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APPENDIX

A OUTLINE OF PROOF FOR THEOREM 1, COROLLARY 1, AND PROPOSITION 1

We now provide an outline of our results and proofs.

1. In Appendix A, we introduce Lemmas 1, 2, which will be used to prove Theorem 1.

2. In Appendix B, we provide the proof of Corollary 1 - the simplification of gradient descent
under alignment - which relies on Lemma 2.

3. In Appendix C, we provide the proof of Proposition 1 - linear convergence under strong
alignment - which relies on Corollary 1.

4. In Appendix D, we introduce Theorem 4, which is a generalization of Theorem 1 to fully
connected networks with rectangular layers. We use Lemma 2 and Proposition 1 to prove
Theorem 4.

5. In Appendix E, we finally prove Theorem 1, which follows from Theorem 4.

Here, we present two lemmas that will be used extensively in our proofs.

Clearly strong alignment being an invariant implies that alignment is an invariant. Now we show that
alignment implies strong alignment in the case of networks with square matrix layers.

Lemma 1. Let {Wi}di=1 ⊂ Rk×k, where d ≥ 3. If alignment is an invariant of training under
the squared loss for network f = WdWd−1 . . .W1 on data (X,Y ) ∈ Rk×n × Rk×n, then strong
alignment is also invariant.

Proof. Assume that alignment is an invariant of training. Gradient descent on the objective

arg min
f∈F

1

2n

n∑
i=1

‖y(i) − f(x(i))‖22 (7)

proceeds via the following update rule:

W
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d . . .W

(t)
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(t)
i−1 . . .W

(t)
1 x(l))T , ∀i ∈ [d]. (8)

Since alignment is an invariant, the initialization satisfies W (t)
i = UiΣ

(t)
i V Ti for 2 ≤ i ≤ d − 1,

W
(t)
1 = U1Σ
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1 V

(t)
1

T
, andW (t)

d = U
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d Σ

(t)
d V Td , where Ui = Vi+1 for i ∈ [d−1]. For 2 ≤ i ≤ d−1,

substituting into Equation (8) yields
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Since alignment is an invariant, the quantity
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(9)

is a diagonal matrix for all t. Since each of the Σj are square, full rank matrices, the quantity
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must be diagonal for all t.

The update rule for W1 is given by

W
(t+1)
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which is diagonal. Therefore V (t+1)
1

T
V

(t)
1 is diagonal, and since this is also an orthogonal matrix we

must have that V (t+1)
1 = V

(t)
1 .

Similarly, the update rule for Wd is given by:
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which is diagonal. Therefore U (t)
d

T
U

(t+1)
d is also diagonal, implying that U (t)

d = U
(t+1)
d . Therefore

strong alignment is also an invariant. This means that alignment being an invariant and strong
alignment being an invariant are equivalent in the setting where all the ki are equal.

Now that we have shown the equivalence of alignment being an invariant and strong alignment being
an invariant in the setting where all the layers are square, we prove the following lemma for the
general case where the ki are not necessarily all equal.

Lemma 2. Let f : Rk0 → Rkd be a linear fully connected network as in Equation equation 1, and
let r = min(k0, . . . , kn). For training under the squared loss on the dataset (X,Y ), there exists an
aligned initialization f(x) = W

(0)
d · · ·W

(0)
1 x such that W (t)

i = UiΣ
(t)
i V Ti for all i ∈ [d] (that is,

Ui, Vi are not updated) if and only if there exist orthonormal matrices U ∈ Rkd×kd , V ∈ Rk0×k0
such that

UTY XTV =

[
Λ′ 0
0 A1

]
, and V TXXTV =

[
Λ 0
0 A2

]
for diagonal r × r matrices Λ,Λ′ and arbitrary A1 ∈ R(k0−r)×(kd−r), A2 ∈ R(k0−r)×(k0−r).

