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Abstract
Model-based methods have significantly con-
tributed to distinguishing task-irrelevant distrac-
tors for visual control. However, prior research
has primarily focused on heterogeneous distrac-
tors like noisy background videos, leaving ho-
mogeneous distractors that closely resemble con-
trollable agents largely unexplored, which poses
significant challenges to existing methods. To
tackle this problem, we propose Implicit Action
Generator (IAG) to learn the implicit actions of
visual distractors, and present a new algorithm
named implicit Action-informed Diverse visual
Distractors Distinguisher (AD3), that leverages
the action inferred by IAG to train separated world
models. Implicit actions effectively capture the
behavior of background distractors, aiding in dis-
tinguishing the task-irrelevant components, and
the agent can optimize the policy within the task-
relevant state space. Our method achieves supe-
rior performance on various visual control tasks
featuring both heterogeneous and homogeneous
distractors. The indispensable role of implicit ac-
tions learned by IAG is also empirically validated.

1. Introduction
In recent years, there has been a surge in research on rein-
forcement learning with visual inputs (Yarats et al., 2020;
2021; Laskin et al., 2020; Hafner et al., 2020; 2021; 2023).
This interest has arisen from the application of RL algo-
rithms to real-world scenarios, where visual inputs are often
filled with distractive elements unrelated to the task. Model-
based methods have significantly contributed to distinguish-
ing distractors and extracting task-relevant information for
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visual control, as demonstrated by approaches such as TIA
(Fu et al., 2021) and Denoised MDP (Wang et al., 2022).
However, prior research has primarily focused on eliminat-
ing heterogeneous distractors, such as noisy video back-
grounds that exhibit entirely different visual semantics from
the agent behavior. When confronted with homogeneous dis-
tractors that closely resemble the task-relevant controllable
elements, previous methods often encounter substantial dif-
ficulties. For instance, when the visual observation contains
an additional shifted agent that shares a similar morpho-
logical structure with the controllable agent but cannot be
directly manipulated (Bharadhwaj et al., 2022), the policy
will get confused in determining which one to control.

For model-based approaches primarily reliant on observa-
tion reconstruction such as Dreamer (Hafner et al., 2020),
the inclusion of task-irrelevant information, like the back-
ground agent, presents considerable challenges for extract-
ing task signals. TIA (Fu et al., 2021) seeks to disentangle
the latent state into task signal and noise, through adver-
sarial reward dissociation on the task-irrelevant state and
distractor-only reconstruction. However, such objectives
are sensitive, with optimization instability and inappropriate
loss weights easily leading to the inversion of the two com-
ponents. Moreover, the underlying assumption behind these
heuristic loss objectives may not hold in environments fea-
turing homogeneous distractors, where task-irrelevant infor-
mation constitutes a relatively small proportion of the obser-
vation. Another category of distractor-eliminating methods
is based on state factorization, as seen in Denoised MDP
(Wang et al., 2022), but the assumed transition structures
of different factors are not enough to distinguish homoge-
neous distractors. Other model-free approaches (Laskin
et al., 2020; Yarats et al., 2020; Zhang et al., 2021) and
visual-based methods also struggle to guarantee effective
distractor removal, especially on visually indistinguishable
distractors.

To a certain extent, such homogeneous visual distractors can
more accurately reflect the essence of RL problems com-
pared to heterogeneous ones: distinguishment can only be
achieved by leveraging the inherent characteristics of the
control problem itself to identify the semantics and dynamic
changes of task-relevant and irrelevant components, rather
than relying on other visual elements, as distractors are not
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visually distinguishable when they are homogeneous. In this
context, the significance of actions becomes evident, which
takes precedence over observations and rewards, specifically
the implicit actions of distractors. Apparently, if we can ob-
tain the actions executed by the shifted agent, the semantics
of homogeneous distractor will be easily captured. We em-
pirically validate in Section 5.3 that near-optimal separation
of the two components can be realized by utilizing agent
actions and precise actions of the distractor to construct
separated world models. Similar principle also holds for
addressing heterogeneous distractors, where the dynamic
changes within noisy backgrounds, such as natural videos,
also exhibit semantic transitions. These transitions can also
be encoded through the implicit actions ”executed” by the
noisy components.

Building upon these insights, we propose the Implicit-
Action Block MDP (IABMDP), which operates under the
assumption that the dynamics of task-relevant and irrelevant
components are respectively conditioned on agent actions
and implicit actions of existing distractors. In line with this
assumption, we propose a practical method named implicit
Action-informed Diverse visual Distractors Distinguisher
(AD3). AD3 is designed to learn separated world models
with a focus on utilizing the inferred implicit actions of
distractors. Such inference can be achieved by the proposed
Implicit Action Generator (IAG), which leverages cycle
consistency (Ye et al., 2023; Dwibedi et al., 2019; Wang
et al., 2019) to extract the semantics of task-irrelevant dy-
namic transitions by implicitly decoupling the impact of
task-relevant agent actions. We also employ categorical
variables to bottleneck the representation of the implicit
action. Furthermore, we propose to use these implicit ac-
tions of distractors and agent actions to construct separated
world models for task-relevant and irrelevant components,
respectively, through standard variational inference, without
the need for additional loss objectives. Policy learning is
exclusively conducted within the task-relevant world model
and latent state space.

To begin with, we evaluate our method on DeepMind Con-
trol Suite tasks (Tassa et al., 2018) in the context of hetero-
geneous and homogeneous distractors. AD3 consistently
performs well on various tasks with either of the distrac-
tors. Furthermore, empirical study exhibits the irreplaceable
significance of the implicit action learned by IAG for dis-
tinguishing task-irrelevant components, as well as the inter-
pretable semantics of the implicit action. From those sides,
our proposed method is a general approach to identifying
and eliminating various types of visual distractors, and the
notion of implicit action inference can be widely used.

Our contributions can be summarized as follows: (i) We
propose a new module, Implicit Action Generator (IAG),
that can generate implicit actions of existing distractors and

be plugged into any model-based visual RL methods that
aim to model the task-irrelevant dynamics. (ii) We propose
a new method, Implicit Action-Informed Diverse Visual Dis-
tractors Distinguisher (AD3), which can distinguish diverse
visual distractors including both heterogeneous and under-
explored homogeneous ones. (iii) Our method achieves
superior performance on various visual control tasks with
different distractors.

2. Related Work
Visual Reinforcement Learning with Noisy Observations.
Many recent studies in RL explored ways to enhance per-
formance in visual environments with noise or distractors,
which can be categorized into two groups: reconstruction-
free and reconstruction-based. For instance, DBC (Zhang
et al., 2021) learns a compact latent state by bisimulation
metric to filter out distractors in the environment. InfoPower
(Bharadhwaj et al., 2022) combines a variational empower-
ment term into the state-space model to capture task-relevant
features at first. These works substitute the reconstruction’s
functionality with other designs. For reconstruction-based
methods, Iso-Dream (Pan et al., 2022) builds decoupled
world models on isolated environment states based on con-
trollability and inverse dynamics prediction. Denoised MDP
(Wang et al., 2022) decomposites the visual observation into
four parts by action and reward, and constructs the corre-
sponding models. The most similar method to us is TIA (Fu
et al., 2021), which also learns separated world models for
capturing the task and distractor features. However, TIA
does not learn an implicit action to induce the task-irrelevant
dynamics and directly relies on agent actions, which sub-
stantially differs from our method.

Learning Latent Actions in RL. Several prior works learn
latent actions to enhance policy performance and sample
efficiency. For instance, PG-RA (Chandak et al., 2019)
learns action representations that enhance generalization
across large action sets. LASER (Allshire et al., 2021)
disentangles raw actions into a latent space aligned with
the task domain. These works infer latent actions solely
from observations. Some other research focuses on learning
representations for predefined actions. ILPO (Edwards et al.,
2019) infers latent actions from expert observations and
aligns them with real-world actions. FICC (Ye et al., 2023)
and LAPO (Schmidt & Jiang, 2024) both employ a two-
phase training pipeline with a cycle consistency objective
to learn latent actions. SWIM (Mendonca et al., 2023)
constructs a structured human-centric action space based on
visual affordances, and TAP (Jiang et al., 2023) uses a state-
conditional VQ-VAE to learn low-dimensional latent action
codes. Our method can be regarded as the combination
of these two directions, which infer the underlying actions
of distractors from observations with agent actions helping
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identify the task-related information.

