1, constants βk, function b : Rn → Rn, and
integer N

2: draw sample x(N) from the prior distribution p(x(N))
3: for k = N − 1 to 0 do
4: sample z̄(k+1) ∼ N (0, In) and set v̄(k+1) = P (x(k+1))z̄(k+1)

5: set x(k+
1
2) = x(k+1) + β2

k+1P (x
(k+1))

(
s(k+1),θ(x(k+1))− b(x(k+1))

)
+ βk+1v̄

(k+1)

6: c, flag = newton solver(x(k+1), x(k+
1
2); ξ) ▷ solve (11) by Algorithm 4

7: if flag == true then
8: x(k) := x(k+

1
2) +∇ξ(x(k+1))c

9: else
10: discard the trajectory and re-generate
11: end if
12: end for
13: return (x(N), x(N−1), . . . , x(0))

5 RELATED WORK

Denoising diffusion probabilistic models DDPMs (Ho et al., 2020) employ a forward Markov
chain to perturb data into noise and a reverse Markov chain to incrementally recover data from noise.
The models are trained to minimize a variational bound on the negative log-likelihood. DDPMs
have made remarkable achievement in generative modeling on Euclidean space. However, to our
knowledge, prior to this study there was no successful extension of DDPMs to manifolds.

Diffusion models on manifolds Riemannian Score-based Generative Models (RSGMs;De Bortoli
et al. (2022) extend SGMs to Riemannian manifolds. A major difficulty of RSGMs is due to the fact
that the denoising score-matching objective involves heat kernel, which is not known analytically
except for very special manifolds. In addition, RSGMs also require sampling of geodesic curves
on manifolds. De Bortoli et al. (2022) and Lou et al. (2023) proposed to approximate heat kernel
by eigenfunction expansion or Varadhan’s approximation, but these approximations bring in extra
errors. In contrast, our method requires neither geodesic curves nor heat kernel.

The Riemannian Diffusion Model (RDM;Huang et al. (2022)) adopts a variational diffusion model
framework on Riemannian manifolds. Similar to our method, RDM framework considers submani-
folds embedded in an Euclidean space and it also utilizes a variational upper bound on the negative
log-likelihood as loss function. However, RDM requires to sample SDEs on manifolds using closest-
point projection, which in general may be a difficult task. In contrast, the projection adopted in our
method is applicable to general submanifolds and the computational cost is lower.

Flow-based generative models on manifolds Riemannian continuous normalizing flow models
(Lou et al., 2020; Mathieu & Nickel, 2020; Rozen et al., 2021; Ben-Hamu et al., 2022; Chen &
Lipman, 2024) extend the continuous-time flow framework (Chen et al., 2018) to manifolds. In
particular, the methods proposed in Rozen et al. (2021); Ben-Hamu et al. (2022); Chen & Lipman
(2024) are simulation-free for manifolds with simple geometry. The method in Chen & Lipman
(2024) can deal with manifolds with general geometry, but it is not feasible for high-dimensional
manifolds, where eigenfunctions of the Laplace-Beltrami operator are typically difficult to compute.
Our method requires sampling trajectories in order to evaluate loss function. However, the cost for
trajectory simulation can be alleviated by working with a pre-prepared trajectory set that is updated
during training with a tunable frequency. Our method does not use eigenfunctions nor metrics and
it can be easily applied to high-dimensional manifolds.

Markov Chain Monte Carlo on submanifolds Markov Chain Monte Carlo (MCMC) under
equality constraints has been studied in several works (Zappa et al., 2018; Lelièvre et al., 2019;
2022). We adopt the same projection scheme from these works to develop our method.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6 EXPERIMENTS

We evaluate our method on datasets from earth and climate science, mesh data on learned manifolds,
synthetic dataset of high-dimensional special orthogonal matrices, and dataset of molecular confor-
mations under constraints. The last two novel datasets have not been studied by existing methods.

6.1 EARTH AND CLIMATE SCIENCE DATASETS

We utilize public datasets (NOAA, 2020a;b; Brakenridge, 2017; EOSDIS, 2020) on 2-D sphere,
which are compiled by Mathieu & Nickel (2020). Table 1 summarizes the negative log-likelihood
(NLL) of our method alongside results of prior methods. The learned densities are displayed in
Figure 4 of Appendix B.1.

We point out a general issue regarding model evaluation on these datasets. We notice that in each
dataset there are a few data points (i.e. isolated points) whose vicinity contains no other points,
and the size of dataset is relatively small compared to its complex distribution. For such datasets,
standard dataset splitting for cross-validation results in non-overlapping training/validation/test sets,
whose empirical distributions are considerably different. As a consequence, computing the NLL on
the test set either results in an overconfident assessment of the model (when the test set contains
no isolated points) or requires evaluating the model on isolated points that are completely unseen
during training (when the test set contains isolated points).

We argue that the phenomenon discussed above is general and should appear regardless of the meth-
ods employed. As a simple solution, we propose to identify the isolated points in validation and
test sets and include them into the training set. In particular, evident improvement is achieved when
isolated points are included in training set, as shown in the last line of Table 1. Further discussions
are provided in Appendix B.1.

Table 1: Test negative log-likelihood (NLL) results on earth and climate science datasets. A smaller
value indicates better performance.

Volcano Earthquake Flood Fire
Dataset size 827 6120 4875 12809

RCNF (Mathieu & Nickel, 2020) -6.05±0.61 0.14±0.23 1.11±0.19 -0.80±0.54

Moser Flow (Rozen et al., 2021) -4.21±0.17 -0.16±0.06 0.57±0.10 -1.28±0.05

CNFM (Ben-Hamu et al., 2022) -2.38±0.17 -0.38±0.01 0.25±0.02 -1.40±0.02

RSGM (De Bortoli et al., 2022) -4.92±0.25 -0.19±0.07 0.48±0.17 -1.33±0.06

RDM (Huang et al., 2022) -6.61±0.96 -0.40±0.05 0.43±0.07 -1.38±0.05

RFM (Chen & Lipman, 2024) -7.93±1.67 -0.28±0.08 0.42±0.05 -1.86±0.11

LogBM (Jo & Hwang, 2024) -9.52±0.87 -0.30±0.06 0.42±0.08 -2.47±0.11

Ours

RDDPM -2.16±1.92 -0.17±0.10 0.49±0.09 -1.48±0.10

RDDPM w/ isolated points -3.57±1.05 -0.29±0.04 0.43±0.05 -1.56±0.08

6.2 MESH DATA ON LEARNED MANIFOLDS

Our method can effectively handle manifolds with general geometries. For demonstration, we exam-
ine the Standard Bunny (Turk & Levoy, 1994) and Spot the Cow (Crane et al., 2013), two manifolds
defined by triangle meshes. The datasets are created according to the k-th eigenfunction of the
grid Laplacian operator using the same approach described in Jo & Hwang (2024); Chen & Lipman
(2024).

Similar to Rozen et al. (2021), we first learn the function ξ : R3 → R, whose zero level set matches
the manifold. We adopt the approach in Gropp et al. (2020), where ξ is represented by a neural
network and is trained such that on mesh data ξ is close to zero and |∇ξ| is close to one. Using this
approach, we obtain a function ξ whose value is at the order 10−2 on mesh data. Then, we perform
a further refinement to the dataset such that all points belong to the learned manifoldM = {x ∈

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

R3|ξ(x) = 0} up to a small error 10−5. The maximal distance between the original data and the
refined data is smaller than 0.017. Details for training ξ and refining data are left in Appendix B.2.

We perform the training with the learned function ξ. Table 2 shows that our learned models achieve
evident improvement over prior works in terms of NLL results. Figure 1 visualizes the agreement
between generated samples (learned distributions) and datasets (target distributions).

Table 2: Test negative log-likelihood (NLL) results on mesh datasets. A smaller value indicates
better performance.

Stanford Bunny Spot the Cow
k = 50 k = 100 k = 50 k = 100

RFM w/ Diff. (Chen & Lipman, 2024) 1.48± 0.01 1.53± 0.01 0.95± 0.05 1.08± 0.05

RFM w/ Bihar. (Chen & Lipman, 2024) 1.55± 0.01 1.49± 0.01 1.08± 0.05 1.29± 0.05

LogBM w/ Diff. (Jo & Hwang, 2024) 1.42± 0.01 1.41± 0.00 0.99± 0.03 0.97± 0.03

LogBM w/ Bihar. (Jo & Hwang, 2024) 1.55± 0.02 1.45± 0.01 1.09± 0.06 0.97± 0.02

Ours

RDDPM 1.36± 0.00 1.31± 0.01 0.84± 0.00 0.77± 0.00

T
ru

e

Bunny (k = 50) Bunny (k = 100) Spot (k = 50) Spot (k = 100)

L
ea

rn
ed

Figure 1: First row: datasets and true distributions. Second row: learned samples and distributions.

6.3 HIGH-DIMENSIONAL SPECIAL ORTHOGONAL GROUP

We apply our method to special orthogonal group SO(10), viewed as a 45-dimensional submanifold
embedded in R100. The synthetic dataset is sampled from a multimodal distribution on SO(10) with
m = 5 modes. To assess the quality of generated data, we consider the statistics tr(S), tr(S2),
tr(S4), and tr(S5), where tr denotes the trace operator of matrices. Further details for the construc-
tion of the dataset and the choice of statistics are provided in Appendix B.3. Figure 2 indicates that
our learned model can generate the data distribution accurately. What is more, the distributions of
the forward process at intermediate steps are also faithfully reproduced.