Proof. Gradient descent on the objective

arg min
f∈F

1

2n

n∑
i=1

‖y(i) − f(x(i))‖22

proceeds via the following update rule:
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1 x(l))T , ∀i ∈ [d],

(10)
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where γ is the learning rate and superscript (t) denotes the gradient descent step. Assume that the
network is initialized to be aligned, that is, there exist orthonormal Ui, Vi and diagonal matrices Σi
such that Wi = UiΣiV

T
i and Ui = Vi+1 for i ∈ [d− 1]. Substituting into Equation (10) yields
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Thus strong alignment is an invariant if and only if for all i, the quantity
d∏

j=i+1

Σ
(t)
j

T
(UTd Y X

TV1 − Σ
(t)
d · · ·Σ

(t)
1 V T1 XX

TV1)

i−1∏
j=1

Σ
(t)
j

T

is an ki × ki−1 diagonal matrix for all t. At initialization each of the Σj have rank at least r.
Considering i = 1 and i = d, the above quantity is diagonal if and only if the matrix

UTd Y X
TV1 − Σ

(t)
d · · ·Σ

(t)
1 V T1 XX

TV1 (11)
has its top r rows and top r columns all diagonal; i.e. we can write this expression as[

D 0
0 A

]
(12)

for an r × r diagonal matrix D and an arbitrary (kd − r)× (k0 − r) matrix A.

For the first direction, assume that strong alignment is an invariant, i.e. that Equation (11) can be
written in the above block diagonal form. Define Σ

(t)
tot = Σ

(t)
d · · ·Σ

(t)
1 – this is a diagonal matrix

whose only nonzero entries are the first r on the diagonal. We know that

UTd Y X
TV1 − Σ

(t)
totV

T
1 XX

TV1
is of the form of Equation (12) for all gradient descent steps t, and thus the quantity(

Σ
(t)
tot − Σ

(0)
tot

)
V T1 XX

TV1

is of this form as well. Assuming that we’ve not initialized any of the singular values to be their
optimal value (which is satisfied with probability 1), the top r diagonal entries of Σ

(t)
tot − Σ

(0)
tot are

nonzero, which means that the top left r × r submatrix of V T1 XX
TV1 is diagonal, and that the top

right submatrix consists of all zeros. But since V T1 XX
TV1 is symmetric, the bottom left submatrix

must also consist of all zeros, and thus we have

V T1 XX
TV1 =

[
D2 0
0 A2

]
for an r × r diagonal matrix D2 and arbitrary (k0 − r) × (k0 − r) matrix A2. Plugging this into
Equation (11) implies that UTd Y X

TV1 must be of this form as well.

We next show the other direction. Assume that for some orthonormal matrices U and V , it holds that
V TXXTV is diagonal and UTY XTV can be written in the block matrix form given by Equation
(12). Initializing the layers such that Ud = U, V1 = V, and Ui = Vi+1 for i ∈ [d − 1] implies that
Equation (11) is also of this block diagonal form, as desired.

B PROOF OF COROLLARY 1

Proof. The conditions of strong alignment imply the conditions of Lemma 2, which in turn implies
that there exist orthonormal matrices U, V such that

UTY XTV =

[
Λ′ 0
0 A1

]
, and

V TXXTV =

[
Λ 0
0 A2

]
,

13
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where Λ,Λ′ are r × r diagonal matrices. Furthermore, from the proof of Theorem 1, if the layers are
initialized to be aligned, with Ud = U and V1 = V , then the gradient descent updates are as follows:

W
(t+1)
i = Ui

Σ
(t)
i +

γ

n

d∏
j=i+1
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(t)
j
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i−1∏
j=1

Σ
(t)
j

T

V Ti .

Since the minimum of the ranks of the Σ
(t)
i is r, only the top r singular values of Wi are updated.

