
Under review as a conference paper at ICLR 2024

A PROOFS

A.1 MUTUAL INFORMATION OF DISTANCES

In this section, we discuss connecting the learning problem in Equation 1 with distances in the
feature plane. To establish a dependency between Equation 1 and feature distances, we first define
sets where the distance dX is bijective. Mathematically, this is equivalent to restricting sets to unique
distance values; sets we define as unique distance sets. Definition 1 formalizes the concept.
Definition 1 (Unique Distance Set and Partition). Consider the metric space (X , dX) with a corre-
sponding random variable X ⇠ pX describing the input distribution with density pX . We define a
unique distance set M ⇢ X as a set in X possessing unique distances with respect to dX and an
arbitrary but fixed anchor point xa 2 X .

M = {xi,xj ,xa 2 X : dX(xa,xj) 6= dX(xa,xi), i 6= j 6= a}

Further, we define a partition X =
S

k2[1,Np]
M

k :
T

k2[1,Np]
M

k = ; over unique distance
sets M

k as a unique partition set. Equivalently, we define M ⇠ pM and M
k
⇠ pMk as the

corresponding random variables with their respective probability densities.

With the help of unique distance sets, we can formulate the proof for Equation 3.

Proof. We first formulate Equation 1 as an optimization objective over unique distance sets. Since
the optimization over each individual set can be viewed as a separate learning task, we can rewrite
the objective as a summary of the mutual information over individual distance sets:

h
⇤(X) = argmin

hw:{I(hw(Mk);Y k)=I(Mk;Y k), k2[1,Np]}

X

k

I(hw(M
k);Mk) (9)

Given the anchor point xk for Mk, fX(x) = dX(xk;x) represents an injection within the individual
subset Mk. The characteristic is relevant, as we utilize the transformation invariance property of the
mutual information. Assuming hw preserves the unique distance property according to Equation 2,
we rewrite Equation 9 as

h
⇤(X) = argmin

hw:{I(hw(Mk);Y k)=I(Mk;Y k), k2[1,N ]}

X

k

I(hw(M
k);Mk)

= argmin
hw:{I(dH(hw(xk);hw(Mk));Y k)=I(Mk;Y k), k2[1,N ]}

X

k

I(dH(hw(xk);hw(M
k)); dX(xk;M

k))

= argmin
hw:{I(fk

H
(hw(Mk));Y k)=I(Mk;Y k), k2[1,Np]}

X

k

I(fk
H(hw(M

k)); fk
X(Mk)).

(10)

A.2 TRANSITIONAL FEATURE PRESERVATION OF INTERMEDIATE REPRESENTATIONS

In this section, we discuss the proof of Proposition 1.

Proof. To prove Proposition 1, we utilize concepts of metric distortion from metric embedding
theory (Abraham et al., 2006; Chennuru Vankadara & von Luxburg, 2018). Specifically, neural
network layers can be characterized by the distortion they introduce to the input space. We define
the network distortion coefficient of a given layer l as

⇢l(x1,x2) =

(
dH

l
(hw

l
(x1),hw

l
(x2))

dH
l�1

(hw
l�1

(x1),hw
l�1

(x2))
, if dHl�1(hwl�1(x1), hwl�1(x2)) 6= 0

1, otherwise
. (11)

13



Under review as a conference paper at ICLR 2024

The interpretation of Equation 11 is simple. If the previous layer does not collapse the input dis-
tances (dHl�1(hwl�1(x1), hwl�1(x2)) 6= 0), the ratio between both distances characterizes the dis-
tance distortion of layer l. Specifically, we have distance contraction if ⇢l(x1,x2) is less than
one. Here, zero represents the corner case when the layer collapses the input to a single point
(dHl

(hwl
(x1), hwl

(x2)) = 0). Further, we have distance expansion when ⇢l(x1,x2) is greater than
one, i.e. when the layer increases the distance between the points. Finally, we have perfect distance
preservation in the case of ⇢l(x1,x2) = 1. When the previous layer collapses the input points, the
layer l receives the same input for x1 and x2, resulting a perfect distance preservation as the distance
between the same point is trivially zero.