3. Preliminaries
Block MDP. In RL problems with high-dimensional inputs
such as images and videos, the real state space of the task
is hidden, necessitating its estimation from the observation.
Many prior works have made the Block MDP assumption
(Du et al., 2019) for this scenario. A Block MDP can be
defined as a tuple ofM = (O,Z,A, T ,R,U , µ0) which
respectively represents observations, latent states, actions,
transition function, reward function, emission function, and
the initial state distribution. Block MDP hypothesizes that
each observation o is uniquely generated by a latent state
z through the emission function U , so that the observation
contains enough information to decode the corresponding
real state exclusively. Real-world pixel-based RL problems
where observations contain rich semantics and information
about the task can benefit from this assumption.

Implicit-Action Block MDP. To tackle pixel-based RL
problems with visual distractors, we propose the Implicit-
Action Block MDP (IABMDP). We assume that the back-
ground distractors have their own implicit actions to give
rise to their visual changes and dynamic transitions. This im-
plicit distractor action can significantly aid in characterizing
the noise and task-irrelevant elements within the observa-
tion. IABMDP adds a set of distractor actions A− to the
7-tuple of Block MDP, and a latent state zt in IABMDP can
be decoupled into task-relevant and -irrelevant components:
zt = (z+t , z

−
t ), whose dynamics are also decomposed and

are respectively conditioned on agent actions at and implicit
actions a−t from existing distractors:

Task-relevant MDP z+t+1 ∼ T+(· | z
+
t , at)

rt ∼ R(· | z+t )
Task-irrelevant MDP z−t+1 ∼ T−(· | z

−
t , a

−
t )

(1)

T (zt+1|zt, at, a−t ) = T+(z+t+1|z
+
t , at)T−(z−t+1|z

−
t , a

−
t )

(2)
where z+t represents the task-related latent state that can
be controlled by the agent, while z−t characterizes the task-
irrelevant component with its distinct transition dynamics
influenced solely by the implicit action a−t . IABMDP pro-
cesses the two components independently, and the separate
world model learning can thus be realized as long as we find
a−t , the implicit action of distractors. The graphic model of
IABMDP assumption is shown in Figure 1(a).

It is worth highlighting that our underlying assumption fun-
damentally differs from that of TiMDP (Fu et al., 2021), EX-
BMDP (Efroni et al., 2021), Iso-Dream (Pan et al., 2022)
and AcT (Wan et al., 2023). These approaches either employ
agent actions to induce the task-irrelevant MDP or assume
that distractor transitions are independent of any action. Our

assumption deviates from prior methods primarily by explic-
itly introducing the concept of implicit distractor actions to
extract task-irrelevant components. This distinctive feature
sets our method apart from existing approaches. We present
a detailed comparative analysis of these methodologies in
Appendix E.1.

Model-based Reinforcement Learning (MBRL). MBRL
is a paradigm that entails learning the environment’s dynam-
ics and reward function from experience. The model is then
utilized to formulate action plans by exploring potential fu-
ture states (Sutton & Barto, 2018), enabling sample-efficient
learning as the agent can learn from the simulated environ-
ment instead of the real one (Moerland et al., 2023; Luo
et al., 2022). While initially proposed for state-based RL
problems (Sutton, 1990; Janner et al., 2019; Yu et al., 2020),
subsequent research has demonstrated its particular efficacy
for visual inputs (Ha & Schmidhuber, 2018), since Visual
MBRL can help obtain a low-dimensional surrogate environ-
ment, thereby reducing storage requirements and enhancing
learning efficiency. The success of this approach is exempli-
fied in Dreamer and its extensions (Hafner et al., 2019; 2020;
2021; 2023), where a compact latent state space is learned
by maximizing the Evidence Lower Bound (ELBO) using
Recurrent State Space Model (RSSM) architecture. Our
method employs Dreamer-style world model as a backbone.

4. Methods
We employ the IABMDP assumption to model the RL pro-
cess from visual observations containing complex distrac-
tors. Specifically, we construct separate MDPs for task-
relevant and irrelevant components. In Section 4.1, we
design the Implicit Action Generator (IAG) to infer possi-
ble actions for the task-irrelevant part. In Section 4.2, we
present our approach for constructing world models for both
task-relevant and task-irrelevant components by leveraging
agent actions and the inferred implicit actions, respectively.
We obtain the ELBO of the variational objective and mini-
mize the overall loss to update the separated world models.
In Section 4.3, we introduce how to train the policy in the
task-relevant world model by imagination.

4.1. Implicit Action Generator

We propose two dynamic models to help identify the implicit
actions of distractors: Task-relevant Action-conditioned
Inverse Dynamics (TAID) and Forward Implicit Action-
conditioned Dynamics (FIAD).

TAID: â−t = G(st, at, st+1)

FIAD: ŝt+1 = F (st, at, â
−
t )

(3)

Here, â−t is the estimated implicit action of the distractor.
To help understand the intuition behind TAID and FIAD, we
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Figure 1. The IABMDP assumption and the architecture of IAG

can reformulate them with the IABMDP assumption. They
can be rewritten as

TAID: â−t = G([s+t ; s
−
t ], at, [s

+
t+1; s

−
t+1])

= G(s+t , at, s
+
t+1︸ ︷︷ ︸

f+

, s−t , s
−
t+1︸ ︷︷ ︸

g−

)

FIAD: ŝt+1 = F ([s+t ; s
−
t ], [at; â

−
t ])

= F (s+t , at︸ ︷︷ ︸
f+

, s−t , â
−
t︸ ︷︷ ︸

f−

)

= [ŝ+t+1; ŝ
−
t+1]

(4)

where f and g denote the forward and inverse dynamics,
and subscripts + and − denote the task-relevant and irrel-
evant parts. TAID identifies task-relevant states s+t , s

+
t+1

by implicit forward dynamic f+ conditioned on the agent
action at, resulting in that the irrelevant transition between
s−t and s−t+1 is only conditioned on the implicit action, i.e.,
the implicit action can only be inferred from task-irrelevant
parts. TAID implicitly learns an inverse dynamic g− to
infer â−. To maintain cycle consistency, we use FIAD to
generate the prediction of the next state ŝt+1 consisting of
both task-relevant and irrelevant parts by implicitly learned
forward dynamics f+, f−. Notably, all the notations in the
underbraces provide interpretations of our approach, but
do not have a one-to-one correspondence to the practical
modeling process.

Obviously, TAID and FIAD can be modeled by an auto-
encoder, where the encoder G takes (st, at) and st+1 as
inputs to infer the implicit action â−t of the distractor, and
the decoder F is again fed in (st, at) and â−t inferred by the
encoder to generate the forward-prediction result ŝt+1 as an
output. We only need the encoder to get the implicit action
during inference.

Various loss objectives based on consistency or reconstruc-
tion can be designed to learn the encoder and decoder of

IAG. We maximize the cosine similarity of ŝt+1 and st+1

to ensure their closeness, enhancing the cycle consistency
required by FIAD. We also propose a difference reconstruc-
tion term at pixel level with (st, at) and the inferred â−t
as inputs to force TAID to concentrate on the changes oc-
curring in the environment. Note that both at and â−t are
involved in difference reconstruction, which urges â−t to fo-
cus on the changes that cannot be accomplished by at, since
it is impossible for solely at to reconstruct the difference
of the whole observation between timesteps given the ex-
istence of distractors. Hence, the difference reconstruction
loss objective shares a similar motivation with TAID. By
optimizing these two objectives, we can implicitly extract
s−t and s−t+1 that can not be influenced by at, and enforce
the learned â−t to realize the transition from s−t to s−t+1.
Moreover, a one-step image reconstruction loss objective is
also needed to encode full information into the latent state
st, which is beneficial for the previous two objectives. The
insights behind these loss designs are widely used (Ye et al.,
2023; Schmidt & Jiang, 2024; Edwards et al., 2019), which
are found effective in learning representations in much previ-
ous research including FICC (Ye et al., 2023). The objective
in the Implicit-Action Generation process is as follows:

LIAG = − cos(ŝt+1, st+1)− ln p(ot+1 − ot|st, at, â−t )
− ln p(ot|st)

(5)

The above process may cause shortcuts that result in mean-
ingless latent action space (Ye et al., 2023). For instance,
TAID may simply copy st+1 into the latent space and di-
rectly output it through FIAD with zero reconstruction loss,
with the impact of st, at and the dynamics in the environ-
ment totally ignored.

To avoid shortcuts, FICC leverages vector quantization tech-
nique (Kohonen & Kohonen, 2001; Van Den Oord et al.,
2017) which has the ability to reduce the amount of informa-
tion that the latent space contains, and learn interpretable dis-
crete representations. For the sake of stronger bottlenecking
of the learned latent action space, we consider the categori-
cal latent variables technique, which is employed in Dream-
erV2 (Hafner et al., 2021; 2022) and brings about marvelous
performance boost. Compared to traditional quantization
methods (Kohonen & Kohonen, 2001; Van Den Oord et al.,
2017; Hsu et al., 2023), categorical (one-hot) coding can be
more flexible since it implicitly builds different latent code-
books for different learning objectives. The learning process
of the codebooks and the quantizing operation are inherently
embedded in the categorical-variable architecture, and using
one-hot codes in forward propagation equals to leveraging
active bits in the code as indices for quantization. Moreover,
the extreme sparsity of categorical variables significantly
benefits the bottlenecking of the latent action space in IAG
and enhances generalization (Hafner et al., 2021). More

4



AD3: Implicit Action is the Key for World Models to Distinguish the Diverse Visual Distractors

implementation details and discussions on using categorical
variables as implicit action representations can be found in
Appendix B.2 and Appendix E.4.