Plugging in the expressions for UTY XTV and V TXXTV and restricting to the top r singular
values (which we denote by Σ′i), we obtain the statement of Corollary 1, with the singular values of
each layer being updated as:

Σ′i
(t+1)

= Σ′i
(t)

+
γ

n

∏
j 6=i

Σ′j
(t)

(Λ′ −
d∏
j=1

Σ′j
(t)

Λ).

This completes the proof.

C PROOF OF PROPOSITION 1

Proof. By Corollary 1, under strong alignment, each singular value is updated independently of
each other. Thus we can focus on how the kth singular value for each layer is updated. Recall that
σk(W

(t)
i ) denotes the kth diagonal entry of Σ

(t)
i . Since we’re focusing on a fixed k, we drop the

subscript k for convenience and let σ(t)
i equal σk(W

(t)
i ). The σ are updated by the following update

rule:

σ
(t+1)
i = σ

(t)
i +

γ

n

∏
j 6=i

σ
(t)
j (λ′k − λk

d∏
j=1

σ
(t)
j ),

where λ′k, λk are the kth diagonal elements of Λ′,Λ. We assume that Λ′ and Λ have the same zero
pattern. Therefore λk = 0 if and only if λ′k = 0. If both of these values are zero, then σi is not
updated.

Otherwise, assume λk, λ′k 6= 0. Note that λk > 0, since XXT is positive semidefinite. We can also
negate columns of U to ensure that λ′k > 0 as well. Let η = γλk

n , and define S(t) =
∏d
j=1 σ

(t)
j . This

yields

σ
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σ
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i
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Therefore (dropping the superscript to let S = S(t)),
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Thus we obtain

λ′k
λk
− S(t+1) =

(
λ′k
λk
− S(t)

)
· r(t)k , (16)

where

r
(t)
k = 1−

∑
T⊂[d]:|T |≥1

η|T |S|T |+1(
λ′k
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− S)|T |−1

∏
i∈T

1

(σ
(t)
i )2

. (17)

We aim to bound r(t)k from both above and below. First, we show that r(t)k is nonnegative in order to
prove the following lemma:

Lemma 3. 0 < S(j) ≤ λ′k
λk

for all j ≥ 0.

Proof. We proceed by induction. By the original assumptions in Proposition 1, 0 < S(0) ≤ λ′k
λk

. Now

assume that 0 < S(j) ≤ λ′k
λk

for all j ≤ t. By the update rule in Equation (13), σ(j+1)
i ≥ σ(j)

i . Since

σ
(0)
i > 0, σ(j)

i > 0, so S(j) > 0. We also have that∏
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1
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≤
∏
i∈T

1

(σ
(0)
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≤ 1

(mini σ
(0)
i )2|T |

.

Next, note that we can bound

S|T |+1(
λ′k
λk
− S)|T |−1 ≤ (

λ′k
λk

)2|T |.

This means that we can upper bound the sum in Equation (17) as∑
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η|T |S|T |+1(
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∏
i∈T

1
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≤
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i
σ
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)2|T |

=

(
1 + η · (min

i
σ
(0)
i )−2(
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λk

)2
)d
− 1.

Since γ ≤ n ln 2
d · mini (σ

(0)
i )

2
λk

λ′2k
, we have that η ≤ ln 2 · mini (σ

(0)
i )

2

d · λ
2
k

λ′k
2 , and thus the right-hand

side of the above expression can be upper bounded by(
1 + η · (min

i
σ
(0)
i )−2

)d
− 1 ≤ edη(mini σ

(0)
i )−2

− 1 ≤ eln 2 − 1 = 1.

Therefore r(t)k ≥ 0. Plugging into Equation (16), since S(t) = S ≤ λ′k
λk
, we get that S(t+1) ≤ λ′k

λk
,

which completes the inductive step.