The following relationship between distortion and network distances is important.

dHl
(hwl

(x1), hwl
(x2)) = ⇢l(x1,x2) ⇤ dHl�1(hwl�1(x1), hwl�1(x2)) (12)

Equation 12 follows directly from the the fact that the input of a given layer l is the output of the
previous layer hw = hw0 � hw1 ... � hwL

. When the previous layer does not collapse the input
Equation 12 directly follows from the definition of ⇢l. In the case of feature collapse within the
previous layer (dHl�1(hwl�1(x1), hwl�1(x2)) = 0), the input to the next layer is the collapsed point
and dHl

(hwl
(x1), hwl

(x2)) = 0 satisfying Equation 12.

Using the network distortion coefficient we can rewrite the linear combination of distances as a
function of the input distances dX :

dSDN (�h(x1),�h(x2)) =
LX

l=0

rldHl
(hwl

(x1), hwl
(x2)),

=
LX

l=0

rl ⇤ dX(x1,x2) ⇤
lY

i=0

⇢i(x1,x2),

= dX(x1,x2) ⇤
LX

l=0

rl ⇤

lY

i=0

⇢i(x1,x2),

= dX(x1,x2) ⇤ C.

(13)

The first derivation follows from a recursive application of Equation 12. The second, from the
independence of dX(x1,x2) from both i and l.

We note that Equation 13 satisfies Equation 4 when an appropriate weight choice rl results in C = 1.
A solution for rl only exists when the first layer is collapse resistant, i.e. when ⇢0(x1,x2) 6= 0 for
dX(x1,x2) 6= 0; a requirement for Proposition 1.

A.3 MUTUAL INFORMATION OF INTERMEDIATE REPRESENTATIONS

In this section, we discuss how intermediate representations aid in increasing the information of
the full input distribution within the uncertainty source representation. As discussed in Section 2.1,
effective uncertainty estimation is contingent on modelling information of the full input space X

(not just XID) to differentiate the training distribution from the test distribution. Within the context
of the mutual information in neural networks (Tishby et al., 2000), achieving this is equivalent
to maintaining the mutual information between the uncertainty source representation Z (i.e. the
representation used to compute the uncertainty u(Z)), and the input X .

I(Z;X). (14)

A differentiator for uncertainty estimators is therefore their uncertainty source Z. We show that
combining intermediate layers has favorable uncertainty properties in comparison to a conventional
neural network output - i.e. our method maintains the mutual information I(Z;X) more effectively.

14



Under review as a conference paper at ICLR 2024

In our algorithm, we measure uncertainty from a combination of intermediate layers hl
wl

instead of
the final output. Within the context of mutual information, the joint representation Z = h

1
w1

, ..., h
L
wL

maintains the following relationship for a layered neural network:

I(h1
w1

, ..., h
L
wL

;X) � I(hw(X);X) (15)

The interpretation of Equation 15 is simple. Our method preserves information by extracting features
before they are collapsed by subsequent network components. Hence, the mutual information with
respect to the input is larger when intermediate representations are utilized in comparison to the final
output exclusively. We further provide proof for Equation 15:

Proof. For our discussion, we utilize data processing inequality (Cover & Thomas, 2006) within the
context of neural networks. Specifically, given an intermediate layer hl

wl
the following relationship

holds for any subsequent layers

I(hl
wl
(X);X) � I(hl+1

wl+1
(X);X). (16)

The mutual information of the joint variable Z = h
1
w1

, ..., h
L
wL

and input X can be expressed with
the chain rule of mutual information

I(Z;X) = I(h1
w1

(X);X)� I(h2
w2

(X), ..., hL
wL

(X);X|h
1
w1

(X))

= I(h1
w1

(X);X)�H[X] +H[X|h
2
w2

(X), ..., hL
wL

(X)]

= I(h1
w1

(X);X)

� I(hw(X);X)

(17)

The first derivation comes from the chain rule of mutual information, the seconde from the definition
of mutual information, and the third from the fact that layered neural networks form a Markov
chain with X ! h

1
w1

(X) ! ... ! h
L
wL

(X) (Tishby et al., 2000). The final inequality is a direct
manifestation of Equation 16.