To summarize, the aforementioned three design compo-
nents, namely the conceptual framework, loss objectives,
and representation form, collectively constitute the complete
structure of the Implicit Action Generator. IAG can infer a
meaningful implicit action â− representing the semantics
of the distractor’s dynamic transition, which is ready to be
utilized to learn the task-irrelevant MDP. The architecture
of IAG is shown in Figure 1(b).

4.2. Action-conditioned Separated World Models

Based on the IABMDP assumption, we can separately con-
struct the task-related and task-irrelevant models by utilizing
agent actions at and implicit distractor actions â−t inferred
by IAG, respectively. The loss objective for learning the
separated world models can be derived by constructing the
Evidence Lower Bound (ELBO) of the log-likelihood of the
observed data predicted by the decomposed latent states, tak-
ing into account both agent actions and the implicit actions
of distractors. The derivation of the loss function below is
in Appendix A.

LM̃ =

T∑
t=1

[
Epψ+ ,pψ−

[
− ln qϕ

(
ot | z+t , z−t

)
+

DKL
[
pψ+ (· | o≤t, a<t) ∥qθ+

(
· | z+t−1, at−1

)]
+

DKL
[
pψ−

(
· | o≤t, â−<t

)
∥qθ−

(
· | z−t−1, â

−
t−1

)] ]] (6)

where pψ+ and pψ− are two separated variational encoders
to infer the task-related and task-irrelevant latent states z+t
and z−t from historical data including observations and agent
/ distractor actions. qθ+(z

+
t+1|z

+
t , at) and qθ−(z

−
t+1|z

−
t , â

−
t )

are two forward transition models for separately learning
the dynamics of the agent and the distractor. Moreover,
qϕ is the decoder function to jointly reconstruct the whole
observation ot by task-relevant and -irrelevant states. The
equation presented in Equation (6) is analogous to the ob-
jectives of two distinct Dreamer models plus cooperative
image reconstruction from their respective latent states. The
reward function also needs to be learned by task-relevant
states, with the loss objective − ln qω(rt | z+t ).

With respect to the implementation of action-conditioned
separated world models, we design two independent Re-
current State Space Models (RSSM) (Hafner et al., 2019),
one incorporating agent actions and the other utilizing the
inferred implicit actions as inputs. For cooperative image
reconstruction, we follow the masking approach in TIA and
utilize two independent observation decoders qϕ+ and qϕ− .

4.3. Policy Learning

We train the policy only in the task-relevant latent state space
by imagining rollouts through the learned reward function
and task-relevant transition model.

Action model: at ∼ π
(
at|z+t

)
Value model: v

(
z+t
)
≈ Eπ,qθ+

[ H∑
k=t

γk−tqω
(
z+k , ak

) ]

Remarks. The AD3 method involves iterative learning of
IAG and separated world models as well as the policy. Cur-
rent action inference results given by IAG are assigned to the
trajectory data in the buffer every time IAG makes a training
update, which can be utilized in learning the task-irrelevant
branch of the separated world models. Gradients of IAG
will not flow to world-model learning. The pseudo codes
of the AD3 method are shown in Algorithm 1, and more
implementation details can be found in Appendix B.4. No-
tably, the objective function in Equation (6) is a clear ELBO
rigorously derived through standard variational inference
without any other heuristic human bias injected.

5. Experiments
We conduct experiments to answer the following scientific
research questions:

1. RQ1: How well does AD3 perform in environments
with visual inputs that contain complex distractors?

2. RQ2: How important are the implicit actions for filter-
ing out task-irrelevant information in visual RL tasks?

3. RQ3: What impact do different design choices in AD3
and IAG have on the experimental results?

4. RQ4: Do implicit actions learned by the IAG module
possess interpretable semantics?

5.1. Environments and Tasks

We evaluate AD3 and the baselines on four tasks from the
DeepMind Control Suite (Tassa et al., 2018): Cheetah Run,
Walker Run, Finger Spin, and Hopper Hop. As mentioned in
Section 1, distractors existing in visual control tasks can be
divided into two main categories: heterogeneous distractors,
revealing totally distinct visual semantics from the behavior
of the agent, and homogeneous ones, which have similar
morphology with the real agent that can be indistinguishable
for the policy on which one to control. We select each of a
representative for these two main categories, respectively:
Natural Video Backgrounds (NBV) based on the experimen-
tal design of DBC (Zhang et al., 2021) where we replace the
background of the observations with ”driving car” videos in
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Figure 2. Performance evaluation of AD3 and baselines over 4 seeds across four visual control tasks, each equipped with two representative
distractors: Agent Shifted and Natural Video Backgrounds. The solid curves and the shaded region indicate the average episodic returns
and the standard error across different runs, respectively. AD3 is the only method that consistently performs well across all tasks and
distractor variants.

Kinetics dataset (Kay et al., 2017), and Agent Shifted (AS)
based on the InfoPower work (Bharadhwaj et al., 2022),
where the background contains pre-recorded motion of a
morphologically similar agent that is being controlled. The
details of the environment design are in Appendix B.1.

We compare AD3 with several Visual Reinforcement Learn-
ing methods. For model-free methods, we select DBC
(Zhang et al., 2021), which learns task-relevant state repre-
sentation with bisimulation metric. For model-based meth-
ods, we select Dreamer (Hafner et al., 2020), which learns
a world model and optimizing policy in the latent space
with imagination, TIA (Fu et al., 2021), which models both
task-relevant and -irrelevant dynamics to enhance policy per-
formance in distraction environments, and Denoised MDP
(Wang et al., 2022), which factorizes the latent state based
on controllability as well as reward-relevance and learns the
dynamic model for each factor.

5.2. How well does AD3 perform in environments with
visual inputs that contain complex distractors?

In Figure 2, we show the performance evaluation results of
AD3 and baselines. AD3 is the only method that consis-
tently performs well across all tasks and distractor variants,
showcasing its robustness in handling different types of vi-
sual distractors. TIA exhibits significant variance across al-
most all tasks and distractors. This variance can be attributed
to the unstable learning process of the injected additional
loss objectives, and the heuristic assumptions behind them
may become incorrect under AS setting. A more detailed
analysis of TIA’s weakness when dealing with homogeneous
distractors can be found in Appendix E.3. Denoised MDP

factorizes the observation into different states, but the visu-
alization results of factorization are not as expected on most
tasks, causing the learning failure.

While struggling in the context of NBV, it is surprising
that Dreamer outperforms other methods, except AD3, in
tasks containing AS distractors. Since Dreamer encodes
all the image information into the learned latent state, we
suppose that, although task-irrelevant parts are incorporated,
at least Dreamer retains all the usable information. This will
ensure the lower bound of the performance, particularly in
scenarios with no complex heterogeneous distractors like
natural videos under AS setting.

5.3. How important are the implicit actions for filtering
out task-irrelevant information in visual RL tasks?

To study the impact of the implicit action learned by IAG
for distinguishing task-relevant and irrelevant components,
we conduct the following experiments on two tasks with
Agent Shifted distractors. We replace the implicit action â−

in AD3 with other action choices to serve as representing
the semantics of the distractor’s dynamics, and construct
the separated world models. The model learning process is
completely the same as AD3 by formulating Equation (6)
with the chosen distractor action. No extra loss is added
in, so the performance will purely reflect the influence of
different choices of distractor action itself.

The optional action to be used as the variant of â− includes:

• Agent Action, which is equivalent to the practice in
TIA (Fu et al., 2021) according to TiMDP assumption.
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Implicit Action 
Inferred by IAG Agent Action No Action Ground Truth 

Distractor Action

Observation

Task Recon
( �𝑜𝑜+)

Distractor Recon
( �𝑜𝑜−)

Observation

Task Recon
( �𝑜𝑜+)

Distractor Recon
( �𝑜𝑜−)

Figure 3. Performance and reconstruction results for different semantics of the observation, when using 4 distinct types of distractor
actions for learning the task-irrelevant model under the Agent Shifted setting. Each experiment involves two tasks: Cheetah Run and
Walker Run. When employing the ground truth action of the distractor, effective separation between the primary agent and the shifted
distractor is achieved, and so do implicit actions learned by IAG, underscoring the efficacy of the implicit actions and their semantic
consistency with actual distractor actions. Using agent action leads to a reversal in the representation of the two components, and the
reconstructed ô+ contains little task-related information. The ”no action” approach tends to preserve most of the information in the
task-relevant part, causing failure in the objective of distractor filtering.