6.4 ALANINE DIPEPTIDE

We apply our method to alanine dipeptide, a commonly studied model system in bio-physics. The
configuration of the system can be characterized by its two dihedral angles ϕ and ψ (see Figure 3a).
In this study, we are interested in the configurations of the 10 non-hydrogen atoms of the system (in
R30) with the fixed angle ϕ = −70◦.
Since the manifold is unbounded, we choose a nonzero function b = −∇V in the forward process,
where V is proportional to the root mean squared deviation (RMSD) from a pre-selected reference
configuration xref . Accordingly, the prior distribution p(x(N)) is a single-well distribution centered
at xref . Furthermore, we model s(k+1),θ(x) in the reverse process using a network that preserves
rotational equivariance and translational invariance. This, as well as our choice of b, guarantee that

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

−3 −1 1 3 5 7 9
0.0

0.2

0.4

0.6

0.8

1.0

tr(S)

−6−4−2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

tr(S2)

−6 −4 −2 0 2 4 6 8
0.0

0.1

0.2

tr(S4)

−8−6−4−2 0 2 4 6 8
0.0

0.1

0.2

0.3

tr(S5)

Figure 2: Results for SO(10) with m = 5. Histograms of the statistics tr(S), tr(S2), tr(S4), and
tr(S5) for the forward process (solid line) and the learned reverse process (dashed line) at different
steps k = 0, 50, 200, 500, colored in black, red, green, and blue, respectively.

the distribution pθ(x(0)) generated by our model is invariant under SE(3) (Xu et al., 2022). We refer
to Appendix B.4 for implementation details and to Appendix C for theoretical support.

We employ three metrics to assess the quality of the generated configurations: the angle ψ, and two
RMSDs (denoted by RMSD1 and RMSD2) with respect to two pre-defined reference configurations
that are selected from two different wells. Figure 3b illustrates the histograms of these three metrics
for the configurations generated by our model and the configurations in the dataset. The solid and
dashed lines show the agreement between the distributions of the learned reverse process and the
distributions of the forward process at different time steps k. In particular, the overlap between the
lines in black, which correspond to step k = 0, demonstrates that the distribution of the generated
samples (dashed) closely matches the data distribution (solid).

(a) Alanine dipeptide

−150−100−50 0 50 100 150
0.00

0.01

0.02

0.03

0.04

ψ (degree)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

3

6

9

12

15

RMSD1 (nm)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

3

6

9

12

15

RMSD2 (nm)

(b) Results for alanine dipeptide

Figure 3: (a) Illustration of the system. Names and 1-based indices are shown for atoms that define
the dihedral angles. The dihedral angles ϕ and ψ are defined by atoms whose 1-based indices are
5, 7, 9, 15 and 7, 9, 15, 17, respectively. (b) Histograms of the angle ψ, RMSD1, and RMSD2 for the
forward process (solid line) and the learned reverse process (dashed line) at steps k = 0, 10, 40, 200
are colored in black, red, green, blue, respectively. The ψ values of the two reference points that are
used to define RMSD1 and RMSD2 are −20◦ and 150◦, respectively (as shown by the two vertical
dashed lines in the left panel).

7 CONCLUSION

We have proposed Riemannian Denoising Diffusion Probabilistic Models for generative modeling
on submanifolds. Our method does not rely on sophisticated geometric objects on manifold and it is
applicable to high-dimensional manifolds with nontrivial geometry. We have provided a theoretical
analysis of our method in the continuous-time limit, which elucidates its connection to Rieman-
nian score-based generative models. We have demonstrated the strong capability of our method on
datasets from previous studies and from high-dimensional manifolds that can not be easily studied
by existing methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Maximilian Nickel, Aditya Grover,
Ricky T. Q. Chen, and Yaron Lipman. Matching normalizing flows and probability paths on man-
ifolds. In International Conference on Machine Learning, volume 162, pp. 1749–1763. PMLR,
2022.

G. Robert Brakenridge. Global active archive of large flood events.
http://floodobservatory.colorado.edu/Archives/index.html, 2017. Dartmouth Flood Obser-
vatory, University of Colorado.

Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries. In International
Conference on Learning Representations, 2024.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, volume 31, 2018.

Giovanni Ciccotti, Tony Lelièvre, and Eric Vanden-Eijnden. Projection of diffusions on subman-
ifolds: Application to mean force computation. Communications on Pure and Applied Math-
ematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 61(3):371–408,
2008.

Evangelos A. Coutsias, Chaok Seok, and Ken A. Dill. Using quaternions to calculate RMSD. Jour-
nal of Computational Chemistry, 25(15):1849–1857, 2004.

Keenan Crane, Ulrich Pinkall, and Peter Schröder. Robust fairing via conformal curvature flow.
ACM Transactions on Graphics (TOG), 32(4):1–10, 2013.

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and Ar-
naud Doucet. Riemannian score-based generative modelling. In Advances in Neural Information
Processing Systems, volume 35, pp. 2406–2422, 2022.

EOSDIS. Active fire data. https://earthdata.nasa.gov/earth-observation-data/near-real-
time/firms/active-fire-data, 2020. Land, Atmosphere Near real-time Capability for EOS (LANCE)
system operated by NASA’s Earth Science Data and Information System (ESDIS).

Giacomo Fiorin, Michael L. Klein, and Jérôme Hénin. Using collective variables to drive molecular
dynamics simulations. Molecular Physics, 111(22-23, SI):3345–3362, 2013.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regular-
ization for learning shapes. In International Conference on Machine Learning, volume 119, pp.
3569–3579. PMLR, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851, 2020.

Elton P Hsu. Stochastic analysis on manifolds. Number 38 in Graduate Studies in Mathematics.
American Mathematical Society, 2002.

Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron Courville. Rie-
mannian diffusion models. In Advances in Neural Information Processing Systems, volume 35,
pp. 2750–2761, 2022.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

Jaehyeong Jo and Sung Ju Hwang. Generative modeling on manifolds through mixture of Rieman-
nian diffusion processes. In International Conference on Machine Learning, volume 235, pp.
22348–22370. PMLR, 2024.

Wolfgang Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystallo-
graphica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32
(5):922–923, 1976.

11

http://floodobservatory.colorado.edu/Archives/index.html
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tony Lelièvre, Mathias Rousset, and Gabriel Stoltz. Hybrid Monte Carlo methods for sampling
probability measures on submanifolds. Numerische Mathematik, 143(2):379–421, 2019.

Tony Lelièvre, Gabriel Stoltz, and Wei Zhang. Multiple projection MCMC algorithms on submani-
folds. IMA Journal of Numerical Analysis, 43(2):737–788, 2022.

Tony Lelièvre, Thomas Pigeon, Gabriel Stoltz, and Wei Zhang. Analyzing multimodal probability
measures with autoencoders. The Journal of Physical Chemistry B, 128(11):2607–2631, 2024.

Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser Nam Lim, and Christo-
pher M De Sa. Neural manifold ordinary differential equations. In Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 17548–17558, 2020.

Aaron Lou, Minkai Xu, Adam Farris, and Stefano Ermon. Scaling Riemannian diffusion models. In
Advances in Neural Information Processing Systems, volume 36, pp. 80291–80305, 2023.

Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. In Advances in
Neural Information Processing Systems, volume 33, pp. 2503–2515, 2020.

NOAA. Global significant earthquake database. https://data.nodc.noaa.gov/cgi-
bin/iso?id=gov.noaa.ngdc.mgg.hazards:G012153, 2020a. National Geophysical Data Center
/ World Data Service (NGDC/WDS): NCEI/WDS Global Significant Earthquake Database.
NOAA National Centers for Environmental Information.

NOAA. Global significant volcanic eruptions database. https://data.nodc.noaa.gov/cgi-
bin/iso?id=gov.noaa.ngdc.mgg.hazards:G10147, 2020b. National Geophysical Data Center /
World Data Service (NGDC/WDS): NCEI/WDS Global Significant Volcanic Eruptions Database.
NOAA National Centers for Environmental Information.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

Noam Rozen, Aditya Grover, Maximilian Nickel, and Yaron Lipman. Moser flow: Divergence-
based generative modeling on manifolds. Advances in Neural Information Processing Systems,
34:17669–17680, 2021.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural net-
works. In International Conference on Machine Learning, volume 139, pp. 9323–9332. PMLR,
2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, volume 37, pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, volume 32, pp. 11895–11907, 2019.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-
based diffusion models. In Advances in Neural Information Processing Systems, volume 34, pp.
1415–1428, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b.

Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Proceedings of the
21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 311–318, 1994.

D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen. GROMACS:
Fast, flexible, and free. Journal of Computational Chemistry, 26(16):1701–1718, 2005.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
metric diffusion model for molecular conformation generation. In International Conference on
Learning Representations, 2022.

12

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G012153
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G012153
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G10147
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G10147

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Emilio Zappa, Miranda Holmes-Cerfon, and Jonathan Goodman. Monte Carlo on manifolds: Sam-
pling densities and integrating functions. Communications on Pure and Applied Mathematics, 71
(12):2609–2647, 2018.

Wei Zhang. Ergodic SDEs on submanifolds and related numerical sampling schemes. ESAIM:
Mathematical Modelling and Numerical Analysis, 54(2):391–430, 2020.

Wei Zhang, Han Wang, Carsten Hartmann, Marcus Weber, and Christof Schütte. Applications of the
cross-entropy method to importance sampling and optimal control of diffusions. SIAM Journal
on Scientific Computing, 36(6):A2654–A2672, 2014.

A PROOFS OF THE CONTINUOUS-TIME LIMIT

In this section, we prove Theorem 4.1 and Corollary 4.1 in Section 4.

For notation simplicity, we denote by ∂i the derivative with respect to xi in the ambient space, and
by I the identity matrix of order n. We use subscripts to denote components of a vector and entries
of a matrix. Also recall that the orthogonal projection matrix P (x) ∈ Rn×n is well defined for
x ∈ Rn and has the expression

Pij(x) = δij −
n−d∑

α,α′=1

∂iξα(x)(∇ξ⊤∇ξ)−1αα′(x)∂jξα′(x), 1 ≤ i, j ≤ n , (19)

where δij is the Dirac delta function.

First, we present the proof of Theorem 4.1.