B IMPELEMENTATION DETAILS

In this appendix, we provide details of the different experimental setups and comparison
methods used in this paper. All experiments are implemented with pytorch. When a im-
plementation was publicly available, we heavily relied on it in our own code. This is
the case for DUQ (https://github.com/y0ast/deterministic-uncertainty-quantification), and SNGP
(https://github.com/google/uncertainty-baselines/blob/master/baselines/imagenet/sngp.py, as well
as https://github.com/y0ast/DUE).

B.1 SURFACE PLOTS AND CLASS DISTRIBUTION EXPERIMENTS

Hyperparameter and Architecture Details In all experiments, we train a resnet-18 architecture
(He et al., 2016) over 200 epochs and optimize with stochastic gradient descent with a learning
rate of 0.01. We further decrease the learning rate by a factor of 0.2 in epochs 100, 125, 150,
and 175 respectively, and use the data augmentations random crop, random horizontal flip, and
cutout to increase the generalization performance. For our experiments, we deploy direct spectral
normalization of the convolutional, and batch normalization layers to implement representational
feature preservation. On the full CIFAR100 dataset, we achieve an overall classification accuracy
of 77.41 % and 75.93 % for the model with and without spectral normalization respectively. We
average our results over three random seeds.

15



Under review as a conference paper at ICLR 2024

Imbalanced CIFAR100 We imbalance the dataset as follows: for a certain subset of classes A ⇢
{1, ...,K}, we reduce the the number of training samples by 80% and do not change the number
of test samples. For a second subset B ⇢ {1, ...,K}, A \ B = ;, we reduce the number of test
samples by 90% and do not change the number of training samples. As a result, the first subset of
classes contains few training samples and a large amount of test samples, while the other set suffers
from the opposite problem. The imbalance severity can be adjusted by the number of classes in both
imbalanced subsets A[B ⇢ {1, ...,K}. For simplicity, we keep the same amount of classes in both
subsets A and B. In Figure 4, we show an overview of class distributions at different severity levels.
Here, the top and bottom row contain the training and test distribution respectively. We perform our
entire analysis on the CIFAR100 dataset as it represents a challenging benchmark with a large class
variety. In addition, the dataset is fully balanced and contains the same class distribution for training
and testing.

Figure 4: Toy example of class distributions at different imbalance severity levels. Each column rep-
resents a different severity level, and each column the training and test set distribution respectively.

B.2 COMPARISON METHOD DETAILS

In the following, we provide details on each feature preservation method.

• Energy-Based Model (Liu et al., 2021): for the energy based model, uncertainty estimates
are derived by replacing the final softmax layer with the unnormalized softmax density. No
additional feature preservation constraint is used during training. In our experiments, we
only compare against the version that does not require additional out-of-distribution data.

• DUQ (Van Amersfoort et al., 2020): in DUQ, uncertainty is inferred by the closest kernel
distance. To ensure the preservation of features, DUQ implements the double sided gradient
penalty, penalizing the squared distance of the gradient from a fixed value at every input
point. In contrast to spectral normalization, it implements feature preservation with a local
constraint, without explicit guarantees for data points outside of XID.

• SNGP (Liu et al., 2020): SNGP infers uncertainty through distance awareness within the
output. In the original paper, this is achieved by replacing the final output layer with a
gaussian process approximation, and implementing spectral normalization in combination
with residual layers. Direct spectral normalization on the weights provides a upper lips-
chitz bound while the combination with residual connections further ensures a lower lip-
schitz bound on the distance between two input points. Both bounds jointly result in fea-
ture preservation, as distances in between input points are approximately preserved when

16



Under review as a conference paper at ICLR 2024

traversing the network. In comparison to the gradient penalty, spectral normalization en-
forces a global constraint.