Next, we would like to upper bound r
(t)
k by a term independent of t in order to obtain linear

convergence. We can lower bound the sum in Equation (17) by the sets with size 1, so∑
T⊂[d]:|T |≥1

η|T |S|T |+1(
λ′k
λk
− S)|T |−1

∏
i∈T

1

(σ
(t)
i )2

≥
d∑
i=1

ηS2 1

(σ
(t)
i )2

≥ ηS2 · dS−2/d,

where the last inequality is due to AM-GM . Lemma 3 implies that S(j+1) ≥ S(j), which means that
the above sum is at least ηd(S(0))2−2/d, which means that we can upper bound r(t)k by

r
(t)
k ≤ 1− ηd(S(0))2−2/d.

This implies that S(t+1) is closer to λ′k
λk

than S is, and in particular

λ′k
λk
− S(t+1) ≤ (

λ′k
λk
− S)(1− dη(S(0))2−2/d);
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hence
λ′k
λk
− S(t) ≤ (

λ′k
λk
− S(0))(1− dη(S(0))2−2/d)t.

Since the initialization is fixed, the quantity 1 − dη(S(0))2−2/d is fixed, and thus S(t) converges
linearly to λ′k

λk
. Therefore each of the top k singular values converge linearly to their optimal value

λ′k
λk

, which means that the loss converges linearly as well.

To complete the proof, it suffices to show that this limit solution achieves a training loss of zero. This
is proven in a more general setting at the end of Appendix E.

D PROOF OF THEOREM 4

We can finally state the generalization of Theorem 1 to the non-square setting:

Theorem 4. Let f : Rk0 → Rkd be a linear fully connected network as in Equation equation 1, and
let r = min(k0, . . . , kn). Strong alignment is an invariant of training under the squared loss on the
dataset (X,Y ) if and only if there exist orthonormal matrices U ∈ Rkd×kd , V ∈ Rk0×k0 such that

UTY XTV =

[
Λ′ 0
0 A1

]
, and V TXXTV =

[
Λ 0
0 A2

]
for diagonal r × r matrices Λ,Λ′ and arbitrary A1 ∈ R(k0−r)×(kd−r), A2 ∈ R(k0−r)×(k0−r).

Proof. By Lemma 2 we know that under strong alignment there exist U and V satisfying the above
conditions. In the other direction, Lemma 2 also tells us that given U and V satisfying the data
conditions, all the conditions of strong alignment hold except for convergence to a global minimum.

To conclude, we must show that regardless of the zero pattern of Λ or Λ′, under a strongly aligned
initialization the network converges to a solution with a loss of zero.

Using the convenient notation that σ(t)
i = σk(W

(t)
i ), we again focus on how the kth singular values

of each layer are updated, for some k ∈ [r]. Recall that the σ’s are updated as

σ
(t+1)
i = σ

(t)
i +

γ

n

∏
j 6=i

σ
(t)
j (λ′k − λk

d∏
j=1

σ
(t)
j ).

The rank ofX must be at least the rank of Y in order for the data to be linearly interpolated. Therefore
we can choosen U, V (via permuting columns) to ensure that whenever λk = 0, λ′k = 0 as well. This
ensures that σk(W

(t)
i ) is never updated. If λk, λ′k 6= 0, then we showed in Proposition 1 that S(t)

converges to λ′k/λk in the limit.

Finally, we consider the case where λ′k = 0, λk 6= 0. Assume that σ(t)
i < 1 and γ < n

λk
. Then, the

σi’s update as

σ
(t+1)
i = σ

(t)
i +

γ

n

∏
j 6=i

σ
(t)
j

−λk d∏
j=1

σ
(t)
j

 = σi

1− η
∏
j 6=i

(σ
(t)
j )2

 ,

where η = γλk

n . We observe that 0 ≤ σ(t+1)
i ≤ σ(t)

i . Therefore

0 ≤ S(t+1) = S(t)
d∏
i=1

1− η
∏
j 6=i

(σ
(t)
j )2

 ≤ S(t) exp

−η d∑
i=1

∏
j 6=i

(σ
(t)
j )2

 ≤ S(t) exp
(
−ηdS(t)2−2/d

)
.