Proof of Theorem 4.1. Let us write the forward process in equation 9 as

x(k+1) = x(k+
1
2) +∇ξ(x(k))c(x(k+ 1

2)) ,

where x(k+
1
2) = x(k) + σ2

kb(x
(k)) + σkv

(k) and the dependence of c on x(k+
1
2) is made explicit.

Applying Lemma 1 at the end of this section, we obtain the expansion, for 1 ≤ i ≤ n,

x
(k+1)
i

=x
(k)
i +

n∑
j=1

Pij(x
(k))
(
σ2
kbj(x

(k)) + σkv
(k)
j

)
+

1

2

n∑
j,l,r,r′=1

(
(I − P)irPr′l ∂r′Prj

)
(x(k))

(
σ2
kbj(x

(k)) + σkv
(k)
j

)(
σ2
kbl(x

(k)) + σkv
(k)
l

)

+
1

6

n∑
j,l,r=1

n−d∑
η=1

(
∂iξη ∂

3
jlrcη

)
(x(k))

(
x
(k+ 1

2)
j − x(k)j

)(
x
(k+ 1

2)

l − x(k)l

)(
x
(k+ 1

2)
r − x(k)r

)
+ o
(
|x(k+ 1

2) − x(k)|3
)

=x
(k)
i + σkv

(k)
i + σ2

k

n∑
j=1

Pij(x
(k))bj(x

(k)) +
σ2
k

2

n∑
j,r,r′=1

(
(I − P)ir ∂r′Prj

)
(x(k))v

(k)
j v

(k)
r′

+ σ3
kR

(k)
i + o(σ3

k) , (20)

where we have used the identity
∑n

j=1 Pij(x
(k))v

(k)
j = v

(k)
i (since v(k) is a tangent vector), and

R
(k)
i is a term that satisfies

∑n
i′=1 Pii′(x

(k))R
(k)
i′ = 0, for 1 ≤ i ≤ n.

With the expansion above, we compute the loss function in equation 14. Using equation 20, the
relation βk+1 = σk =

√
hg(kh), and the assumption that s(k+1),θ(x(k+1)) = sθ(x

(k+1), (k +

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

1)h) ∈ Rn, we can derive

β2
k+1

∣∣∣P (x(k+1))
(
s(k+1),θ(x(k+1))− b(x(k+1)) +

x(k+1) − x(k)
β2
k+1

)∣∣∣2
= σ2

k

n∑
i=1

∣∣∣∣ n∑
i′=1

Pii′(x
(k+1))

[
sθ,i′(x

(k+1), (k + 1)h)− bi′(x(k+1)) +

n∑
j=1

Pi′j(x
(k))bj(x

(k))

+
1

2

n∑
j,r,r′=1

(
(I − P)i′r ∂r′Prj

)
(x(k))v

(k)
j v

(k)
r′ +

v
(k)
i′

σk
+ σkR

(k)
i′ + o(σk)

]∣∣∣∣2
= I1 + I2 + I3 + o(σ2

k) ,
(21)

where the three terms on the last line are defined as

I1 :=σ2
k

n∑
i=1

∣∣∣∣ n∑
i′=1

Pii′(x
(k+1))

[
sθ,i′(x

(k+1), (k + 1)h)− bi′(x(k+1)) +

n∑
j=1

Pi′j(x
(k))bj(x

(k))

+
1

2

n∑
j,r,r′=1

(
(I − P)i′r ∂r′Prj

)
(x(k))v

(k)
j v

(k)
r′ + σkR

(k)
i′

]∣∣∣∣2 ,
I2 :=

n∑
i=1

(n∑
i′=1

Pii′(x
(k+1))v

(k)
i′

)2
,

I3 :=2σk

n∑
i,i′=1

Pii′(x
(k+1))

[
sθ,i′(x

(k+1), (k + 1)h)− bi′(x(k+1)) +

n∑
j=1

Pi′j(x
(k))bj(x

(k))

+
1

2

n∑
j,r,r′=1

(
(I − P)i′r ∂r′Prj

)
(x(k))v

(k)
j v

(k)
r′ + σkR

(k)
i′

]
v
(k)
i ,

respectively. In the following, we derive the expansions of the three terms above. For I1, expanding
the functions P, sθ, b using equation 20, we can derive

I1 =σ2
k

n∑
i=1

∣∣∣∣ n∑
i′=1

Pii′(x
(k))
[
sθ,i′(x

(k), kh)− bi′(x(k)) +
n∑

j=1

Pi′j(x
(k))bj(x

(k))

+
1

2

n∑
j,r,r′=1

(
(I − P)i′r ∂r′Prj

)
(x(k))v

(k)
j v

(k)
r′

]
+ o(1)

∣∣∣∣2

=σ2
k

n∑
i=1

∣∣∣ n∑
i′=1

Pii′(x
(k))sθ,i′(x

(k), kh)
∣∣∣2 + o(σ2

k) ,

(22)
where we have used the relations P 2 = P and P (I − P) = 0 satisfied by the orthogonal projection
matrix P to derive the second equality. For I2, using the relation P 2 = P and equation 20, we can
compute

I2 =

n∑
i,i′=1

Pii′(x
(k+1))v

(k)
i v

(k)
i′

=

n∑
i,i′=1

Pii′(x
(k))v

(k)
i v

(k)
i′ +

n∑
i,i′,r=1

∂rPii′(x
(k))
(
x(k+1)
r − x(k)r

)
v
(k)
i v

(k)
i′

+
1

2

n∑
i,i′=1

n∑
r,r′=1

∂2rr′Pii′(x
(k))v

(k)
i v

(k)
i′ (x(k+1)

r − x(k)r)(x
(k+1)
r′ − x(k)r′) + o(|x(k+1) − x(k)|2)

=|v(k)|2 +
n∑

i,i′,r=1

∂rPii′(x
(k))
(
x(k+1)
r − x(k)r

)
v
(k)
i v

(k)
i′

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

+
σ2
k

2

n∑
i,i′=1

n∑
r,r′=1

∂2rr′Pii′(x
(k))v

(k)
i v

(k)
i′ v

(k)
r v

(k)
r′ + o(σ2

k) . (23)

Let’s compute the three terms in equation 23. Using the expression of Pii′ in (19), the fact that∑n
i=1 ∂iξα(x

(k))v
(k)
i = 0, and the product rule, it is straightforward to verify that, for 1 ≤ r ≤ n,

n∑
i,i′=1

∂rPii′(x
(k))v

(k)
i v

(k)
i′ = −

n∑
i,i′=1

∂r

(n−d∑
α,α′=1

∂iξα(∇ξ⊤∇ξ)−1αα′∂i′ξα′

)
(x(k))v

(k)
i v

(k)
i′ = 0 .

(24)
Similarly, we can verify that

n∑
i,i′,r,r′=1

∂2rr′Pii′(x
(k)) v

(k)
i v

(k)
i′ v

(k)
r v

(k)
r′

=− 2

n∑
i,i′,r,r′=1

n−d∑
α,α′=1

(
∂2irξα(∇ξ⊤∇ξ)−1αα′∂

2
i′r′ξα′

)
(x(k)) v

(k)
i v

(k)
i′ v

(k)
r v

(k)
r′ .

(25)

Hence, substituting equations 24–25 into equation 23, we obtain

I2 =|v(k)|2 − σ2
k

n∑
i,i′,r,r′=1

n−d∑
α,α′=1

(
∂2irξα(∇ξ⊤∇ξ)−1αα′∂

2
i′r′ξα′

)
(x(k)) v

(k)
i v

(k)
i′ v

(k)
r v

(k)
r′ + o(σ2

k) .

(26)

For I3, we have

I3 =2σk

n∑
i,i′=1

Pii′(x
(k))

[
sθ,i′(x

(k), kh)− bi′(x(k)) +
n∑

j=1

Pi′j(x
(k))bj(x

(k))

+
1

2

n∑
j,r,r′=1

(
(I − P)i′r ∂r′Prj

)
(x(k))v

(k)
j v

(k)
r′ + σkR

(k)
i′

]
v
(k)
i

+ 2σ2
k

n∑
i,i′,r=1

∂r(Pii′(sθ,i′ − bi′))(x(k), kh) v(k)r v
(k)
i

+ 2σ2
k

n∑
i,i′,r,j=1

∂rPii′(x
(k))Pi′j(x

(k))bj(x
(k)) v(k)r v

(k)
i

+ σ2
k

n∑
i,i′,r,j,r′,j′=1

∂rPii′(x
(k))
(
(I − P)i′j′ ∂r′Pj′j

)
(x(k))v

(k)
j v

(k)
r′ v(k)r v

(k)
i + o(σ2

k)

=2σk

n∑
i,i′=1

Pii′(x
(k))sθ,i′(x

(k), kh)v
(k)
i + 2σ2

k

n∑
i,i′,r=1

∂r(Pii′(sθ,i′ − bi′))(x(k), kh)v(k)r v
(k)
i

+ 2σ2
k

n∑
i,i′,r,j=1

∂rPii′(x
(k))Pi′j(x

(k))bj(x
(k)) v(k)r v

(k)
i

+ σ2
k

n∑
i,i′,r,j,r′,j′=1

∂rPii′(x
(k))
(
(I − P)i′j′ ∂r′Pj′j

)
(x(k))v

(k)
j v

(k)
r′ v(k)r v

(k)
i + o(σ2

k) , (27)

where we have used Taylor expansion with equation 20 and the fact that |sθ(x, (k + 1)h) −
sθ(x, kh)| = O(h) = O(σ2

k) to derive the first equality, and we have used the relations P 2 = P ,
P (I − P) = 0, and

∑n
i′=1 Pii′(x

(k))R
(k)
i′ = 0 to derive the second equality. We further simplify

the last two terms in the expression above. Notice that, similar to equation 24, we can verify that
n∑

i,i′,r=1

∂rPii′(x
(k))Pi′j(x

(k)) v(k)r v
(k)
i = 0 , 1 ≤ j ≤ n . (28)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