• No Action, which is employed in EX-BMDP (Efroni
et al., 2021), IsoDream (Pan et al., 2022) and SeMAIL
(Wan et al., 2023), assuming that the transition of dis-
tractor is not conditioned on any action.

• Ground Truth Distractor Action â−∗. Under the AS
setting, we can access the actions actually executed by
the shifted agent (from the loaded action sequences),
which serve as ground truth for the distractor’s motion.
The performance of â−∗ represents the upper bound
for AD3. We regard it as an oracle for comparison.

By separated model learning conditioned on the same a+

and different a−, we can obtain different task-relevant and
irrelevant parts z+ and z−. We visualize the observation
reconstruction results ô+, ô− from z+, z− as well as the
evaluation performance in Figure 3.

The ground truth distractor action exhibits exceptional test
return and disentanglement performance. This result un-
derscores the notion that near-optimal task / background
separation can be achieved as long as we strive for the
precise estimation of â− to the greatest extent possible. Fur-
thermore, implicit actions of distractors inferred by IAG
also show fantastic performance on separating task-relevant
main agent and the irrelevant shifted one, and scores even
higher test return compared to the ground truth action on
Cheetah Run task. This demonstrates that the implicit ac-
tions learned by IAG exhibit semantic consistency with the
ground truth actions of the homogeneous distractor.

The other two variants show poor ability in terms of both

performance and separation. Employing agent action in the
task-irrelevant model can lead to a collapse in disentangle-
ment, resulting in a complete reversal of the two compo-
nents. This is attributed to the task-irrelevant part learning
task-related behavior when using agent action to model it.
Moreover, the ”No Action” approach consistently preserves
all the information within the task-relevant state and fails to
filter out the distractors. It is so hard to capture the seman-
tics of background distractors when relying solely on states
with no assistance of actions, especially for homogeneous
ones. Previous methods then resort to introducing extra loss
to enforce the task-irrelevant part to incorporate more infor-
mation from the image (Wan et al., 2023), which is unstable
and unsuitable for AS setting. In contrast, implicit actions
of distractors learned by IAG make our method much su-
perior. Such a huge difference between the above methods
illustrates the significant role of the implicit action learned
by IAG, in terms of distractor filtering.

5.4. What impact do different design choices in AD3
and IAG have on the experimental results?

We focus on validating whether the critical designs in IAG
benefit the performance and task-irrelevance distinguishing
ability, including quantization technique, usage of agent ac-
tion in TAID, and loss objectives. We remove each of these
designs and run experiments on four different tasks, and
the results are shown in Table 1. Note that ”No Categorical
Variables” indicates using VQ.

Evidently, removing any of these design components re-
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Table 1. Ablation study on critical designs in IAG. We present the mean and std of final performance on 10 test trajectories over 4 seeds.

METHOD CHEETAH RUN + NBV WALKER RUN + AS FINGER SPIN + NBV HOPPER HOP + AS

NO CATEGORICAL VARIABLES 276 ± 176 245 ± 159 381 ± 81 3 ± 4
NO AGENT ACTION 559 ± 135 240 ± 122 418 ± 67 59 ± 45
NO CYCLE CONSISTENCY 370 ± 217 240 ± 141 408 ± 76 62 ± 66
NO DIFFERENCE RECON 442 ± 190 293 ± 154 549 ± 273 36 ± 51
NO ONE-STEP RECON 624 ± 164 422 ± 86 273 ± 193 16 ± 23
AD3 658 ± 104 435 ± 85 491 ± 189 99 ± 31

sults in a performance drop, except in Finger Spin + NBV,
where the removal of difference reconstruction surprisingly
increases the performance. Since most ablation methods
perform relatively well on this task, we hypothesize that
Finger Spin + NBV is relatively easy and does not require
pixel-level precise reconstruction. Moreover, we can ob-
serve the intuitive result that cycle consistency seems to
be the most important one within the three loss objectives.
The removal of agent action in TAID will trigger a huge
performance drop, indicating the significance of agent ac-
tions for bottlenecking the implicit actions of distractors
in TAID. The employment of categorical variables exhibits
the greatest importance. We conclude that all of the design
components in IAG regarding logical framework (usage of
agent action), loss objectives, and representation form, have
been found to be crucial.

5.5. Do implicit actions learned by the IAG module
possess interpretable semantics?

Using FIAD within the IAG framework, we can generate
dynamics prediction results. Specifically, we can use IAG
to infer implicit action â−t by TAID for T steps from t = 0,
or directly sample a series of implicit actions. The obtained
â−0:T , along with the original a+0:T , can be used to generate
forward predictions from s0 using FIAD. The results are
then decoded to reconstruct the predicted observations ô1:T
at each step. This enables us to visualize and interpret the
impact of the learned implicit actions of distractors.

Semantics of Different Implicit Actions To gain insight
into the semantics of the learned actions, we sample from
the learned space of categorical variables to generate sev-
eral distinct implicit actions of the distractor. Using FIAD,
each sampled action is executed consecutively for T steps to
produce forward transition results in the context of AS dis-
tractors. The visualization results are shown in Figure 4. We
observe that different implicit actions may exhibit distinct
transition semantics, demonstrating that the implicit actions
learned by IAG can effectively represent various behaviors
of the distractors. This helps explain why AD3 excels at
capturing the dynamics of the underlying distractors.

Implicit Actions are Disentangled from Agent Actions
An ideal implicit distractor action â− should not only con-
tain the transition information about the distractor but also

Indices 
[3, 2, 0, 3]  

Indices 
[2, 0, 3, 3]  

Indices 
[0, 0, 3, 0]  

Indices 
[3, 2, 1, 0]  

Indices 
[2, 0, 0, 2]  

Indices 
[1, 1, 0, 3]  

Original 

𝒕𝒕 = 𝟎𝟎 𝒕𝒕 = 𝟐𝟐 𝒕𝒕 = 𝟒𝟒 𝒕𝒕 = 𝟔𝟔 𝒕𝒕 = 𝟖𝟖 𝒕𝒕 = 𝟏𝟏𝟎𝟎Implicit Action

Figure 4. Effects of different implicit actions in Cheetah Run + AS
(the size of implicit actions is 4). Conditioned on the same initial
observation and identical agent action sequences from the original
trajectory, we rollout FIAD for 10 steps using 6 different implicit
actions of the distractor sampled from the categorical action space.
These implicit actions, each represented by 4 one-hot codes with
indices indicating active positions in the categorical variables,
generate 6 distinct synthetic trajectories where the shifted agent
exhibits different behaviors. This demonstrates that the learned
implicit action space is rich in the semantic information of the
underlying distractors.

possess no task-relevant signal, e.g., the semantics of the
controllable agent under the AS setting. We verify such dis-
entanglement by conducting forward dynamics prediction
on one trajectory using implicit distractor actions inferred
from another, which is visualized in Figure 5. Evidently,
the final result displays a composite behavior of different
agents originating from distinct trajectories, indicating effec-
tive removal of task-relevant semantics within the implicit
distractor actions. Such empirical results validate the in-
terpretation of TAID in Equation (4), where the inferred
implicit action â− is completely disentangled from agent
action a+. The remarkable performance of separated world
model learning can thus be achieved.
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Original Traj-A

Original Traj-B

Synthetic Trajectory Imagined 
by �𝒂𝒂− Inferred from Traj-A and 

Original 𝒂𝒂+ in Traj-B

Synthetic Trajectory Imagined 
by �𝒂𝒂− Inferred from Traj-B and 

Original 𝒂𝒂+ in Traj-A

A_shift

A_main

B_shift

B_main

B_main

A_shift

B_shift

A_main

𝒕𝒕 = 𝟎𝟎 𝒕𝒕 = 𝟐𝟐 𝒕𝒕 = 𝟒𝟒 𝒕𝒕 = 𝟔𝟔 𝒕𝒕 = 𝟖𝟖 𝒕𝒕 = 𝟏𝟏𝟎𝟎

Figure 5. Forward imagination on one trajectory using implicit actions inferred from another. Using FIAD in IAG, we generate a synthetic
trajectory with agent actions from Traj-B and implicit distractor actions inferred from Traj-A by TAID. The imagined trajectory exhibits
the behavior of the shifted agent in Traj-A and the controllable agent in Traj-B, without incorporating task-relevant semantics from Traj-A
into Traj-B. A similar result is observed when we reverse the two trajectories. This illustrates the effective disentanglement of learned
implicit actions from original agent actions.