Since S(0) is positive, we see that 0 ≤ S(t+1) ≤ S(t), and therefore S(t) must converge to some
constant c. Assume that c 6= 0. For all ε > 0, there exists some t such that S(T ) < c+ ε. Then,

S(T+1) ≤ S(T ) exp
(
−ηdS(T )2−2/d

)
< (c+ ε) exp

(
−ηc2−2/d

)
,
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where exp
(
−ηc2−2/d

)
is a constant which is less than 1. Hence if we choose ε such that

exp
(
−ηc2−2/d

)
< c+ε

c , then S(T+1) < c, a contradiction. Therefore c = 0, and hence
S(t) → 0 = λ′k/λk.

In general, we have shown that if λk 6= 0, then σk(W1(t)) · · ·σk(Wd(t))→ λ′k/λk. This solution is
given by f(x) = UdΛ

′Λ−1V T1 x, which is the solution given by the pseudoinverse which obviously
has a loss of zero.

E COMPLETING THE PROOF OF THEOREM 1

Proof. In Lemma 1, we showed that in the setting where all layers are square, alignment is equivalent
to strong alignment. Theorem 4 states that in general, strong alignment is an invariant if and only if
there exist U, V satisfying particular data conditions. Since in the square setting r = k, by Theorem 4
we have that strong alignment is an invariant if and only if there exist U, V such that UTY XTV and
V TXXTV are diagonal, as desired.

F ALIGNMENT FOR 1-DIMENSIONAL OUTPUTS

Proposition 5. Assuming gradient descent avoids the point where all parameters are zero, alignment
is an invariant of training for any linear fully connected network f : Rk0 → R, any convex, twice
continuously differentiable loss function, and data (X,Y ) ∈ Rk0×n × R1×n for which the network
can achieve zero training error.

Proof. If we initialize the weight matrices to be rank 1 and aligned, then the matrices {Σ(t)
i }di=1 are

diagonal with a single non-zero entry. Following the proof of Theorem 1, we obtain that alignment is
an invariant if the matrix

d∏
j=i+1

Σ
(t)
j

T

(
UTd

n∑
k=1

∂`

∂f

∣∣∣∣
(x(k),y(k))

x(k)
T
V

(t)
1

)
i−1∏
j=1

Σ
(t)
j

T

is diagonal. When i 6= 1, d, this matrix is clearly of rank 1 and diagonal (and has a single nonzero
entry). This implies that Ui, Vi are invariant for all i 6= 1, d. If i = d, then since kd = 1, the above
quantity is also a rank 1 diagonal matrix, implying that Ud and Vd are invariant. Finally, if i = 1, the
above matrix is rank-1 but not necessarily diagonal. However, all but the top row are zeros, which
after plugging into the gradient descent update rule implies that U1 is invariant as well. Importantly,
layers Wi+1,Wi for i ∈ [d− 1] remain aligned regardless of the loss function used, as the expression
above is always a diagonal matrix with a single nonzero entry when the layers are initialized to be
rank 1. The final step is to show that training leads to zero error according to Definition 3. To do
this, we first characterize the stationary points and then under assumptions, we prove that the loss
converges to zero.

We now characterize the stationary points of the above update. Let v(t)1 denote the first column of
V

(t)
1 , and let σ1(W

(t)
j ) denote the top singular value in the usSVD of W (t)

j . Then the stationary
points are given by:

1. σ1(W
(t)
j ) = 0 for j ∈ [d].