For the last term in equation 27, we can derive
n∑

i,i′,r,j,r′,j′=1

∂rPii′(x
(k))
(
(I − P)i′j′ ∂r′Pj′j

)
(x(k))v

(k)
j v

(k)
r′ v(k)r v

(k)
i

=

n∑
i′,r,j,r′,j′=1

(
∂rPi′j′ ∂r′Pj′j

)
(x(k))v

(k)
j v

(k)
r′ v(k)r v

(k)
i′

=

n∑
i′,r,j,r′,j′=1

[n−d∑
α,α′,η,η′=1

(
∂2i′rξα(∇ξ⊤∇ξ)−1αα′∂j′ξα′

)(
∂2jr′ξη(∇ξ⊤∇ξ)−1ηη′∂j′ξη′

)]
(x(k))v

(k)
j v

(k)
r′ v(k)r v

(k)
i′

=

n∑
i′,r,j,r′=1

[n−d∑
α,η=1

(
∂2i′rξα(∇ξ⊤∇ξ)−1αη∂

2
jr′ξη

)]
(x(k))v

(k)
j v

(k)
r′ v(k)r v

(k)
i′ ,

(29)
where the first equation follows by applying the product rule to the identity P (I−P) = 0 and using
the relation

∑n
i=1 Pii′v

(k)
i = v

(k)
i′ , the second equation follows from the expression (19) and the fact

that several terms vanish due to the orthogonality relation
∑n

i=1 ∂iξα(x
(k))v

(k)
i = 0, and the last

equation follows from the fact that
∑n

j′=1 ∂j′ξα′∂j′ξη′ = (∇ξ⊤∇ξ)α′η′ . Combining equations 27,
28, and 29, we obtain

I3 =2σk

n∑
i,i′=1

Pii′(x
(k))sθ,i′(x

(k), kh)v
(k)
i + 2σ2

k

n∑
i,i′,r=1

∂r(Pii′(sθ,i′ − bi′))(x(k), kh)v(k)r v
(k)
i

+ σ2
k

n∑
i′,r,j,r′=1

[n−d∑
α,η=1

(
∂2i′rξα(∇ξ⊤∇ξ)−1αη∂

2
jr′ξη

)]
(x(k))v

(k)
j v

(k)
r′ v(k)r v

(k)
i′ + o(σ2

k) . (30)

Substituting equations 22, 26, and 30 into equation 21, we obtain (after cancellation of terms in I2
and I3)

β2
k+1

∣∣∣∣P (x(k+1))
(
s(k+1),θ(x(k+1))− b(x(k+1)) +

x(k+1) − x(k)
β2
k+1

)∣∣∣∣2
=I1 + I2 + I3 + o(σ2

k)

=σ2
k

∣∣P (x(k))sθ(x(k), kh)∣∣2 + ∣∣v(k)∣∣2 + 2σ2
k

n∑
i,i′,r=1

∂r(Pii′(sθ,i′ − bi′))(x(k), kh)v(k)r v
(k)
i

+ 2σk

n∑
i,i′=1

Pii′(x
(k))sθ,i′(x

(k), kh)v
(k)
i + o(σ2

k) .

(31)

Since v(k) is a standard Gaussian random variable in Tx(k)M, taking expectation in equation 31 and
substituting it into equation 14, we obtain

Loss(N)(θ) =
Nd

2
+ EQ(N)

[N−1∑
k=0

σ2
k

(1
2

∣∣P (x(k))sθ(x(k), kh)∣∣2
+

n∑
i,i′,r=1

∂r(Pii′(sθ,i′ − bi′))(x(k), kh)Pri(x
(k))
)]

+ o(1) .

(32)

In the above, we have used the identities E(v(k)i) = 0, E(|v(k)|2) = d, and E(v(k)r v
(k)
i) = Pri(x

(k)),
where the last one can be verified using the fact that v(k) = P (x(k))z(k), with z(k) being a standard
Gaussian random variable in Rn.

Taking the limit N → +∞, and using the fact that the forward process x(k) converges to the
SDE (16) (Ciccotti et al., 2008), we can derive

lim
N→+∞

(
Loss(N)(θ)− Nd

2

)
16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

= lim
N→+∞

EQ(N)

[N−1∑
k=0

σ2
k

(1
2

∣∣P (x(k))sθ(x(k), kh)∣∣2 + n∑
i,i′,r=1

∂r(Pii′(sθ,i′ − bi′))(x(k), kh)Pri(x
(k))
)]

=EQ

∫ T

0

[
1

2

∣∣P (Xt)sθ(Xt, t)
∣∣2 + divM

(
P (sθ − b)

)
(Xt, t)

]
g2(t)dt

=

∫ T

0

[∫
M

(1
2

∣∣P (x)sθ(x, t)∣∣2 + divM
(
P (sθ − b)

)
(x, t)

)
p(x, t) dσM(x)

]
g2(t) dt

=

∫ T

0

[∫
M

(1
2

∣∣P (x)sθ(x, t)∣∣2 − P (x)(sθ(x, t)− b(x)) · ∇M log p(x, t)
)
p(x, t) dσM(x)

]
g2(t) dt

=
1

2

∫ T

0

[∫
M

∣∣P (x)sθ(x, t)−∇M log p(x, t)
∣∣2p(x, t) dσM(x)

]
g2(t) dt

+

∫ T

0

[∫
M

((
P (x)b(x)− 1

2
∇M log p(x, t)

)
· ∇M log p(x, t)

)
p(x, t) dσM(x)

]
g2(t) dt

=EQ

[
1

2

∫ T

0

∣∣P (Xt)sθ(Xt, t)−∇M log p(Xt, t)
∣∣2g2(t) dt

+

∫ T

0

(
P (Xt)b(Xt)−

1

2
∇M log p(Xt, t)

)
· ∇M log p(Xt, t) g

2(t) dt

]
,

where we have used integration by parts onM, and the expression divMf =
∑n

i,r=1 Pir∂rfi for
f :M→ Rn (which can be verified using Lemma A.1 in Zhang (2020)).

Next, we present the proof of Corollary 4.1.

Proof of Corollary 4.1. Using the assumption βk+1 = σk, the projection scheme in equation 9 and
the relation P (x(k))∇ξ(x(k)) = 0, we can simplify the constant C(N) in equation 15 as

C(N) = −EQ(N)

(
log p(x(N)) +

1

2

N−1∑
k=0

|v(k)|2 +
N−1∑
k=0

log
(
1− ϵ(x(k);σk)

))
. (33)

Therefore, using the definition of relative entropy (see equation 4), the loss function in equation 14,
the constant C(N) in equation 15, and applying Theorem 4.1, we have

lim
N→+∞

H
(←−
Q (N) |P(N)

θ

)
= lim

N→+∞

[
Loss(N)(θ) + C(N) + EQ(N)

(N−1∑
k=0

log
(
1− ϵθ(x(k+1);σk)

))]
+ Eq0(log q0)

= lim
N→+∞

[
Loss(N)(θ)− EQ(N)

(
log p(x(N)) +

1

2

N−1∑
k=0

|v(k)|2 +
N−1∑
k=0

log
1− ϵ(x(k);σk)

1− ϵθ(x(k+1);σk)

)]
+ Eq0(log q0)

= lim
N→+∞

(
Loss(N)(θ)− EQ(N) log p(x(N))− Nd

2

)
+ Eq0(log q0)

=EQ

[
log p(X0, 0)− log p(XT , T) +

1

2

∫ T

0

∣∣P (Xt)sθ(Xt, t)−∇M log p(Xt, t)
∣∣2g2(t) dt

+

∫ T

0

(
P (Xt)b(Xt)−

1

2
∇M log p(Xt, t)

)
· ∇M log p(Xt, t) g

2(t) dt

]
,

(34)
where the third equality follows because the terms containing ϵ(x(k);σk) and ϵθ(x(k+1);σk) vanish
and limN→+∞ EQ(N)(

∑N−1
k=0 |v(k)|2−Nd) = 0, both of which can be verified using the asymptotic

expression of complementary error function. Note that the density p(x, t) of SDE (16) solves the
Fokker-Planck equation

∂p

∂t
(x, t) = −g2(t)divM

(
P (x)b(x)p(x, t)

)
+
g2(t)

2
∆Mp(x, t) , x ∈M, t ∈ [0, T] . (35)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Therefore, we have

EQ

[
log p(X0, 0)− log p(XT , T)

]
=

∫
M

log p(x, 0)p(x, 0) dσM(x)−
∫
M

log p(x, T)p(x, T) dσM(x)

=−
∫ T

0

d

dt

(∫
M

log p(x, t) p(x, t) dσM(x)
)
dt

=−
∫ T

0

[∫
M

(
log p(x, t) + 1

)∂p
∂t

(x, t) dσM(x)

]
dt

=−
∫ T

0

[∫
M

(
log p(x, t) + 1

)(
− g2(t)divM

(
P (x)b(x)p(x, t)

)
+
g2(t)

2
∆Mp(x, t)

)
dσM(x)

]
dt

=−
∫ T

0

[∫
M

((
P (x)b(x)− 1

2
∇M log p(x, t)

)
· ∇M log p(x, t)

)
p(x, t) dσM(x)

]
g2(t) dt

=− EQ

[∫ T

0

(
P (Xt)b(Xt)−

1

2
∇M log p(Xt, t)

)
· ∇M log p(Xt, t) g

2(t) dt

]
,

(36)
where we have used equation 35 to derive the fourth equality and integration by parts onM to derive
the fifth equality. Combining equations 34 and 36, we obtain

lim
N→+∞

H
(←−
Q (N) |P(N)

θ

)
= EQ

[
1

2

∫ T

0

∣∣P (Xt)sθ(Xt, t)−∇M log p(Xt, t)
∣∣2g2(t) dt] . (37)