6. Discussion
Previous methods for eliminating distractors in visual con-
trol primarily focus on heterogeneous distractors, leaving
homogeneous ones largely unexplored. To address this issue,
we introduce Implicit Action Generator (IAG) to infer im-
plicit actions associated with visual distractors, and present
a novel algorithm, implicit Action-informed Diverse visual
Distractors Distinguisher (AD3), leveraging the implicit
actions to facilitate the training of separated world mod-
els. Our method demonstrates superior performance across
various visual control tasks featuring both heterogeneous
and homogeneous distractors. Empirical evidence also un-
derscores the indispensable role played by implicit actions
learned through IAG and their interpretable semantics.

AD3 particularly excels in handling homogeneous distrac-
tors such as shifted agents. This aspect has rarely been
explored before but can more accurately reflect the pol-
icy’s ability to extract task-relevant information than het-
erogeneous distractors, as homogeneous ones lack easily
distinguishable visual features and thus present a greater
challenge. Our method achieves near-perfect separation
of homogeneous distractors, a task that is challenging for
both visual methods like SAM (Kirillov et al., 2023) and
previous RL methods. We provide visualization results of
task-relevant and irrelevant reconstructions in Appendix F,
and more extensive dynamic results (videos) can be found
at https://sites.google.com/view/ad3-iag.

For distractor-eliminating problems in visual RL, we are the
first to introduce the inference of implicit actions from exist-
ing distractors and utilize them to construct separated world
models. This methodology captures the inherent nature of

the control problem itself, rather than relying on additional
visual elements or heuristic human bias.

Furthermore, the notion of inferring implicit actions from
videos holds broad applicability. The recently proposed Ge-
nie (Bruce et al., 2024) also infers latent actions from image
sequences (videos). However, our approach distinguishes
itself in that we infer implicit actions of dynamic transitions
within the environment, rather than inferring the actions of
the agent itself, as done by Genie and VPT (Baker et al.,
2022). This broadens the scope of action inference in RL,
with potential implications for areas such as video predic-
tion and world model learning. For instance, the semantics
of numerous actionless in-the-wild videos could potentially
be unified by the underlying implicit actions inferred. We
leave these explorations for future work.
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A. Derivations
Prior research in model-based reinforcement learning (Hafner et al., 2019; 2020) has employed the variational evidence
lower bound (ELBO) or, more generally, the information bottleneck objective (Tishby et al., 2000; Alemi et al., 2016), to
encourage model states to predict observations and rewards, while limiting the volume of information contained within these
states. Based on the Implicit-Action Block MDP assumption, we integrate the implicit action a− into the conditioned-on
term of the objective function in (Hafner et al., 2019; 2020), resulting in a new objective:

max I(z1:T , (o1:T , r1:T )|a1:T , a−1:T )− βI(z1:T , i1:T |a1:T , a−1:T ) (7)

Here, it are dataset indices such that p(ot|it) = δ(ot − o′t) as in (Alemi et al., 2016). The lower bound of the first term can
be obtained using the definition of mutual information as well as the non-negativity of KL-divergence:

I(z1:T , (o1:T , r1:T )|a1:T , a−1:T ) (8)

= Ep(o1:T ,r1:T ,z1:T ,a1:T ,a−1:T )
[
ln p(o1:T , r1:T |z1:T , a1:T , a−1:T )− ln p(o1:T , r1:T |a1:T , a−1:T )

]
(9)

+
= Ep(o1:T ,r1:T ,z1:T ,a1:T ,a−1:T )

[
ln p(o1:T , r1:T |z1:T , a1:T , a−1:T )

]
(10)

≥ Ep(o1:T ,r1:T ,z1:T ,a1:T ,a−1:T )
[
ln p(o1:T , r1:T |z1:T , a1:T , a−1:T )

]
− DKL

(
p(o1:T , r1:T |z1:T , a1:T , a−1:T )∥

T∏
t=1

q(ot|zt)q(rt|zt)

)
(11)

= Ep(o1:T ,r1:T ,z1:T ,a1:T ,a−1:T )

[
T∑
t=1

ln q(ot|zt)q(rt|zt)

]
(12)

= Ep(o1:T ,r1:T ,a1:T )

[
T∑
t=1

Ep(z+t |o1:t,a1:t−1)p(z
−
t |o1:t,a−1:t−1)

[
ln q(ot|z+t , z−t ) + ln q(rt|z+t )

]]
(13)

We drop the second term in the equality (9) since it can be regarded as constant for the representation model. The equality
(13) is obtained from the decoupling of the latent state and the decomposition of dynamics as assumed in IABMDP.

We then upper bound the second term by using the non-negativity of the KL-divergence and the IABMDP assumption:

I(z1:T , i1:T |a1:T , a−1:T ) (14)

= Ep(o1:T ,r1:T ,z1:T ,i1:T ,a1:T ,a−1:T )

[
T∑
t=1

ln p(zt|zt−1, at−1, a
−
t−1, it)− ln p(zt|zt−1, at−1, a

−
t−1)

]
(15)

= Ep(o1:T ,z1:T ,a1:T ,a−1:T )

[
T∑
t=1

ln p(zt|zt−1, at−1, a
−
t−1, ot)− ln p(zt|zt−1, at−1, a

−
t−1)

]
(16)

≤ Ep(o1:T ,z1:T ,a1:T ,a−1:T )

[
T∑
t=1

ln p(zt|zt−1, at−1, a
−
t−1, ot)− ln q(zt|zt−1, at−1, a

−
t−1)

]
(17)

= Ep(o1:T ,z1:T ,a1:T ,a−1:T )

[
T∑
t=1

ln
p(z+t |ot, z+t−1, at−1)p(z

−
t |ot, z−t−1, a

−
t−1)

q(z+t |z+t−1, at−1)q(z
−
t |z−t−1, a

−
t−1)

]
(18)

= Ep(o1:T ,a1:T ,a−1:T )

[
Ep(z+1:T |o1:T ,a1:T )

[
T∑
t=1

ln
p(z+t |ot, z+t−1, at−1)

q(z+t |z+t−1, at−1)

]

+ Ep(z−1:T |o1:T ,a−1:T )

[
T∑
t=1

ln
p(z−t |ot, z−t−1, a

−
t−1)

q(z−t |z−t−1, a
−
t−1)

]]
(19)

= Ep(o1:T ,a1:T ,a−1:T )

[
T∑
t=1

(
Ep(z+t−1|o1:t−1,a1:t−2)

[
DKL

(
p(z+t |ot, z+t−1, at−1)∥q(z+t |z+t−1, at−1)

)]
+ Ep(z−t−1|o1:t−1,a

−
1:t−2)

[
DKL

(
p(z−t |ot, z−t−1, a

−
t−1)∥q(z

−
t |z−t−1, a

−
t−1)

)] )]
(20)
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Figure 6. The example observations of the environments we evaluate on, featuring Cheetah Run, Walker Run, Finger Spin, and Hopper
Hop from left to right. The first row displays these environments with NBV distractors, while the second row shows them with AS
distractors.

The original objective 7 can thus be lower bounded. In practice, obtaining the ground truth a− is infeasible. Thus, we
substitute it with the implicit distractor actions â− inferred by IAG. We use two pairs of observation decoders qϕ+ and qϕ− ,
forward dynamics models qθ+ and qθ− , and variational encoders pψ+ and pψ− for the task-relevant and irrelevant branches
respectively, as well as a reward decoder qω . The final objective to be optimized for separated model learning is as follows:

max
θ+,θ−,ψ+,ψ−
ϕ+,ϕ−,ω

E(oτ ,aτ ,â
−
τ )∼Bπ[

T∑
t=1

(
Epψ+ (z+t−1|o1:t−1,a1:t−2)

[
−DKL

(
pψ+(z+t |ot, z+t−1, at−1)||qθ+(z+t |z+t−1, at−1)

)]
+ Epψ− (z−t−1|o1:t−1,â

−
1:t−2)

[
−DKL

(
pψ−(z−t |ot, z−t−1, â

−
t−1)||qθ−(z

−
t |z−t−1, â

−
t−1)

)]
+ Epψ+ (z+t |o1:t,a1:t−1)pψ− (z−t |o1:t,â−1:t−1)

[
ln qϕ+,ϕ−(ot|z+t , z−t ) + ln qω(rt|z+t )

] )]
(21)

B. Implementation Details
B.1. Environments and Tasks

The DeepMind Control Suite (DMC) (Tassa et al., 2018) is a collection of simulated continuous control tasks covering a
diverse range of environments including robotics, locomotion, manipulation, and navigation. We select four tasks from the
DeepMind Control Suite: Cheetah Run, Walker Run, Finger Spin, and Hopper Hop.