B.3 OUT-OF-DISTRIBUTION EXPERIMENTS ON CIFAR10/100

In our out-of-distribution experiments, we use the same backbone residual architectures (ResNet-
50, -101, and -152) with a batch size of 128. For all setups, we use the standard data augmentations
random horizontal flip, random crop, and cutout. In the following, we describe the details for each
method. All Results are averaged over three random seeds.

Softmax DNN and Energy-Based Model We train both models with the SGD optimizer and an
initial learning rate of 0.01. We optimize the model for 200 epochs and reduce the learning rate by a
factor of 0.2 in epochs 100 and 150. For the energy-based model, we use the unnormalized softmax
density, similar to other implementations (Mukhoti et al., 2023).

DUQ Our DUQ models are trained with the SGD optimizer and a learning rate of 0.05. We train
for 600 epochs and reduce the learning rate by factor 0.2 in epochs [300, 375, 450, 525]. For the
gradient penalty weight, we perform the experiment with hyperparameters from the original paper
(Van Amersfoort et al., 2020), as well as a newer implementation from Postels et al. (2022), and
report the constellation with the highest accuracy value.

SNGP We trained SNGP with the SGD optimizer and an initial learning rate of 0.01. We reduce
the learning rate by a factor of 0.2 in epochs 100 and 150, and train for 200 epochs. We further use
a spectral normalization coefficient of three.

Our Method We train each SDN model with the SGD optimizer using an initial learning rate of
0.01. Further, we optimize the architecture for 400 epochs and reduce the learning rate by a factor of
0.2 in epoch 200, and 300. The architecture of the internal classifiers is similar to Kaya et al. (2019),
with a single linear layer combined with a mixture of average-/max-pooling where necessary. The
output layer is then fed into a GP layer, which has the same architecture as SNGP. We distribute
the internal classifiers equally distanced across the network by placing a internal classifier on top
of every third residual block. For ResNet-50 this is equivalent to every sixth layer, and every ninth
layer for the remaining larger models. Our selection is geared towards simplicity and performance
may be further improved with other uncertainty scores such as entropy or energy functions. We train
each model with a equally weighted SDN loss.

B.4 ARTIFICIAL DATASET

For our experiments in Section C.2, we train our models on an artificial spiral dataset with three
different classes. Here, each spiral arm represents a class that starts in the center, and spirals for
one full loop of 360°. In our ensemble experiments, we use a three-layer MLP architecture in an
ensemble of ten. During training, we use a SGD optimizer with a learning rate of 0.008 and train
each ensemble element for 400 epochs. To measure disagreement in between layers, we adjust
the MLP architecture into a SDN, by placing an internal classifier on the first, and second layer
respectively. We train the model with an SDN loss as described in Equation 5, optimize with the
adam variant of SGD, and select a learning rate of 0.001. Due to the higher loss complexity, we train
the SDN model for 800 epochs. To further measure disagreement, we utilize the same measure as
previous works Mukhoti et al. (2023); Malinin et al. (2019).

disagreement(x) = H[
1

NIC/E

NIC/EX

i=1

p(y|x, wi)]�
1

NIC/E

NIC/EX

i=1

H[p(y|x, wi)]. (18)

Here, NIC/E denotes the number of internal classifiers or ensembles respectively, and p(y|x, wi)
the target posterior distribution of the individual model elements.

17



Under review as a conference paper at ICLR 2024

C ADDITIONAL EXPERIMENTS

C.1 SURFACE PLOTS FOR DISTANCE PRESERVATION UNDER CLASS IMBALANCE

In addition to class accuracy, we further wish to analyze uncertainty estimates under class imbal-
ance. For this purpose, we plot both accuracy and the number of samples (sample concentration)
with respect to imbalance severity and uncertainty scores (Figure 5). The accuracy plots provide in-
formation of the calibration capabilities in relation to class imbalance. Ideally, the uncertainty fully
informs of the accuracy of a sample and the dependency is linear on the y-/z-plane (Guo et al., 2017).
We note that a conventional neural network is not calibrated and overconfident in its prediction - the
dependency is not linear. Spectral normalization significantly improves along this characteristic
(top right plot), and improves linearity regardless of the imbalance severity. The bottom row com-
plements our accuracy curves. For low imbalance severities the majority of samples concentrate low
uncertainty/high accuracy regions on the x-/y-plane. However, the dependency inverts with increas-
ing imbalance. Samples concentrate in high-uncertainty/low-accuracy regions complementing the
accuracy decline in Figure 2.