2. v(t)1 ⊥
n∑
k=1

∂`

∂f

∣∣∣∣
(x(k),y(k))

x(k)
T

If we initialize σ1(W
(0)
1 ) = 0, then we have that:

σ1(W
(t)
1 )v

(t)
1

T
=

n∑
k=1

c
(t)
k x(k)

T

c
(t+1)
k =

n∑
k=1

c(t)k + γ
∏
j 6=k

σ1(W
(t)
j )

∂`

∂f

∣∣∣∣
(x(k),y(k)

x(k)
T
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for c(t)k ∈ R and ∀t ∈ Z≥0. Hence, updates to v(t)1 are in the span of the data, and so assuming that

{x(k)}nk=1 are linearly independent, v(t)1 cannot be orthogonal to
n∑
k=1

∂`

∂f

∣∣∣∣
(x(k),y(k))

x(k)
T

unless the

c
(t)
k are all 0, i.e. σ1(W

(t)
1 ) = 0 for t > 0.

Next, if we initialize σ1(W
(0)
i ) = σ1(W

(0)
j ), then σ1(W

(t)
i ) = σ1(W

(t)
j ) for all i, j ∈ {2, . . . d}, t ≥

0 since for all i ∈ {2, . . . d}:

σ1(W
(t+1)
i ) = σ1(W

(t)
i ) +

∏
j 6=i

σ1(W
(t)
j )

(
n∑
k=1

∂`

∂f

∣∣∣∣
(x(k),y(k))

x(k)
T
v
(t)
1

)

This initialization corresponds to layers Wi+1,Wi being balanced for i ∈ {2, . . . d}. Thus, under this
initialization, the only other stationary point is given by σ1(W

(t)
i ) = 0 for all i ∈ {2, . . . d}.

Hence, if gradient descent avoids the non-strict saddle points given by σ1(W
(t)
i ) = 0 for all i ∈

{2, . . . , d} and σ1(W
(t)
i ) = 0 for all i ∈ [d], then gradient descent converges to a local (and thus

global) minimum of the convex loss. The former stationary point can be avoided by re-parameterizing
the network such that σ1(W

(t)
i ) = σ1 for all i ∈ {2, . . . d} (i.e. σ1 = 0 now corresponds to a

strict saddle as defined in Lee et al. (2016)), and then taking a random initialization for σ1. This
would correspond to gradient descent on the original parameterization with a scaling factor on the
learning rate for parameters σ1(W

(t)
i ) for i ∈ {2, . . . d}. The latter stationary point is avoided by the

assumption in the proposition.

G PROOF OF PROPOSITION 2

Proof. For any matrices A,B ∈ Cm×n, we have that 2σi(AB
∗) ≤ σi(A∗A+B∗B) (Bhatia, 1997).

Thus letting A = W2, B = WT
1 , we see that

2σi(W2W1) ≤ σi(WT
2 W2 +W1W

T
1 )

=⇒ 2
∑
i

σi(P ) ≤
∑
i

σi(W
T
2 W2 +W1W

T
1 )

= ‖WT
2 W2 +W1W

T
1 ‖1

≤ ‖WT
2 W2‖1 + ‖W1W

T
1 ‖1

= ‖W2‖2F + ‖W1‖2F

This lower bound is in fact achieved for an aligned solution. If the SVD of P is P = UΣV T , setting
W1 = WΣ

1
2UT and W2 = UΣ

1
2V T yields ‖W1‖2F = ‖W2‖2F = Tr(Σ), so ‖W1‖2F + ‖W2‖2F =

2Tr(Σ).

H PROOF OF THEOREM 2

Proof. Given an arbitrary loss function, assume that the ith layer is restricted to some structure given
by a subspace S and basis matrices A1, . . . Am, so that at timestep t we have that

W
(t)
i =

m∑
j=1

(cij)
(t)Aj

We take the gradient of the loss with respect to the cij . The chain rule yields:

∂l

∂cij
=

n∑
p,q=1

∂l

∂(Wi)pq
· ∂(Wi)pq

∂cij
=

n∑
p,q=1

∂l

∂(Wi)pq
·Ajpq
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The gradient descent update on cij is thus:

(cij)
(t+1) = (cij)