Finally, note that
←−
Q is the path measure of the time-reversal Yt = XT−t of SDE (16), which

satisfies (De Bortoli et al., 2022, Theorem 3.1)

dYt = g2(T − t)
(
−P (Yt)b(Xt)+∇M log p(Yt, T − t)

)
dt+g(T − t)dWMt , t ∈ [0, T] , (38)

and Pθ is the path measure of SDE (18). Applying Girsanov’s theorem (Hsu, 2002, Theorem 8.1.2),
we obtain

dPθ

d
←−
Q

=exp
(∫ T

0

g2(T − t)
(
P (Yt)sθ(Yt, T − t)−∇M log p(Yt, T − t)

)
· dWMt

− 1

2

∫ T

0

∣∣P (Yt)sθ(Yt, T − t)−∇M log p(Yt, T − t)
∣∣2g2(T − t) dt) , (39)

where WMt is a Brownian motion onM under
←−
Q . Therefore, we have

H(
←−
Q |Pθ) =E←−Q

(
log

d
←−
Q

dPθ

)
=E←−Q

(1
2

∫ T

0

∣∣P (Yt)sθ(Yt, T − t)−∇M log p(Yt, T − t)
∣∣2g2(T − t) dt)

=EQ

(1
2

∫ T

0

∣∣P (Xt)sθ(Xt, t)−∇M log p(Xt, t)
∣∣2g2(t) dt) ,

(40)

where the second equality follows from the fact that the stochastic integration in equation 39 van-
ishes after taking logarithm and expectation, and the third equality follows by a change of variable
t ← T − t and the fact that Yt = XT−t. The conclusion is obtained after combining equations 37
and 40.

Finally, we present the technical lemma on the projection scheme in equation 5, which was used in
the proof of Theorem 4.1.
Lemma 1. Given x ∈M and x′ ∈ Rn, the solution to the problem

y = x′ +∇ξ(x)c(x′), c(x′) ∈ Rn−d, such that ξ(y) = 0 (41)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

has the following expansion as x′ approaches to x

∂jcη(x) =−
n−d∑
α=1

(∇ξ⊤∇ξ)−1ηα(x)∂jξα(x) , 1 ≤ j ≤ n ,

∂2jlcη(x) =

n−d∑
α=1

(∇ξ⊤∇ξ)−1ηα(x)

n∑
r,r′=1

(
∂rξα∂r′Prj Pr′l

)
(x) , 1 ≤ j, l ≤ n ,

(42)

for 1 ≤ η ≤ n − d. Moreover, as x′ approaches to x, the following expansion of y in equation 41
holds

yi =xi +

n∑
j=1

Pij(x)(x
′
j − xj) +

1

2

n∑
j,l=1

[n∑
r,r′=1

(
(I − P)irPr′l∂r′Prj

)
(x)

]
(x′j − xj)(x′l − xl)

+
1

6

n∑
j,l,r=1

(n−d∑
η=1

∂iξη(x) ∂
3
jlrcη(x)

)
(x′j − xj)(x′l − xl)(x′r − xr) + o(|x′ − x|3) ,

(43)
where 1 ≤ i ≤ n.

Proof. Differentiating (with respect to x′) the constraint equation

ξα(x
′ +∇ξ(x)c(x′)) = 0 , α = 1, . . . , n− d ,

we get

n∑
r=1

∂rξα
(
x′ +∇ξ(x)c(x′)

)(
δrj +

n−d∑
η=1

∂rξη(x)∂jcη(x
′)
)
= 0 , 1 ≤ j ≤ n . (44)

Setting x′ = x in equation 44 (notice that c(x′) = 0 when x′ = x) and multiplying both sides by
(∇ξ⊤∇ξ)−1(x), we obtain the first identity in equation 42. In particular, using equation 19, we
have

δrj +

n−d∑
η=1

∂rξη(x)∂jcη(x) = δrj −
n−d∑
η,α=1

(
∂rξη(∇ξ⊤∇ξ)−1ηα∂jξα

)
(x) = Prj(x) , 1 ≤ r, j ≤ n .

(45)
Next, we show the second identity in equation 42. Differentiating equation 44 again, setting x′ = x
and using equation 45, we get, for 1 ≤ α ≤ n− d and 1 ≤ j, l ≤ n,

0 =

n∑
r,r′=1

∂2rr′ξα(x)
(
δrj +

n−d∑
η=1

∂rξη(x)∂jcη(x)
)(
δr′l +

n−d∑
η=1

∂r′ξη(x)∂lcη(x)
)

+

n∑
r=1

∂rξα(x)
(n−d∑

η=1

∂rξη(x)∂
2
jlcη(x)

)

=

n∑
r,r′=1

(
∂2rr′ξαPrjPr′l

)
(x) +

n−d∑
η=1

(
(∇ξ⊤∇ξ)αη∂2jlcη

)
(x) ,

from which we can solve, for 1 ≤ η ≤ n− d and 1 ≤ j, l ≤ n,

∂2jlcη(x) =−
n−d∑
α=1

n∑
r,r′=1

(
(∇ξ⊤∇ξ)−1ηα∂

2
rr′ξα PrjPr′l

)
(x)

=

n−d∑
α=1

n∑
r,r′=1

(
(∇ξ⊤∇ξ)−1ηα ∂rξα∂r′Prj Pr′l

)
(x) ,

where the second equality follows from the product rule and the identity
∑n

r=1 Prj∂rξα = 0. This
shows the second identity in equation 42.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Lastly, we prove the expansion in equation 43. Note that the second identity in equation 42 and
equation 19 implies

n−d∑
η=1

(∂iξη∂
2
jlcη)(x) =

n∑
r,r′=1

(
(I − P)irPr′l ∂r′Prj

)
(x) , 1 ≤ i, j, l ≤ n . (46)

By expanding c(x′) at x′ = x to the third order, noticing that c(x) = 0, and using equations 45 and
46 for the first and second order derivatives respectively, we can derive

yi =x
′
i +

n−d∑
η=1

∂iξη(x)cη(x
′)

=xi + (x′i − xi) +
n−d∑
η=1

∂iξη(x)

[n∑
j=1

∂jcη(x)(x
′
j − xj) +

1

2

n∑
j,l=1

∂2jlcη(x)(x
′
j − xj)(x′l − xl)

+
1

6

n∑
j,l,r=1

∂3jlrcη(x) (x
′
j − xj)(x′l − xl)(x′r − xr)

]
+ o(|x′ − x|3)

=xi +

n∑
j=1

Pij(x)(x
′
j − xj) +

1

2

n∑
j,l=1

[n∑
r,r′=1

(
(I − P)ir∂r′PrjPr′l

)
(x)

]
(x′j − xj)(x′l − xl)

+
1

6

n∑
j,l,r=1

(n−d∑
η=1

∂iξη(x)∂
3
jlrcη(x)

)
(x′j − xj)(x′l − xl)(x′r − xr) + o(|x′ − x|3) ,

which proves equation 43.

B DETAILS OF ALGORITHMS AND EXPERIMENTS

We present the algorithms for sampling the forward process and for solving constraint equations in
Algorithms 3 and 4, respectively. In the following, we discuss several further algorithmic details (see
Section 3.5) that are common in our experiments. Specific details of each experiment are discussed
in the subsections below.

Neural networks and training setup As described in Theorem 4.1, the functions
(s(k+1),θ(x))0≤k≤N−1 are represented by a single function sθ(x, t) with parameter θ, which is in
turn modeled by a multilayer perceptron (MLP). We employ SiLU as the activation function. We do
not require that the output of the neural network belongs to the tangent space, thanks to the presence
of the projection in both the forward and the reverse processes. Alternative strategies for designing
neural networks with outputs in tangent space are proposed in De Bortoli et al. (2022).

We train our models using PyTorch, where we employ the Adam optimizer with fixed learning rate
r = 5 × 10−4 and we clip the gradients of the parameters when the 2-norm exceeds 10.0. We also
implement an exponential moving average for the model weights (Polyak & Juditsky, 1992) with a
decay rate of 0.999. All experiments are run on a single NVIDIA A40 GPU with 48G memory.

NLL calculation Following De Bortoli et al. (2022) and Chen & Lipman (2024), for each experi-
ment we train our model in five different runs with random seed values ranging from 0 to 4. In each
run, the dataset is divided into training, validation, and test sets with ratio 80:10:10. We compute
the test NLL (i.e. NLL on test set) using the model that yields the best validation NLL during the
training. On both validation set and test set, the NLL is calculated by (see the second line in (3))

− log pθ(x
(0)) = − logEQ(N)

[
p(x(N))

N−1∏
k=0

pθ(x
(k) |x(k+1))

q(x(k+1) |x(k))

∣∣∣∣x(0)], (47)

where the conditional expectation is estimated by sampling multiple (50 or 100) paths of the forward
process starting from each x(0), and we replace both ϵ(x(k);σk) in equation 10 and ϵθ(x(k+1);βk+1)
in equation 12 by zero (which is valid since σk and βk+1 are small in our experiment). We use
equation 47 to compute NLLs in the experiments where the prior distribution p(x(N)) is uniform
distribution.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 3 Sampling trajectory of forward process

1: Input: x(0) ∈M, constants σk, function b : Rn → Rn, and integer N
2: for k = 0 to N − 1 do
3: generate z(k) ∼ N (0, In) and set vk = P (x(k))z(k)

4: set x(k+
1
2) := x(k) + σ2

kb(x
(k)) + σkv

(k)

5: c, flag = newton solver(x(k), x(k+
1
2); ξ). ▷ solve (9) by Algorithm 4

6: if flag == true then
7: set x(k+1) := x(k+

1
2) +∇ξ(x(k))c

8: else
9: discard the trajectory and re-generate

10: end if
11: end for
12: return (x(0), x(1), . . . , x(N))

Algorithm 4 newton solver(x, x′; ξ) ▷ solve ξ(x′ +∇ξ(x)c) = 0 by Newton’s method

1: Input: x ∈M, x′ ∈ Rn, ξ : Rn → Rn−d, maximal iteration steps nstep, tolerance tol > 0
2: Initialization: set c = 0 ∈ Rn−d and flag=false
3: for k = 0 to nstep − 1 do
4: Solve linear equation

[
∇ξ
(
x′ +∇ξ(x)c

)⊤∇ξ(x)]u = −ξ
(
x′ +∇ξ(x)c

)
for u ∈ Rn−d

5: c← c+ u
6: if |ξ(x′ +∇ξ(x)c)| < tol then
7: set flag=true, and go to Step 10
8: end if
9: end for

10: return c, flag

Model parameters As in Theorem 4.1, we choose T > 0, integer N > 0, function g(t) =

γmin + t
T (γmax − γmin) for some γmax ≥ γmin > 0, and parameters σk = βk+1 =

√
hg(kh),

where h = T
N and k = 0, 1, . . . , N − 1. We choose b = 0 in all experiments except the alanine

dipeptide.