Figure 5: Accuracy and number of samples (sample concentration) with respect to dataset imbalance
and average uncertainty score. In the the top row we show accuracy, in the bottom row we show
sample concentration. The left column represents a conventional DNN while the right shows feature
distance preservation through spectral normalization.

C.2 DISAGREEMENT ANALYSIS OF PROXY LABELS

In this section, we provide a detailed analysis on the uncertainty proxy scores used in TUrING
Processes. In our analysis, we compare the properties of intermediate representation with en-
sembles uncertainty scores and analyze the disagreement among both methods. Within the context
of ensembles, disagreement is used to derive the difference or “spread” of ensembles and is fre-
quently used directly as an uncertainty score in several contexts (Malinin et al., 2019). To showcase
disagreement within intermediate representations, we compare against ensembles on an artificial

18



Under review as a conference paper at ICLR 2024

Figure 6: Comparison of disagreement in ensembles and intermediate representations trained on an
artificial spiral dataset. The left image represents the total uncertainty of an ensemble of ten. In the
center, we display model disagreement within the ensembles. The right depicts the disagreement
within the intermediate representations of a single deterministic neural network. Dark red, or black
represents low uncertainty while lighter shades of red or orange depict the opposite.

spiral dataset (Figure 6). The left image shows the total uncertainty of an ensemble of ten and is
among the most common usages of ensembles. The center shows disagreement among the different
ensemble models as derived by previous work (Malinin et al., 2019), and approximates uncertainty
occurring due to data scarcity Kendall & Gal (2017). Ideally, the measure is low where sufficient
data samples are available (center of the spiral), and increases where little or no data is available. The
right shows the same measure of disagreement, with the exception of measuring in between individ-
ual SDN outputs instead of ensemble models. We note, that ensembles exhibit high disagreement
near the decision boundaries exclusively, while the SDN model comprehensively approximates data
scarcity in between layers. Our observations can be explained along the intuition of feature preser-
vation. Ensembles measure disagreement among the output of the entire network architectures, and
collapse important information from the input distribution that can be leveraged for uncertainty esti-
mation. In contrast, intermediate representations contain more information of the input distribution
and provide a coarse measure of data scarcity. Overall, we gather that disagreement in between in-
ternal classifiers is a reasonable approach to determine the hyperparameters ri. Experimental details
to produce Figure 6 can be found in Appendix B.4.

C.3 CALIBRATION AND RUNTIME

We further investigate calibration as characteristic for uncertainty score quality. With calibration, we
refer to the capability of the output score to be reflective of the actual generalization performance
(Guo et al., 2017). For this purpose, we consider the expected calibration error (ECE) (Naeini
et al., 2015) to measure miscalibration and show our results in Figure 4. Our setup is equivalent to
our experiments on out-of-distribution detection and we further show the runtime normalized by the
latency of a conventional DNN. Specifically, we measure the latency of a single batch for each model
and divide by the latency of a conventional DNN. For all of our experiments we use a single NVIDIA
GeForce GTX 1080 Ti. We note, that all algorithms are equivalent in terms of runtime and that our
method matches or outperforms comparable single-pass methods in the majority of benchmarked
constellations. Our results show both the runtime benefits and a high uncertainty estimation quality
for our method.