(t) − η · ∂l
∂cij

= (cij)
(t) − η

n∑
p,q=1

∂l

∂(Wi)pq
·Ajpq

The corresponding update on W i becomes

W
(t+1)
i =

m∑
j=1

(cij)
(t+1)Aj

=

m∑
j=1

(cij)
(t)Aj − η

m∑
j=1

n∑
p,q=1

∂l

∂(Wi)pq
·AjpqAj

= W
(t)
i − η

m∑
j=1

n∑
p,q=1

∂l

∂(Wi)pq
·AjpqAj

We calculate the projection operator π of some arbitrary matrix M onto S. We can write

π(M) =

m∑
j=1

〈M,Aj〉Aj

‖Aj‖22
=

m∑
j=1

m∑
p,q=1

MpqA
j
pqA

j

‖Aj‖22
.

If we define the operator πS as

πS(M) =

m∑
j=1

〈M,Aj〉Aj =

m∑
j=1

m∑
p,q=1

MpqA
j
pqA

j ,

then gradient descent on the c gives the following update rule on the W i:

W
(t+1)
i = W

(t)
i − η · πS

(
∂l

∂Wi

)
.

If the Aj all have norm 1, then, π = πS , and this is the same update rule given by projected
gradient descent with respect to the subspace S. Otherwise, πS is simply the projection π followed
by appropriate scaling in each of the basis directions.

I TREATING A CONVOLUTIONAL LAYER AS A LINEAR SUBSPACE

Consider a 3× 3 image. We map it to a 9-dimensional vector as follows[
x1 x2 x3
x4 x5 x6
x7 x8 x9

]
=⇒ [x1 x2 x3 x4 x5 x6 x7 x8 x9]

T
.

Then, the linear transformation given by applying the 3 × 3 convolutional filter

[
c1 c2 c3
c4 c5 c6
c7 c8 c9

]
is

given by the matrix

W =



c5 c4 0 c2 c1 0 0 0 0
c6 c5 c4 c3 c2 c1 0 0 0
0 c6 c5 0 c3 c2 0 0 0
c8 c7 0 c5 c4 0 c2 c1 0
c9 c8 c7 c6 c5 c4 c3 c2 c1
0 c9 c8 0 c6 c5 0 c3 c2
0 0 0 c8 c7 0 c5 c4 0
0 0 0 c9 c8 c7 c6 c5 c4
0 0 0 0 c9 c8 0 c6 c5


.

Then S consists of all matrices of the form W . S is a 9-dimensional subspace of R9×9, with an
orthonormal basis with coefficients being the ci.
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J PROOF OF PROPOSITION 3

Proof. For i ∈ [d], let UiΣiV Ti be a usSVD of Wi witnessing alignment of f . We can then rewrite
Y = f(X) as Y = Ud

∏d
i=1 ΣiV

T
1 X , thus proving the desired statement.

K PROOF OF PROPOSITION 4

Before we can prove Proposition 4, we require the following definition from combinatorics.

Definition 5. A partition of an integer k is a tuple λ = (λ1, . . . , λs) such that λi ≥ λi+1 for all i
and k = λ1 + · · ·+ λs. Each λi is called a part of λ. We let s(λ) denote the number of parts of λ
and we write λ ` k to indicate that λ is a partition of k.

Proof of Proposition 4. Given a k × k matrix A, let λ(A) denote the partition λ of k such that λi is
the multiplicity of the ith greatest singular value of A. Let U(A) denote the set of matrices U such
that UΣV T is a usSVD of A. The dimension of U(A) is

s(λ(A))∑
i=1

(
λi
2

)
.

To see this, note that any orthonormal basis of the eigenspace of AAT corresponding to the
multiplicity-λi eigenvalue of AAT can be the corresponding columns in an element of U(A) and
that the set of orthonormal bases of an m-dimensional linear space is

(
m
2

)
.

For any set Q of matrices, Define U(Q) to be the set of all possible sets of left-singular vectors of
elements of S. That is,

U(Q) :=
⋃
A∈Q

U(A).