For each task, we introduce two types of visual distractors: Natural Video Backgrounds (NBV) and Agent Shift (AS),
which are representatives of heterogeneous and homogeneous distractors, respectively. For the NBV distractor, we replace
the background of the visual observations with ”driving car” videos in the Kinetics dataset (Kay et al., 2017). The video
backgrounds are grayscale as in (Zhang et al., 2021; Fu et al., 2021; Wan et al., 2023). With respect to the AS distractor, we
integrate the motion of a morphologically similar agent to the one that is being controlled to the observation background
based on the InfoPower work (Bharadhwaj et al., 2022), where the motion of this distractor agent is loaded from a training
buffer of TIA on the same task. The policy cannot access the actions actually executed by the background agent, except for
the variant method ”Ground Truth Distractor Action â−∗” introduced in Section 5.3, where we use â−∗ as an oracle for
comparison. The example observations of these environments we evaluate are shown in Figure 6.
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B.2. Implicit Action Space Using Categorical Variables

To prevent shortcuts during the observations reconstruction process, we need to bottleneck the information flow from
the combination of adjacent frames ot, ot+1 and agent action at to the predicted next frame ôt. While previous works
have employed vector quantization techniques for this purpose, we introduce an extremely sparse implementation termed
categorical implicit action, which demonstrates empirical effectiveness in our experiments. We follow the practice of
DreamerV2 (Hafner et al., 2021) to implement the categorical variables technique, and each implicit action is represented by
a vector of multiple categorical (one-hot) variables.

Consider implicit actions with size d. We implement the last layer of the implicit action generator (IAG) module as a dense
layer with dimension d2, which outputs the logits of shape N × d2, where N is the batch size. Then we reshape the logits as
N × d× d. Subsequently, for one sample z (shape: d× d) in the batch, a softmax activation function is applied along the
last dimension of the logits to output d probability vectors piâ− , each with size d. We build a categorical distribution based
on each probability vector piâ− and sample a one-hot vector from each distribution. We concatenate all d one-hot vectors to
form the final implicit action â−.

piâ− = Softmax(zi), where i = 1, 2, · · · , d

â− =
[
Sample(Categorical(p1â−));Sample(Categorical(p2â−)); · · · ;Sample(Categorical(pdâ−))

] (22)

Since each implicit action is a vector of d categorical variables and each categorical variable is in size d, we can represent an
implicit action by using d indices which respectively indicates the active position in each categorical variable, as is the case
in Figure 4 where implicit action size d = 4. Furthermore, we follow the practice of straight-through gradients (Bengio
et al., 2013) mentioned in DreamerV2 to implement the optimization process of categorical variables.

B.3. Pseudo Code

The pseudo-code of our proposed AD3 is provided in Algorithm 1.

Algorithm 1 Training Procedure of AD3
Initialize replay buffer Bπ, IAG, forward dynamics model qθ+ , qθ− , variational encoder pψ+ , pψ− , observation decoder
qϕ+ , qϕ− , reward decoder qω , policy π.
for each time step t = 1 · · ·T do

// Rollout trajectories
Infer the task-relevant latent state z+t ∼ pψ+(·|ot, z+t−1, at−1)

Sample action from policy at ∼ π(·|z+t )
Execute action and get the next observation ot+1 ← env.step(at)

end for
Add samples into the replay buffer Bπ ← Bπ ∪ {(ot, at, rt)Tt=1}
for training iteration i = 1 · · · It do

// Learn implicit actions
Sample minibatch (o1:T , a1:T−1)1:b from the buffer Bπ
Update IAG with Equation (5)
Infer the implicit actions â−1:T−1 using IAG and store them in the buffer Bπ
// Learn separated world models
Sample minibatch (o1:T , a1:T−1, â

−
1:T−1, r1:T )1:b from the buffer Bπ

Update qθ+ , qθ− , pψ+ , pψ− , qϕ+ , qϕ− , qω with Equation (21)
// Optimize policy
Imagine trajectory rollouts by policy π, using the task-relevant forward dynamics model qθ+ and the reward decoder qω
Update the policy π to maximize the cumulative rewards.

end for
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B.4. Networks and Hyperparameters

B.4.1. LEARNING IAG

IAG comprises TAID, which infers the implicit action â−t from two adjacent image frames ot, ot+1 and the agent action at,
and FIAD, which predicts the next frame ôt+1 for consistency using ot, at, and the implicit action â−t . We elaborate on the
implementation details of each component and explain the training protocol of IAG.

TAID We first use a convolutional image encoder to encode the augmented image frames ot and ot+1. Next, additional
convolutional layers fuse the encoded features of ot and the agent action at, as well as the features of ot+1. An MLP then
embeds these fused features into a low-dimensional latent state. The resulting embeddings are considered as logits for
implicit actions, and we employ techniques described in Appendix B.2 to sample the inferred implicit actions â−t as the
output of TAID. All convolutional layers are implemented using residual blocks and batch normalization.

FIAD FIAD aims to ensure consistency between the decoded prediction and the ground truth. We construct independent
decoders for each of the three proposed prediction tasks: cycle consistency of low-dimensional latent states, pixel-level
difference reconstruction, and one-step image reconstruction. For cycle consistency, we employ a CNN as the forward
dynamics model to process and integrate the features of ot, the agent action at, and the implicit action â−t , ultimately
predicting the feature of the next step and computing its similarity with the ground-truth feature of ot+1. We use another
forward dynamics network for difference reconstruction and employ a transposed CNN to decode the predicted feature into
image difference. We utilize another transposed CNN to output the reconstruction result for one-step reconstruction.

Building Loss Objectives For cycle consistency, we employ contrastive methods rather than cosine similarity or MSE loss
between predicted and ground-truth states. We enforce the projection of the predicted image feature to distinguish between
all the results in the batch and query for the corresponding ground-truth one, and minimize the contrastive loss. Moreover,
we employ multi-scope difference reconstruction, which involves predicting the max-pooled versions of the original image
difference at various resolutions. We follow FICC (Ye et al., 2023) and use binary cross-entropy loss for the two pixel-level
reconstruction objectives. Furthermore, the three objectives are built and computed in a multi-step manner as in FICC (Ye
et al., 2023) and SPR (Schwarzer et al., 2020). Specifically, we first infer the implicit actions â−t for each of the transition
triplet (ot, at, ot+1) in a sampled short trajectory. Then, we roll out from the latent state of the first observation using the
agent actions and the inferred actions to obtain predictions at each step, through the dynamics network of cycle consistency
in FIAD. Finally, we build the three objectives at each step.

Training Details We train IAG every 10,000 steps of environmental interactions. In each training session, we sample a batch
of observations and agent actions from the collected data buffer and perform an update for IAG. Each training procedure
of IAG consists of 1,000 steps of such updates. Subsequently, we infer the implicit actions of distractors for all collected
trajectories using the current parameters of TAID in IAG and store them in the buffer. Thus, every time we finish training
IAG, the implicit actions of the previously collected trajectories are updated. These implicit actions, along with observations
and agent actions, are then used for the next round of separated model learning.

Hyperparameters We use the ADAM optimizer to train IAG with batches of 64 sequences, and the sequence length for
multi-step rollout to build the loss objectives is 6. The projection dimension for constrastive loss is 512. The learning rate for
training IAG is 6e-4, and the activation function is ReLU. For NBV distractors, the sizes d of the implicit action for Cheetah
Run, Walker Run, Finger Spin and Hopper Hop are 12, 8, 10, and 10, respectively. For AS distractors, all environments use
an implicit action size of 4. According to the implementation of categorical variables in Appendix B.2, the real size of the
implicit action used for building the task-irrelevant world model is d2, achieved by flattening each of the one-hot vectors and
concatenating them. Furthermore, when using VQ for ablation study in Section 5.4, the codebook length is 20, and the
dimension of the vector representation is d, identical to the size used for categorical variables in each task.

B.4.2. LEARNING SEPARATED WORLD MODELS AND POLICY

We use the recurrent state space model (RSSM) as the backbone of our world models and adopt the official implementation of
TIA for building separated models and cooperative image reconstruction through masking techniques. The separated world
model is constructed using two independent RSSMs, with agent actions and implicit actions inferred by IAG respectively
serving as inputs. Other implementation details, including policy learning, optimization methods, the iterative process of
data collection and training with the collected data, as well as most of the related hyperparameters, are kept identical to
those in TIA. This ensures a fair comparison between our AD3 method and both Dreamer and TIA, thereby providing a
stronger verification of the impact of the inferred implicit actions in distinguishing irrelevant distractors.
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Figure 7. The example observations of additional evaluation environments beyond the DMC tasks with visual distractors, specifically
featuring Car Racing + NBV, Jaco Arm + NBV, and Jaco Arm + AS.