C.4 IMBALANCED OUT-OF-DISTRIBUTION EXPERIMENTS

In addition to standard out-of-distribution detection, we consider less informative training sets in
the form of class imbalance. For this purpose, we unbalance the full 100 classes of the CIFAR100
dataset, as described in our previous analysis in Section 3. For the first 50 classes we reduce the train-
ing samples by 80% (400 samples) and maintain the same test set. For the remaining 50 classes, we
reduce the test set by 90% (90 samples) and maintain all training samples. We use the same imple-
mentations as our previous out-of-distribution experiments and consider the three residual backbones
ResNet-50, -101, and -152. We show the AUROC scores in Table 5. Complementary to our previ-
ous results, our method outperforms other single-pass uncertainty estimators despite having access

19



Under review as a conference paper at ICLR 2024

Table 4: Expected-Calibration-Error and Runtime on CIFAR10 and CIFAR100.
ECE

Architecture Algorithms Runtime CIFAR10 CIFAR100

ResNet-50

DNN 1x 0.065 ± 0.001 1.110 ± 0.002Energy-Based (Liu et al., 2021)
SNGP(Liu et al., 2020) 1x 0.010 ± 0.002 0.720 ± 0.002
DUQ(Van Amersfoort et al., 2020) 1x 0.973 ± 0.003 -
TUrING Processes 1x 0.030 ± 0.005 0.658 ± 0.004

ResNet-101

DNN 1x 0.056 ± 0.001 1.108 ± 0.011Energy-Based (Liu et al., 2021)
SNGP(Liu et al., 2020) 1x 0.039 ± 0.013 0.671 ± 0.021
DUQ(Van Amersfoort et al., 2020) 1x 0.973 ± 0.001 -
TUrING Processes 1x 0.025 ± 0.021 0.672 ± 0.031

ResNet-152

DNN 1x 0.055 ± 0.001 1.126 ± 0.004Energy-Based (Liu et al., 2021)
SNGP(Liu et al., 2020) 1x 0.050 ± 0.008 0.698 ± 0.005
DUQ(Van Amersfoort et al., 2020) 1x 0.623 ± 0.002 -
TUrING Processes 1x 0.026 ± 0.011 0.662 ± 0.055

Table 5: OOD detection and classification accuracy on the imbalanced CIFAR100 dataset vs.
SVHN.

Architecture Algorithms Accuracy AUROC

ResNet-50

DNN 50.630 ± 0.155 0.747 ± 0.019
Energy-Based (Liu et al., 2021) 50.630 ± 0.155 0.772 ± 0.042
SNGP(Liu et al., 2020) 45.752 ± 3.375 0.783 ± 0.041
DUQ(Van Amersfoort et al., 2020) - -
TUrING Processes 52.388 ± 0.568 0.840 ± 0.019

ResNet-101

DNN 49.782 ± 0.161 0.751 ± 0.006
Energy-Based 49.782 ± 0.161 0.793 ± 0.003
SNGP(Liu et al., 2020) 44.073 ± 2.186 0.748 ± 0.018
DUQ(Van Amersfoort et al., 2020) - -
TUrING Processes 52.648 ± 1.027 0.807 ± 0.028

to only 90% of the training labels. These results illustrate the importance of using feature preser-
vation methods that do not oppose the training objective and show that intermediate representations
are attractive options for maintaining information of the input distribution.

D METHOD SUMMARY

We summarize our method in Algorithms 1, and 2. The training phase consists of two steps: we
first optimize the model and its internal classifiers jointly using the SDN loss in Equation 5. Second,
we derive the individual prediction switches s and uncertainty scores v, and fit the combination
head weights with logistic regression. During prediction, we calculate the final score as a weighted
average using the uncertainty weights as well as the internal classifier uncertainty scores us(f i

wi
(x)).

In our implementation, we calculate the individual uncertainty scores through distance awareness,
similar to SNGP (Liu et al., 2020). Applied top our algorithm, the final layer of both the internal
classifier, as well as the prediction output are Laplace-approximated Gaussian processes, and we
calculate uncertainty with the Dempster-Shafer metric:

us(x) =
K

K +
PK

k=1 exp(g
k(x))

(19)

20



Under review as a conference paper at ICLR 2024

Here, gk is the k-th logit of the output g (either model prediction or internal classifier), and K

represents the number of classes. Our choice is based on simplicity and the past success of Gaussian
process layers in single-pass uncertainty estimation (van Amersfoort et al., 2021; Liu et al., 2020).
While our design produces sufficient results, we emphasize that other implementations of both us

and hw may further improve the performance.