For each partition λ of k, let Tλ denote the set of matrices A such that λ(A) = λ. The dimension of
Tλ ∩ S is at most r and therefore the dimension of U(S ∩ Tλ) is at most

r +

s(λ)∑
i=1

(
λi
2

)
.

LetO(k, n) denote the set of k×nmatrices with orthonormal columns. Assume alignment is possible
over S for a non-measure-zero set of matrices with n columns. Then there exists B ⊆ O(k, n) with
dim(B) = dim(O(k, n)) such that for every U ′ ∈ B, U(S) contains a matrix whose first n columns
are U ′. Therefore dim(U(S)) ≥ dim(O(k, n)). Since dim(O(k, n)) =

(
k
2

)
−
(
k−n
2

)
, the following

must be satisfied for some λ ` k

r +

s(λ)∑
i=1

(
λi
2

)
≥
(
k

2

)
−
(
k − n

2

)
. (18)

This is attained when λ = (k), but in this case Tλ is simply the set of scalar multiples of the identity.
If we forbid λ = (k), then we claim that the maximum value of r +

∑s(λ)
i=1

(
λi

2

)
is attained by

λ = (k − 1, 1). To see this, note that for all p < q,(
q − p

2

)
+

(
p

2

)
=

(
q

2

)
− p(q − p) <

(
q

2

)
.

For p > 0, this is maximized when p = 1. This implies that the maximum value of
∑s(λ)
i=1

(
λi

2

)
will be obtained in as few summands as possible (which in our case is two), and in particular when
λ1 = k − 1 and λ2 = 1. In this case, equation 18 becomes

r +

(
k − 1

2

)
≥
(
k

2

)
−
(
k − n

2

)
.

Taking the logical negation of the above inequality and simplifying gives r < k − 1−
(
k−n
2

)
.
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L ADDITIONAL EXPERIMENTS

We provide the following empirical evidence demonstrating that when the conditions of Theorem 1
are satisfied, invariance of alignment can indeed be observed empirically. We use a 2-hidden layer
fully connected network with 9 hidden units per layer.

(a) Autoencoding (X = Y ) (b) Matrix Factorization (X = I) (c) Matrix Inversion (Y = I)

Figure 3: As proven in our work, alignment is an invariant of training whenX,Y satisfy the conditions
of Theorem 1.

M EXPERIMENTAL SETUP

We provide network architectures and hyperparameters used for our experiments below. We trained
our networks on an NVIDIA TITAN RTX GPU using the PyTorch library. In all settings, we train
using gradient descent with a learning rate of 10−2 until the loss was below 10−4.

1. Figure 1a: We use a 2-hidden layer fully connected network with 9 hidden units per layer.
Our data is given by matrices (X,Y ) ∈ R9×9 where each matrix entry is drawn from a
standard normal distribution.

2. Figure 1b: We use a 2-hidden layer fully connected network with 1024 hidden units in the
first hidden layer and 64 hidden units in the second hidden layer. Our data consists of 256
linearly separable examples from MNIST and is trained using Squared Loss.

3. Figure 1c: We use a 2-hidden layer fully connected network with 1024 hidden units in the
first hidden layer and 64 hidden units in the second hidden layer. Our data consists of 256
linearly separable examples from MNIST and is trained using Cross Entropy Loss.

4. Figure 2a: We use a 2-hidden layer network with 4 hidden units per layer, where each layer
is constrained to be a Toeplitz matrix. Our input X is equal to the identity, and our output Y
is a 4× 4 matrix with each entry sampled from a standard normal distribution.

5. Figure 2b: We use a 2-hidden layer convolutional network with a single 3× 3 filter in each
layer, stride of 1, and padding of 1. Our data consists of a single example from MNIST.

Code for the experiments can be found at the following anonymized github link: https://
anonymous.4open.science/r/33277cc0-6074-46c4-8642-7feadd678278/.
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