C. Quantitative Results
In Table 2, we show the quantitative results of the experimental performance in Section 5.2. We present the mean and std of
the final test performance on 10 episodes over 4 seeds. AD3 is the only method that consistently performs well across all
tasks and distractor variants, showing robustness in handling different types of visual distractors.

Table 2. Performance on 4 visual control tasks with heterogeneous and homogeneous visual distractors

METHOD
CHEETAH RUN WALKER RUN FINGER SPIN HOPPER HOP

NBV AS NBV AS NBV AS NBV AS

DBC 45 ± 55 96 ± 46 50 ± 27 63 ± 13 1 ± 1 5 ± 9 0 ± 0 0 ± 0
DREAMER 151 ± 78 540 ± 109 205 ± 35 330 ± 51 191 ± 122 448 ± 44 0 ± 0 92 ± 54
TIA 432 ± 172 474 ± 251 293 ± 129 264 ± 42 123 ± 201 352 ± 264 50 ± 48 51 ± 53
DENOISED MDP 215 ± 191 521 ± 128 117 ± 81 157 ± 41 331 ± 146 480 ± 46 13 ± 15 53 ± 26
AD3 (OURS) 658 ± 104 653 ± 130 308 ± 37 435 ± 85 491 ± 189 515 ± 228 57 ± 20 99 ± 31

Moreover, our work primarily focuses on learning Implicit Action Generator (IAG) to extract actions of underlying
distractors, thereby aiding in eliminating task-irrelevant factors. The construction and performance optimization of specific
world models are not the main contributions of this paper, and we employ the simplest Dreamer to build the separated
world models. It is worth noting that more advanced methods, such as categorical latent state space and KL balancing
(Hafner et al., 2021; 2022), can be readily incorporated to enhance overall performance even more. This underscores the
plug-and-play nature of our IAG method, demonstrating its potential to be seamlessly integrated into any model-based visual
RL method aimed at modeling task-irrelevant dynamics.

D. Additional Experiments
D.1. Performance of AD3 on More Diverse Tasks

Previous work addressing pixel-based RL problems with visual distractors commonly uses DMC tasks for evaluation (
(Zhang et al., 2021; Fu et al., 2021; Bharadhwaj et al., 2022) for NBV distractor, (Bharadhwaj et al., 2022) for AS distractors),
and we follow this practice in Section 5.2. To further solidify the effectiveness of our method, we present more experimental
results on a broader range of environments: (1) Car Racing from OpenAI Gym (Brockman et al., 2016), a challenging
control task from pixels known for sudden road changes in the environment, which is used in (Ha & Schmidhuber, 2018;
Rafailov et al., 2021; Huang et al., 2022), and (2) Jaco Arm (Reach Top Left), a 6-DOF robotic arm task utilized in (Laskin
et al., 2021). We cut out the bottom part of the image frames in Car Racing to prevent the agent from directly learning
from the reward signals. Then, we augment these tasks with heterogeneous or homogeneous visual distractors same as our
practice in Section 5.1 and Appendix B.1, resulting in three new tasks: Car Racing + NBV, Jaco Arm + NBV, and Jaco Arm
+ AS. We select TIA and Dreamer as baseline methods, since they represent the best baselines in NBV and AS settings,
respectively, as is shown in Figure 2.

Remarks Incorporating shifted agents into the Car Racing environment is exceptionally challenging, hence we exclusively
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Figure 8. The example observations of the environments featuring Cheetah Run and Walker Walk, both equipped with NBV + AS
distractors. These challenging tasks pose significant difficulties in inferring the implicit actions of the complex distractors.

make evaluation in the NBV setting for this task. For Jaco Arm + AS, we introduce an additional robotic arm into the
observation, with the same connection point to the machine as the original arm. This simulates a scenario where the robot
appears to have two arms for control and reaching the goal, and the policy needs to distinguish between the two arms to
identify the controllable one. The example observations of these new tasks are shown in Figure 7.

The results presented in Table 3 below (Mean and Std returns of final test performance by running 10 episodes over 4 seeds)
indicate that AD3 continues to outperform other methods on these tasks. Notably, despite performing relatively well on
DMC tasks as demonstrated in Section 5.2, Dreamer falls significantly behind our AD3 method on JacoArm + AS. This
substantial performance gap clearly underscores the superiority of our method when dealing with homogeneous distractors.

Table 3. Performance on more visual control tasks with different types of visual distractors

METHOD CAR RACING + NBV JACO ARM + NBV JACO ARM + AS

DREAMER 251 ± 129 3 ± 8 7 ± 20
TIA 304 ± 177 3 ± 9 35 ± 51
AD3 (OURS) 505 ± 174 10 ± 25 58 ± 72

D.2. Could Pretraining Benefits the Performance of AD3 on Extremely Hard Tasks?

Modeling the distractors in real-world applications from more complex dynamics and visual inputs is indeed challeng-
ing. Nevertheless, we propose several potential ways to scale AD3 to more difficult tasks. Firstly, pretraining IAG
on offline datasets to model the motion of underlying distractors can facilitate online finetuning. Furthermore, if the
distractors have explicitly separated semantics, partitioning the implicit action a− into non-overlapping parts and incre-
mentally training different parts of a− can be effective. For instance, in phase 1: (ot, ot+1, a

+
t )→ a−

(1)

t , and in phase 2:
(ot, ot+1, a

+
t , a

−(1)

t )→ a−
(2)

t , and so forth.

Apparently, an even harder visual distractor can be achieved by combining the above two mentioned backgrounds, which
is called Agent Shifted with Natural Video Backgrounds (NBV + AS) that combines Natural Video Background (NBV)
and Agent Shifted (AS) distractors, which is also based on the InfoPower work (Bharadhwaj et al., 2022). To validate our
proposed approach, we instantiate scenarios such as Cheetah Run + NBV + AS and Walker Walk + NBV + AS, where
inferring the implicit actions of homogeneous distractors becomes more difficult given the complex NBV dynamics, and
vice versa. The example observations of these tasks are shown in Figure 8.

We propose a method based on incremental pretraining-finetuning to implement the approaches mentioned above: first,
pretrain only the IAG module offline on pre-collected datasets with NBV distractors, and then perform online finetuning
of the entire AD3 on corresponding NBV + AS environments. In online incremental finetuning, we utilize a new IAG
to infer implicit actions of shifted agents, conditioned on implicit actions of NBV inferred by the frozen pretrained IAG.
Naturally, another available method involves swapping the order of AS and NBV. We compare these incremental methods to
the original AD3 (directly training on NBV + AS environments). The results are exhibited in Table 4.

18



AD3: Implicit Action is the Key for World Models to Distinguish the Diverse Visual Distractors

Table 4. Performance on extremely hard tasks with NBV + AS distractors

METHOD CHEETAH RUN + NBV + AS WALKER WALK + NBV + AS

AD3 422 (500K), 642 (1M) 486 (500K), 532 (1M)
AD3 INCREMENTAL NBV→AS 538 (500K) 748 (500K)
AD3 INCREMENTAL AS→NBV 534 (500K) 771 (500K)

For incremental methods, we perform online finetuning for 500K steps after pretraining. In contrast, the baseline AD3
is directly trained for 1M steps. The results demonstrate that offline pretraining significantly facilitates online finetuning,
as incremental methods outperform AD3 with the same number of online learning steps (500K), aided by pretraining.
They even match or surpass the performance of the oracle method AD3 (1M). This underscores the benefit of incremental
methods in inferring implicit actions of more complex distractors in more challenging environments. Furthermore, the two
incremental methods yield similar results, showcasing the robustness and scalability of IAG.

E. Additional Discussions
E.1. Assumptions Regarding State Decomposition in Visual RL

In real-world scenarios, it is common for latent states to be decoupled based on task relevance. For example, consider
book-finding robots in libraries that scan shelves to locate specific books. These robots encounter both task-relevant objects
(e.g., books) and task-irrelevant objects (e.g., background posters or people moving by), which need to be separated and
distinguished by the robot.

Prior research has frequently made assumptions of decoupling different aspects of the latent state in terms of controllability
or reward relevance when addressing visual distractors. TIA (Fu et al., 2021) assumes the existence of task-relevant and
irrelevant parts, with both having their dynamics conditioned on agent actions. However, agent action inherently carries
limited information about task-irrelevant dynamics of the background, which makes it a must for TIA to add additional
designs and constraints (i.e., the extra loss mentioned in Section 1) and in turn presents learning challenges. EX-BMDP
(Efroni et al., 2021), Iso-Dream (Pan et al., 2022) and SeMAIL (Wan et al., 2023) modify the TIA assumption by removing
the task-irrelevant part’s dependence on any action, treating it as an uncontrollable component. Although sounds intuitive,
these methods still require extra efforts to prevent the task component from capturing all the information, and may fail to
distinguish the homogeneous distractors. Denoised MDP (Wang et al., 2022) learns world models for different components
factorized by reward and action according to the assumed transition structures. However, the actions employed for learning
these MDPs may not suffice to effectively disentangle the various components, particularly when homogeneous distractors
are encountered, as is empirically demonstrated in Section 5.2. Our IABMDP assumption deviates from prior methods
primarily by explicitly introducing the concept of distractor actions to extract task-irrelevant components. This distinctive
feature sets our method apart from existing approaches.