Generation of standard Gaussian variables in TxM. Let z be a standard Gaussian random
variable in Rn. It is straightforward to verify that v = P (x)z is a standard Gaussian random variable
in TxM, where P (x) is the orthogonal projection matrix to the tangent space TxM. We use this
fact to generate tangent vectors in the forward and reverse processes (see line 3 of Algorithm 3 and
line 4 of Algorithm 2, respectively).

Values of all the parameters in our experiments are summarized in Table 3.

B.1 EARTH AND CLIMATE SCIENCE DATASETS

The unit sphere is viewed as a submanifold of R3, which is defined by the zero level set of the
function ξ(x) = |x| − 1, for x ∈ R3. Newton’s method is not necessary for the projection steps (9)
and (11), since the general scheme (5) has the closed-form solution:

y =
(
1− |σ2P (x)b(x) + σv|2

) 1
2 x+ σ2P (x)b(x) + σv, (48)

as long as |σ2P (x)b(x) + σv| < 1.

In the following, we present a careful study on the dataset splitting and the NLL calculation for
these datasets. In fact, the datasets in this example contain isolated data points and the distributions
of the data points are complex. Consequently, the training, validation, and test sets obtained from
the standard data splitting method exhibit significant differences in their distributions, leading to in-
accurate evaluation results and an increased risk of overfitting. Specifically, the presence of isolated
data points in the validation set or in the test set (therefore not in the training set) can significantly
affect the final test results. Figure 5a illustrates this phenomenon in the case of the volcano dataset,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 3: Parameters in our experiments. γmin, γmax, N, T are the parameters in our model;
lf , Nepoch, B are the parameters in Algorithm 1; Nnode, Nlayer are the numbers of the hidden nodes
per layer and the hidden layers of the neural networks, respectively.

Datasets γmin γmax N T lf Nepoch B Nnode Nlayer

Volcano 0.01 1.0 400 4.0 1 20000 128 512 5
Earthquake 0.01 1.0 400 4.0 1 20000 512 512 5
Flood 0.01 1.0 400 4.0 1 20000 512 512 5
Fire 0.01 1.0 400 4.0 1 20000 512 512 5

Bunny, k = 50 0.07 0.07 800 8.0 100 2000 2048 256 5
Bunny, k = 100 0.07 0.07 500 5.0 100 2000 2048 256 5
Spot, k = 50 0.1 0.1 500 5.0 100 2000 2048 256 5
Spot, k = 100 0.1 0.1 300 3.0 100 2000 2048 256 5

SO(10),m = 3 0.2 2.0 500 1.0 100 2000 512 512 3
SO(10),m = 5 0.2 2.0 500 1.0 100 2000 512 512 3

Alanine dipeptide 1.0 1.0 200 0.1 100 5000 512 512 5

where the model is not trained on points in the vicinity of the three (one) isolated points in the test
(validation) set, since there is no training data in that area. Accordingly, the loss and NLL values
computed on different sets are significantly different, as shown by the solid lines in Figures 5b–5c.

To resolve this issue, we propose to include the isolated points in the validation set and the test set to
the training set. These points can be identified by binning the data points according to their latitude
and longitude values. Figure 5b shows that the NLL values computed on different sets become
closer within a single run when the isolated points are included in the training set, and Figure 5c
shows that the NLL values become smaller (better) among five different runs.

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

Volcano

0

1

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

Earthquake

0

1

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

Flood

0

1

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

Fire

0

1

Figure 4: The learned densities on earth and climate science datasets, with the standard dataset
splitting. Darker green color indicates areas of higher likelihood. Red dots and blue dots show
points in test set and generated samples, respectively.

B.2 MESH DATA ON LEARNED MANIFOLDS

To create the datasets, we adopt the approach described by Jo & Hwang (2024) and Chen & Lipman
(2024). The data is generated according to the density defined by the k-th clamped eigenfunction of
the Laplacian operator on a mesh that has been upsampled threefold.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

training set

validation set

test set

isolated validation point

isolated test point

(a) Volcano dataset

0 4000 8000 12000 16000 20000
epoch

−5

−3

−1

1

3

5
train. NLL

val. NLL

test NLL

train. NLL, isolated points

val. NLL, isolated points

test NLL, isolated points

(b) NLL vs epoch

0 1 2 3 4
seed

−5

−4

−3

−2

−1

0

1

2

3
train. NLL

val. NLL

test NLL

train. NLL, isolated points

val. NLL, isolated points

test NLL, isolated points

(c) Best NLL

Figure 5: Volcano dataset. (a) Red, blue, and green points represent the training set, validation set,
and test set, respectively, obtained from the standard dataset splitting with random seed 4. Triangles
indicate the isolated points in the validation set and in the test set. (b) The training NLL, the vali-
dation NLL, and the test NLL during the training with random seed 4. The solid lines correspond
to the training where the standard dataset splitting is employed. The dashed lines correspond to the
training where the isolated points (triangles in (a)) are included in the training set. (c) The best NLLs
for five different runs with random seeds 0, 1, 2, 3, and 4.

The function ξ : R3 → R is modeled by a MLP with 3 hidden layers, each of which has 128 nodes.
Different from the activation function in our model, here we use Softplus activation function, where
the parameter β is set to 10. The loss function for learning ξ is

ℓ(ξ) =
1

|D|
∑
x∈D
|ξ(x)|+ λ

|D′|
∑
y∈D′

(|∇ξ(y)| − 1)2, (49)

where λ = 0.1, D denotes the set of vertices of a high-resolution mesh, and the set D′ contains
samples near the manifolds that are obtained by perturbing samples x ∈ D according to y = x+ cϵ,
with ϵ ∼ N (0, I3) and c = 0.05. The first term in equation 49 imposes that ξ is close to zero
on vertices, whereas the second term serves as a regularization term and ensures that ξ has non-
vanishing gradient near the manifold. The neural network is trained for 200000 steps using Adam
optimizer, with batch size 512 and learning rate 10−4.

With the learned function ξ, we consider the manifold defined byM = {x ∈ R3|ξ(x) = 0}. The
values of ξ on the dataset are at the order 10−2. To ensure that the data is onM with high precision,
we refine the dataset by solving the following ordinary differential equation (ODE):

dxt
dt

= −ξ(xt)∇ξ(xt), t ≥ 0 , (50)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

starting from each point in the dataset until the condition |ξ(xt)| < 10−5 is reached (notice that
equation 50 is a gradient flow and limt→∞ |ξ(xt)| = 0). This ensures that the refined points conform
to the manifold accurately.

For the Newton’s method in generating paths, we set tol = 10−4 and nstep = 10 in Algorithm 4.
Due to the complex geometry of the objects, there is a small portion of paths (less than 1.0%) that can
not be successfully generated. Apart from these paths, the Newton’s method reaches convergence
within 3 iteration steps.

B.3 HIGH-DIMENSIONAL SPECIAL ORTHOGONAL GROUP

We view the group SO(10) as a 45-dimensional submanifold of R100 that corresponds to (a con-
nected component of) the zero level set of the map ξ : R100 → R55, whose components consist of
the upper triangle portion of the matrix S⊤S − I10, where S is a 10× 10 matrix.

The dataset is constructed as a mixture of m wrapped normal distributions, each of which is the
image (under the exponential map) of a normal distribution in the tangent space of a center Si ∈
SO(10), 1 ≤ i ≤ m. To ensure multimodality, we define the centers Si as follows. We initially

define a 2 × 2 matrix A0 :=

[
cos π

3 sin π
3− sin π

3 cos π
3

]
, which represents a rotation by π

3 radians. We then

construct block diagonal matrices of order 10 by incorporating A0 and the identity matrix I2 in
various combinations:

X1 = diag{A0, I2, I2, I2, I2}, X2 = diag{A0, A0, I2, I2, I2}, X3 = diag{A0, A0, A0, I2, I2},
X4 = diag{A0, A0, A0, A0, I2}, X5 = diag{A0, A0, A0, A0, A0}.

(51)
The centers Si of the m wrapped normal distributions are chosen as Si = Q⊤i XiQi, where Qi ∈
SO(10) are randomly drawn from the uniform distribution. According to equation 51, the statistics
η(S) = (tr(S), tr(S2), tr(S4), tr(S5)) of the centers can be explicitly computed (using the trace
identities tr(AB) = tr(BA) and tr(Q⊤i XiQi) = tr(Xi)) as

η(S1) = (9, 7, 7, 9), η(S2) = (8, 4, 4, 8), η(S3) = (7, 1, 1, 7),

η(S4) = (6,−2,−2, 6), η(S5) = (5,−5,−5, 5). (52)

To generate data in the dataset, we select a center Si with equal probability, sample tangent vectors
Y from the normal distribution (in the tangent space at Si) with zero mean and standard deviation
0.05, and then compute their images S under the exponential map, that is, S = Sie

S⊤
i Y .