Algorithm 1 Training
1: Input

Labeled Training Set
{xi 2 XID, yi}

N
i=1

Unlabeled Validation Set
{xi 2 XID}

Nval

i=1

2: SDN Training
3: for epoch 2 [1, epochs] do
4: hw  SGD Update LSDN

5: end for

6: Fit Combination Head
. Derive prediction switches and scores

7: s {s(xi)}
Nval

i=1

8: v {[us(f1
w1

(xi)), .., us(fNIC

wNIC

(xi))]}
Nval

i=1

. Fit logistic regression weights
9: r1, ..., rNIC

= LR(s,v)
10: Return hw, r1, ..., rNIC

Algorithm 2 Prediction
1: Input

Test Sample xte

2: SDN Prediction
. Internal uncertainty scores

3: u [us(f1
w1

(xte)), ..., us(fNIC

wNIC

(xte))]

. Combine scores
4: ufinal  

1PNIC

i=1 ri

PNIC

i=1 rius(f i
wi
(x))

. Prediction
5: ỹte  hw(xte)
6: Return ỹte, ufinal

E ADDITIONAL RELATED WORK ON DISTANCE PRESERVING NEURAL
NETWORKS

The goal of learning a distance-preserving mapping has been an important objective in a wide range
of fields such as generative modeling (Lawrence & Quiñonero Candela, 2006; Dinh et al., 2014;
2016) and dimensionality reduction (Abraham et al., 2006; Perrault-Joncas & Meila, 2012). Re-
cently, the concept has been expanded to uncertainty estimation for neural networks and is used to
enable single-pass uncertainty estimators (Liu et al., 2020). Several methods exist to control distance
preservation in neural networks and each comes with its own set of trade-offs: the two-sided gradient
penalty (Gulrajani et al., 2017) was originally introduced in the context of GANs as an alternative
to weight clipping (Arjovsky et al., 2017). The penalty regularizes the network by penalizing the
squared distance of the gradient from a fixed value for every input point. The approach is popu-
lar due to its simple implementation, but represents only a soft constraint. Spectral normalization
(Gouk et al., 2021; Miyato et al., 2018) combines spectral normalization with residual connections
to implement distance preservation. The method represents a global constraint as it regularizes by
normalizing the weights and suffers less from training instabilities as the gradient penalty. Finally,
there exists work on reversible networks that force distance preservation through reversible layers
and avoiding down-scaling operations (Jacobsen et al., 2018; Behrmann et al., 2019). In practice,
reversible models are difficult to train and consume considerably more memory in practice (van
Amersfoort et al., 2021). For this purpose, recent single-pass approaches utilize either spectral nor-
malization, or the gradient penalty.

21


	Introduction
	Background
	Neural Networks in the Information Plane
	Distance-Based Feature Preservation in the Output

	Motivation for Transitional Feature Preservation
	Theoretical Pitfalls of Feature Preservation in the Output
	Distance Preservation under Class Imbalance

	Our Method: TUrING Processes
	Transitional Feature Preservation
	Algorithm

	Related Work
	Benchmark Experiments
	CIFAR10 and CIFAR100
	Medical Modalities

	Discussion and Limitations
	Proofs
	Mutual Information of Distances
	Transitional Feature Preservation of Intermediate Representations
	Mutual Information of Intermediate Representations

	Impelementation Details
	Surface Plots and Class Distribution Experiments
	Comparison Method Details
	Out-of-Distribution Experiments on CIFAR10/100
	Artificial Dataset

	Additional Experiments
	Surface Plots for Distance Preservation under Class Imbalance
	Disagreement Analysis of Proxy Labels
	Calibration and Runtime
	Imbalanced Out-of-Distribution Experiments

	Method Summary
	Additional Related Work on Distance Preserving Neural Networks