Furthermore, there are instances where an initially irrelevant distractor may become task-relevant under certain conditions,
thereby influencing the agent’s decision-making process. In such cases, we propose incorporating a brief period of the
particular distractor states into the policy function during training. This approach enables the agent to adapt to changing
conditions and make informed decisions based on relevant information.

E.2. Computational Costs

The training of the Implicit Action Generator (IAG) may add computational overhead to the modeling process. However,
the introduction of these additional costs is justified by the substantial performance gains achieved over TIA and Dreamer.
The use of implicit actions inferred by IAG facilitates the construction of separated world models, leading to improved
performance.

Moreover, the extra computational costs are limited to the training phase. During execution, the IAG module is not needed
to infer implicit actions. Instead, we utilize the trained task-relevant world model to encode observations into latent space
and generate action outputs using the policy, which incurs similar computational costs as Dreamer and TIA. Furthermore, by
eliminating two loss objectives (adversarial reward dissociation and distractor-only image reconstruction) from TIA, we in
turn effectively reduce computational costs.
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We acknowledge the potential for exploring more efficient network designs and training methods for applying IAG in
real-world scenarios, and we will address these aspects in future work.

E.3. Weakness of TIA When Dealing with Homogeneous Distractors

TIA seeks to disentangle the latent state into task-relevant and task-irrelevant components, using adversarial reward
dissociation (RD) on the task-irrelevant state and distractor-only image reconstruction (DOR) by the task-irrelevant
component. However, these loss objectives are highly sensitive, as the optimization of RD can be unstable, and finding the
right balance between RD and DOR is challenging. Without proper tuning of the weights for these two objectives, TIA
may inadvertently invert the two components. Additionally, TIA utilizes agent actions to model the dynamics of distractors,
which is inappropriate and can further contribute to the inversion of these components.

Furthermore, the assumption underlying DOR may not hold in environments with homogeneous distractors. DOR is
introduced to prevent the task model from reconstructing the entire observation by itself and containing too much information,
so TIA incorporates an additional image decoder that encourages the distractor model to reconstruct the entire observation
by itself. However, there is an implicit assumption behind DOR: the task-relevant information comprises a relatively
small proportion of the observation (e.g., in NBV distractors commonly used in prior work, where noisy videos dominate
most of the observation space). When confronted with homogeneous distractors (e.g., shifted agents), task-relevant and
task-irrelevant information occupy nearly equal portions of the observation space. Encouraging the distractor state to
reconstruct the entire image may lead to an overly dominant distractor state, potentially causing a reversal of the two
components once again.

We strongly recommend the reader to refer to https://sites.google.com/view/ad3-iag for video visualizations demonstrating
TIA’s failure in tackling homogeneous distractors.

E.4. Categorical Latents

We utilize categorical variables to bottleneck the implicit action space in IAG, thereby avoiding shortcuts. Each implicit
action is represented by a vector of multiple categorical (one-hot) variables. In our ablation study (Section 5.4), categorical
variables significantly outperform other bottlenecking methods such as Vector Quantization (VQ). Compared to traditional
quantization methods, categorical (one-hot) coding is more flexible because the learning process of the codebook and the
quantizing operation are inherently embedded in the categorical-variable architecture. Using one-hot codes in forward
propagation equals to leveraging active bits in the code as indices for quantization. Consequently, different latent codebooks
can be implicitly built for different types of loss objectives (e.g., in the decoder of cycle consistency, difference reconstruction,
and one-step reconstruction), resulting in improved learning performance. Additionally, the size of the latent codebook
and the dimension of the vector representation do not need to be specified in advance, and the burden of optimizing the
codebook loss and the commitment loss is also eliminated.

We present the loss curves for the three learning objectives of IAG in Equation (5) on two tasks, comparing the use of
categorical variables and VQ in Figure 9. All three loss functions exhibit a more rapid decrease and reach comparable or
lower values on both tasks when categorical variables are employed, particularly for the cycle consistency loss. Therefore,
IAG learned with categorical variables performs significantly better in distinguishing task-irrelevant distractors than VQ in
the AD3 algorithm, as demonstrated in our ablation study (Section 5.4). These results suggest that categorical variables
provide a more efficient and robust representation for bottlenecking the latent space compared to vector quantization,
especially in tasks involving complex environmental dynamics.

In Figure 9, the gap between the final values of the two reconstruction loss for categorical variables and VQ in Hopper
Hop + AS is relatively smaller than in Cheetah Run + NBV. This is because the precise reconstruction of complex noisy
video backgrounds is more challenging than that of shifted agent backgrounds. However, this trend is reversed for the cycle
consistency loss, whose final value in Hopper Hop + AS is slightly higher, and the gap between the two representations
is larger compared to Cheetah Run + NBV. As cycle consistency loss serves as a more critical learning objective than
the other two losses (Section 5.4), this may indicate that distinguishing homogeneous distractors is more challenging
than distinguishing heterogeneous ones, since heterogeneous distractors possess more visually distinguishable factors.
Although precise modeling of NBV backgrounds is significantly more difficult, identifying which agent is controllable
is more challenging in tasks with AS distractors. Furthermore, the larger gap in cycle consistency loss between the two
representations in solving AS distractors compared to NBV ones further underscores the superiority of using categorical
variables in identifying task-irrelevant dynamics.

20

https://sites.google.com/view/ad3-iag


AD3: Implicit Action is the Key for World Models to Distinguish the Diverse Visual Distractors

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.5

1.0

1.5
Cycle Consistency Loss

0.0 0.2 0.4
Environment Steps (×106)

1000

1500

2000

Difference Reconstruction Loss

0.0 0.2 0.4
Environment Steps (×106)

1000

2000

3000

4000

One-Step Reconstruction Loss

0.0 0.2 0.4
Environment Steps (×106)

0.5

1.0

1.5

Cycle Consistency Loss

0.0 0.2 0.4
Environment Steps (×106)

400

600

800

Difference Reconstruction Loss

0.0 0.2 0.4
Environment Steps (×106)

200

400

600

One-Step Reconstruction Loss

Cheetah Run
+ NBV

Hopper Hop
+ AS

Categorical Variables Vector Quantization

Figure 9. Loss curves of the three learning objectives in IAG on two tasks with different distractors: Cheetah Run + NBV, and Hopper
Hop + AS. Each experiment is conducted over 4 seeds. The solid curves and the shaded region represent the average loss value and the
standard error across different runs, respectively. All three loss functions exhibit a more rapid decrease and reach comparable or lower
values on both tasks when categorical variables are employed, particularly for the cycle consistency loss.

In addition to its flexibility and effectiveness in optimizing different types of objective functions, the extreme sparsity
enforced by categorical variables significantly benefits the bottlenecking of the implicit action space in IAG, preventing
the action space from containing an excessive amount of information. Such a level of sparsity can also be beneficial for
generalization. (Hafner et al., 2021) highlights that categorical variables can also be a better inductive bias for modeling
multi-modal changes between image frames and the non-smooth aspects of the environment, such as sudden transitions
between looping background videos in the NBV environments. This property significantly benefits our implicit action model
in capturing the complex semantics of environmental transitions. Further exploration is needed to understand the additional
benefits of using categorical variables as discrete encodings and their applications in other areas.

F. Additional Visualization Results
We provide visualization results of task-relevant and irrelevant reconstructions here. Moreover, we strongly recommend the
reader to refer to https://sites.google.com/view/ad3-iag for more extensive dynamic visualization results (videos for the
reconstruction of imagined trajectories in task-relevant and irrelevant world models). These resources aim to offer a more
intuitive understanding of AD3’s proficiency in distinguishing both heterogeneous and homogeneous visual distractors.

For each image, from top to bottom: raw observation, reconstruction in the task-relevant / irrelevant latent state space,
difference; from left to right: different image frames in 6 different trajectories.
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main_model distractor_model

Walker_Run + 
NBV

main_model distractor_model

Walker_Run + 
AS

main_model distractor_model

Finger_Spin + 
NBV

main_model distractor_model

Finger_Spin + 
AS
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AD3: Implicit Action is the Key for World Models to Distinguish the Diverse Visual Distractors

main_model distractor_model

Hopper_Hop + 
NBV

main_model distractor_model

Hopper_Hop + 
AS
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