Due to our choice of A0, the distribution of tr(S3) is narrowly concentrated at its local peaks. To
see this, using S3

i = Q⊤i X
3
i Qi and the fact that S⊤i Y is anti-symmetric, we can compute

tr(S3) = tr(Sie
S⊤
i Y Sie

S⊤
i Y Sie

S⊤
i Y)

= tr
(
S3
i + 3(S3

i)S
⊤
i Y +O(|Y |2)

)
=tr(S3

i) + 3 tr
(
X3

i QiS
⊤
i Y Q

⊤
i

)
+O(|Y |2)

= tr(S3
i) +O(|Y |2) ,

(53)

where we have used the trace identity tr(AB) = tr(BA), the expansion of matrix exponential, and
the fact that the diagonal elements of X3

i QiS
⊤
i Y Q

⊤
i are all zero (hence its trace equals zero), since

X3
i is a diagonal matrix and QiS

⊤
i Y Q

⊤
i is anti-symmetric. Therefore, we omit tr(S3) in our choice

of statistical analysis for clear presentation.

For the Newton’s method, we set tol = 10−6 and nstep = 10 in Algorithm 4. For this example, the
convergence is always reached within 3 iteration steps.

We also examine the dataset with m = 3 modes, in which case we use centers defined as Si =
Q⊤i XiQi for i = 1, 2, 3 (the random matrices Qi are different from those in the case of m =
5). Figure 6 shows that the distributions of the learned reverse processes match the corresponding
distributions of the forward process at different Markov chain jump steps.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

−3 −1 1 3 5 7 9
0.0

0.4

0.8

1.2

1.6

tr(S)

−4 −2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0
tr(S2)

−6 −4 −2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5
tr(S4)

−6−4−2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

tr(S5)

Figure 6: Results for SO(10) with m = 3. Histograms of the statistics tr(S), tr(S2), tr(S4), and
tr(S5) for the forward process (solid line) and the learned reverse process (dashed line) at different
steps. Colors black, red, green, and blue correspond to steps k = 0, 50, 200, 500, respectively.

B.4 ALANINE DIPEPTIDE

To generate the dataset, we initially perform a constrained molecular simulation of alanine dipeptide
in water for 1ns using the molecular dynamics package GROMACS (Van Der Spoel et al., 2005)
with step-size 1fs. We apply the harmonic biasing method in COLVARS module (Fiorin et al.,
2013), where the collective variable is chosen as the dihedral angle ϕ and the harmonic potential is
centered at ϕ = −70◦ with the force constant 5.0. Further simulation details are omitted since they
are similar to those in Lelièvre et al. (2024). In total, 104 configurations are obtained by recording
every 100 simulation steps. We exclude the hydrogen atoms and work with the coordinates of the
10 non-hydrogen atoms in the system (see Figure 3a). In a final preparatory step, we apply the
refinement technique in Appendix B.2 (see equation 50) to the recorded coordinates, so that the data
in the dataset lives in the manifoldM = {x ∈ R30|ϕ(x) = −70◦} up to a small numerical error of
order 10−5.

SinceM is unbounded, we adopt a nonzero function b in our model to make sure that the Markov
chain processes stay in bounded region. To this end, we choose a reference configuration xref from
the dataset and define the potential function

V (x) =
κ

2
|R∗x(x− w∗x)− xref |2 , x ∈ R30 , (54)

with κ = 50, where R∗x, w∗x are the optimal rotation and the optimal translation that minimize the
RMSD (see equation 56). The function b is defined as (the negative gradient of V in full space)

b = −∇V (x) = −κ
(
R∗x(x− w∗x)− xref

)
, (55)

where the second equality follows by differentiating V in equation 54 and using the first order
optimality equations satisfied by R∗x and w∗x (also see Coutsias et al. (2004)).

We also build our model to make sure that the generated distribution is SE(3)-invariant (i.e. invariant
under rotations and translations). For this, we rely on the theoretical results in Xu et al. (2022) and
in Appendix C.

One can check that V (x) is SE(3)-invariant and b satisfies property (#) in Appendix C, that is, b is
equivariant under rotations and invariant under translations. This guarantees that the prior distribu-
tion p(x(N)), which we choose as the invariant distribution of the forward process, is SE(3)-invariant
as well.

We still need to make sure that the transition densities of the reverse Markov chain are SE(3)-
invariant. For this purpose, in the reverse process we set s(k+1),θ(x) = (R∗x)

⊤fθ(R
∗
x(x −

w∗x),
(k+1)T

N), where fθ : R30 × R → R30 is modeled by a single MLP with parameter θ, and both
R∗x and b∗x are computed by the Kabsch algorithm (Kabsch, 1976). With this choice, s(k+1),θ(x) sat-
isfies property (#) by Proposition 1 in Appendix C, and the transition density of the reverse process
is SE(3)-invariant by Proposition 2 in Appendix C. Since the prior p(x(N)) is also SE(3)-invariant,
we conclude that the learned distribution pθ(x(0)) is SE(3)-invariant (Xu et al., 2022). Compared
to the commonly used equivariant networks (Satorras et al., 2021), our network fits our experiment
better thanks to its lower computational cost and reduced memory usage.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

For the Newton’s method, we set tol = 10−5 and nstep = 10 in Algorithm 4. For all but one point,
the convergence is reached within 2 steps.

C THEORETICAL RESULTS ON NEURAL NETWORKS FOR MOLECULAR
SYSTEMS

In this section, we present theoretical results for the neural network architecture we employed in
studying alanine dipeptide.

Assume that the system consists of M atoms, where the coordinates of thee i-th atom are denoted
by xi ∈ R3, for i = 1, 2, . . . ,M . Let x ∈ R3M be the vector consisting of all the coordinates
x1 x2, . . . ,xM ∈ R3. For simplicity, given a rotation matrix R ∈ SO(3) and a translation vector
w ∈ R3, we use the conventional notation Rx + w to denote the vector in R3M that consists of
the transformed coordinates Rx1 + w,Rx2 + w, . . . , RxM + w ∈ R3. We say that a function f
defined in R3M is SE(3)-invariant, if f(Rx + w) = f(x), for all R ∈ SO(3), w ∈ R3, and for all
x ∈ R3M . We say that function f : R3M → R3M possesses property (#), if it is both equivariant
under rotations and invariant under translations, i.e.

f(Rx+ w) = Rf(x), for all R ∈ SO(3), w ∈ R3, and all x ∈ R3M . (#)

Assume that a configuration xref is chosen as reference. Given x, the optimal rotation matrix and the
optimal translation vector, which minimize the RMSD

RMSD(x;xref) =
(1

M
|R(x− w)− xref|2

) 1
2

(56)

from the reference xref, are denoted by R∗x and w∗x, respectively.

The following result characterizes functions that are both equivariant under rotations and invariant
under translations.

Proposition 1. The following two claims are equivalent.

• Function s : R3M → R3M possesses property (#).

• There is a function f : R3M → R3M , such that s(x) = (R∗x)
⊤f(R∗x(x − w∗x)), for all

x ∈ R3M .

Proof. It is straightforward to verify that the first claim implies the second claim. In fact, setting
R = R∗x, w = −R∗xw∗x, and using the identity R⊤R = I3, we obtain from the first claim that
s(x) = (R∗x)

⊤s(R∗x(x− w∗x)). Hence, the second claim holds with f = s. To show that the second
claim also implies the first one, we use the fact that the optimal rotation R∗Rx+w and the optimal
translation w∗Rx+w, which minimize the RMSD of the state Rx + w from the reference xref , are
given by R∗Rx+w = R∗xR

⊤ and w∗Rx+w = Rw∗x +w, respectively. This fact can be directly checked
using equation 56. In particular, we have

R∗Rx+w(Rx+ w − w∗Rx+w) = R∗x(x− w∗x) .
Therefore, for the function s defined in the second claim, we can compute, for any R ∈ SO(3),
w ∈ R3, and any x ∈ R3M ,

s(Rx+ w) =(R∗Rx+w)
⊤f
(
R∗Rx+w(Rx+ w − w∗Rx+w)

)
=R(R∗x)

⊤f(R∗x(x− w∗x))
=Rs(x) ,

which shows the first claim.

The following result guarantees the SE(3)-invariance of the transition densities of our diffusion
model.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proposition 2. Assume that ξ is SE(3)-invariant and b possesses property (#). Then, the transition
density of the forward process in equation 10 is SE(3)-invariant. Further assume that the function
s(k+1),θ possesses property (#) for 0 ≤ k ≤ N − 1. Then, the transition density of the reverse
process in equation 12 is also SE(3)-invariant.

Proof. We consider the transition density in equation 10. Recall that Ux ∈ Rn×d is a matrix whose
columns form an orthonormal basis of TxM. Since ξ is SE(3)-invariant, we have ξ(Rx+w) = ξ(x),
for all rotations R and translation vectors w, which implies that Rx + w ∈ M, if and only if
x ∈ M. Differentiating the identity ξ(Rx + w) = ξ(x) with respect to x, we obtain the relation
∇ξ(Rx+ w) = R∇ξ(x), from which we see that URx+w can be chosen such that URx+w = RUx.
For the orthogonal projection matrix P in equation 19, using the identity R⊤R = I3, we can
compute

P (Rx+ w) =In −∇ξ(Rx+ w)
(
∇ξ(Rx+ w)⊤∇ξ(Rx+ w)

)−1∇ξ(Rx+ w)⊤

=In −R∇ξ(x)
(
∇ξ(x)⊤∇ξ(x)

)−1∇ξ(x)⊤R⊤
=RP (x)R⊤ .

Moreover, since both b and∇ξ satisfy the property (#), we also have ϵ(Rx(k)+w;σk) = ϵ(x(k);σk)
(i.e. the probabilities of having no solution are the same). Therefore, for the transition density in
equation 10, we can derive, for any R ∈ SO(3) and w ∈ R3,

q(Rx(k+1) + w |Rx(k) + w)

=(2πσ2
k)
− d

2

(
1− ϵ(Rx(k) + w;σk)

)−1|det(U⊤Rx(k)+wURx(k+1)+w)|

× e
−

∣∣
P (Rx(k)+b)

(
Rx(k+1)−Rx(k)−σ2

kb(Rx(k)+w)

)∣∣2
2σ2

k

=(2πσ2
k)
− d

2

(
1− ϵ(x(k);σk)

)−1 ∣∣det(U⊤x(k)R
⊤RUx(k+1))

∣∣ e−
∣∣
RP (x(k))R⊤

(
Rx(k+1)−Rx(k)−σ2

kRb(x(k))

)∣∣2
2σ2

k

=(2πσ2
k)
− d

2

(
1− ϵ(x(k);σk)

)−1 ∣∣det(U⊤x(k)Ux(k+1))
∣∣ e−

∣∣
P (x(k))

(
x(k+1)−x(k)−σ2

kb(x(k))

)∣∣2
2σ2

k

=q(x(k+1) |x(k)) ,

which shows the SE(3)-invariance of the transition density of the forward process. The invariance of
the transition density of the reverse process in equation 12 can be proved using the same argument,
assuming that s(k+1),θ satisfies the relation s(k+1),θ(Rx+ w) = Rs(k+1),θ(x).

D SUPPLEMENTARY EXPERIMENTAL RESULTS

This section presents additional experimental results. In Section D.1, we present the computation
time for the experiments in the main text. Section D.2 analyzes the computational complexity of our
projection scheme and the non-convergence rate of trajectories. Finally, in Section D.3, we conduct
an ablation study on the Flood dataset, investigating the impact of the total number of steps N and
the trajectory update frequency (proportional to l−1f).

D.1 COMPUTATION TIME FOR THE EXPERIMENTS IN THE MAIN TEXT

In Table 4, we present the simulation time Tsim and training time Ttrain, with the percentages of
the total runtime Ttotal shown in parentheses. For the mesh, SO(10), and the dipeptide datasets, we
update the dataset every 100 epochs (i.e. lf = 100), resulting in the simulation time accounting for
less than 2% of the total runtime in mesh and dipeptide datasets, and the simulation time account-
ingfor approximately 11% of the total runtime in the SO(10) datasets due to the high co-dimension
of the manifold. In contrast, for the earth and climate science datasets, the dataset is updated at every
epoch (i.e. lf = 1), leading to a higher proportion of simulation time.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 4: Detailed runtime metrics in our experiments. We report Tsim, Ttrain, and Ttotal as the time
for path generation, time for training, and total runtime, respectively, with the percentages of the
total runtime Ttotal shown in parentheses. The parameter lf determines the frequency of trajectory
updates. The final column Tepoch shows the training time per epoch, calculated as Ttrain/Nepoch.
All time metrics are reported in seconds.

Datasets lf Nepoch Tsim Ttrain Ttotal Tepoch

Volcano 1 20000 3946(67.0%) 1943(33.0%) 5889 0.10
Earthquake 1 20000 4591(24.2%) 14395(75.8%) 18986 0.72
Flood 1 20000 4414(29.0%) 10814(71.0%) 15228 0.54
Fire 1 20000 5666(14.0%) 34893(86.0%) 40559 1.74

Bunny, k = 50 100 2000 252(1.8%) 14120(98.2%) 14372 7.06
Bunny, k = 100 100 2000 142(1.6%) 8718(98.4%) 8860 4.36
Spot, k = 50 100 2000 113(1.3%) 8751(98.7%) 8864 4.38
Spot, k = 100 100 2000 70(1.3%) 5189(98.7%) 5259 2.59

SO(10),m = 3 100 2000 2414(11.2%) 19042(88.8%) 21456 9.52
SO(10),m = 5 100 2000 2426(11.2%) 19289(88.8%) 21715 9.64

Alanine dipeptide 100 5000 159(1.1%) 14299(98.9%) 14458 2.86

D.2 MORE DETAILS ABOUT THE PROJECTION SCHEME

Computational complexity of the projection scheme. Let kiter denote the number of Newton
iterations, and Cξ be the computational cost of evaluating ∇ξ. The complexity of solving the linear
equations in Algorithm 4 is O((n − d)3) at maximum, where n − d is the co-dimension of the
manifold. Thus, the total complexity of Newton’s method is O(kiter(Cξ + (n− d)3)).
In our examples, we have Cξ = O(1), except for the mesh datasets, where neural network propa-
gation is required. In most cases, n − d = 1, while for the SO(10) datasets, n − d = 55. When
Newton’s method converges, the number of iterations kiter is no more than 3.

Failure rate of trajectory generation. As discussed in Section 3.1, equation 5 may not have
solutions for some vectors v. In such case, the corresponding trajectories are discarded. Table 5
reports the failure rate of trajectory generation in our experiments. For the earth and climate sci-
ence datasets, the general scheme in equation 5 is computed analytically using equation 48, and no
trajectories are discarded with parameters in Table 3. For the mesh dataset, due to the complex ge-
ometry of the manifolds, a small portion of trajectories (less than 1.0%) fail. For SO(10), trajectory
generation always succeeds. In the alanine dipeptide experiment, only one out of 8000 trajectories
fails.

Furthermore, we investigate the impact of the step-size σ on the failure rate of Newton’s method.
Specifically, as shown in Table 6, we conduct experiments on the Bunny dataset with k = 100, using
various values of N , where N and σ are related by σ ∼ 1/

√
N . As the total number of steps N

decreases (i.e., as the step-size σ increases), the proportion of failed trajectories increases.

D.3 ABLATION STUDIES

In Table 7, we investigate the impact of the total number of steps N in the Markov chain on the
runtime for the Flood dataset. In Table 8, we analyze the effect of the trajectory update frequency
during training on the Flood dataset.

As shown in Table 7, as the total number of steps N decreases (i.e., as the step-size σ increases),
the Newton-based projection scheme may fail to find a solution in some cases. Specifically, when
N = 50 and N = 100, the failure rates are 0.55% and 0.0001%, respectively. When N = 200
and N = 400, no failure is observed. Additionally, as N decreases, both the training time and the
simulation time reduce accordingly. The best NNL value is achieved when N = 100. However, in
the main text, we point out the issue of NNL value in this example and choose N = 400 to ensure

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 5: Failure rate of trajectory generation. Rfail fwd and Rfail bwd represent the percentages of
discarded trajectories when sampling the forward and reverse process, respectively. σmax denotes
the maximum value of (σk)0≤k≤N−1.

Datasets σmax Rfail fwd Rfail bwd

Volcano 0.100 0.00% 0.00%
Earthquake 0.100 0.00% 0.00%
Flood 0.100 0.00% 0.00%
Fire 0.100 0.00% 0.00%

Bunny, k = 50 0.007 1.00% 0.82%
Bunny, k = 100 0.007 0.65% 0.55%
Spot, k = 50 0.010 0.15% 0.25%
Spot, k = 100 0.010 0.11% 0.10%

SO(10),m = 3 0.089 0.00% 0.00%
SO(10),m = 5 0.089 0.00% 0.00%

Alanine dipeptide 0.022 0.01% 0.00%

Table 6: Failure rate of trajectory generation for the Bunny dataset with k = 100 under various N .
Here, σ denotes the step-size and Rfail fwd represents the proportion of failed forward trajectories.

N 100 200 300 400 500 600 700

σ 1.57e-2 1.11e-2 0.90e-2 0.78e-2 0.70e-2 0.64e-2 0.59e-2
Rfail fwd 3.51% 2.30% 1.49% 0.97% 0.66% 0.46% 0.17%

that all trajectories are successfully generated. Furthermore, as shown in Table 8, increasing the
frequency of trajectory updates (decreasing lf) leads to longer computational time.

Table 7: Ablation study on the total number of steps N in the Markov chain for the Flood dataset.
The parameterRfail fwd denotes the percentage of discarded trajectories when simulating the forward
process. The definitions of Tsim, Ttrain, Ttotal, Tepoch can be found in the caption of Table 4.

N σmax Rfail fwd Tsim Ttrain Ttotal Tepoch NLL

50 0.28 0.55% 643(30.8%) 1442(69.2%) 2085 0.07 0.48±0.08

100 0.20 0.00% 1151(29.1%) 2801(70.9%) 3952 0.14 0.45±0.07

200 0.14 0.00% 2245(29.0%) 5497(71.0%) 7742 0.27 0.46±0.07

400 0.10 0.00% 4414(29.0%) 10814(71.0%) 15228 0.54 0.49±0.09

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 8: Ablation study on the trajectory update frequency (proportional to l−1f) for the Flood dataset
with N = 100. The definitions of Rnon c, Tsim, Ttrain, Ttotal, Tepoch can be found in the caption of
Table 4.

lf Tsim Ttrain Ttotal Tepoch NLL

1 1151(29.1%) 2801(70.9%) 3952 0.14 0.45±0.07

2 556(16.6%) 2792(83.4%) 3348 0.14 0.49±0.09

3 366(11.4%) 2838(88.6%) 3204 0.14 0.49±0.08

5 230(7.6%) 2787(92.4%) 3017 0.14 0.48±0.09

10 111(2.9%) 3682(97.1%) 3793 0.18 0.45±0.07

30

	Introduction
	Background
	Method
	Projection scheme
	Forward process
	Reverse process
	Training objective
	Algorithmic details

	Theoretical results
	Related work
	Experiments
	Earth and climate science datasets
	Mesh data on learned manifolds
	High-dimensional special orthogonal group
	Alanine dipeptide

	Conclusion
	Proofs of the continuous-time limit
	Details of algorithms and experiments
	Earth and climate science datasets
	Mesh data on learned manifolds
	High-dimensional special orthogonal group
	Alanine dipeptide

	Theoretical results on neural networks for molecular systems
	Supplementary Experimental Results
	Computation time for the experiments in the main text
	More details about the projection scheme
	Ablation studies

