
A Preliminaries

A.1 Preliminaries on Comparison of Exploration Space

The size of exploration space for the layer-wise manner in SET algorithm is:(
Nl

Nl(1− S)

)
=

Nl!

Nl(1− S)!NlS!
. (5)

If we divide the kernels in one layer into N groups and explore Nl(1−S)
N activated weights in each

group, then the size of the exploration space becomes:

( Nl

N
Nl(1−S)

N

)N

= (
Nl

N !
Nl(1−S)

N !NlS
N !

)

N

≤
(

Nl

Nl(1− S)

)
. (6)

When the corresponding exploration region of each group is defined as in Section 3.4, the exploration
space can be further reduced to:

( Nl

N2

Nl(1−S)
N

)( 2Nl

N2

Nl(1−S)
N

)
· · ·

( Nl

N
Nl(1−S)

N

)
<

( Nl

N
Nl(1−S)

N

)N

. (7)

A.2 Preliminaries on Calculation of Parameters

The summation of the number of non-zero weights (activated weights in sparse CNN layer + weights
in other layers) in the network is used to estimate the size of the network as follows:

Params =
∑
l/∈L

∥θl∥0 +
∑
l∈L

N∑
i=1

∥Il(Θl)i ⊙Θl
i∥0 = ∥θ∥0, (8)

where L contains a set of sparse CNN layer indexes, and θ is the parameter of our DSN which
includes an amount of zero values. ∥Il(Θl)i ⊙ Θl

i∥0 is controlled by the sparsity ratio S and the
corresponding exploration regions Rl

i.

B More Experiments

B.1 The Statistics of eNRF Sizes with Different Sparsity Ratios

The distributions of eNRF sizes in the first dynamic sparse CNN layer for HAR, Daily Sport and
EEG2 datasets are shown in Figure 9, Figure 10 and Figure 11, respectively. We can see that the DSN
model with kernel grouping can cover more diverse eNRF sizes than it does without kernel grouping
under different sparsity ratios S. With the decrease of S, the DSN model without kernel grouping
tends to capture the large eNRF, while ignoring the small eNRF, which harms the performance of the
DSN model. Under different sparsity ratios, the DSN model with kernel grouping can guarantee a
satisfactory performance for different datasets by covering various eNRF.

B.2 Better Kernel Sizes for EEG2 Dataset

We study the effect of kernel size k on the performance of spares/dense DSN for the EEG2 dataset
to verify our hypothesis that this dataset expects the local information. The dense DSN model is
defined exactly as our DSN model with dense connections along entire kernels. In this way, the RF
size in each layer equals to kernel size. As shown in Figure 12, the dense DSN with a kernel size
of 9 achieves the highest test accuracy. However, with the increase of kernel size (RF size), the test
accuracy drops dramatically. It is obvious that the local context plays a significant role for more
accurate classification for EEG2 dataset. In contrast, our proposed sparse DSN model (sparsity ratio
S = 80%) with a large kernel size can still achieve satisfactory performance, with the main reason
that it can learn the adaptive eNRF for the dataset.

15



eNRF sizes eNRF sizes eNRF sizes

Figure 9: The statistics of eNRF sizes for the HAR dataset. The eNRF sizes shown in a sub-figure are
from the first dynamic sparse CNN layer with a specific sparsity ratio (e.g. S = 50% (left), S = 70%
(middle), and S = 90% (right)).

/

eNRF sizes eNRF sizes eNRF sizes

Figure 10: The statistics of eNRF sizes for the Daily Sport dataset.The eNRF sizes shown in a
sub-figure are from the first dynamic sparse CNN layer with a specific sparsity ratio (e.g. S = 50%
(left), S = 70% (middle), and S = 90% (right)).

eNRF sizes eNRF sizes eNRF sizes

Figure 11: The statistics of eNRF sizes for the EEG2 dataset.The eNRF sizes shown in a sub-figure
are from the first dynamic sparse CNN layer with a specific sparsity ratio (e.g. S = 50% (left),
S = 70% (middle), and S = 90% (right)).

B.3 Can Various eNRF Outperform the Optimal NRF?

To demonstrate the advantage of various eNRF coverage, we compare the performances in terms
of test accuracy between DSN models with various eNRF coverage and optimal NRF. The dense
DSN models with different kernel sizes (from 5 to 40 with step 5) in each layer are used to search
for optimal NRF in different datasets on the UCR 85 archive. As shown in Figure 13, by capturing
various eNRF, our DSN model can achieve similar performance to the optimal NRF model without
the cumbersome hyper parameters.

16



Figure 12: The test accuracies of EGG2 dataset in dense/sparse DSN with different kernel sizes k.

Figure 13: Classification accuracies on UCR 85 archive for the comparison of various eNRF and
optimal NRF.

B.4 The Effect of Kernel Size for DSN

From Figure 14, we can find out how the kernel size k in the proposed DSN model affects the final
test accuracy for UCR 85 archive. We can see that the performance of DSN model with small kernel
sizes (e.g. 15 and 21) is worse than that of it with large kernel sizes (e.g. 39 and 45). It is because the
model with larger kernel sizes can cover larger eNRF, which is useful to capture global information
for some datasets. However, when the kernel size is oversized (e.g. 45), some of the small eNRFs can
be lost in a predefined sparsity ratio (e.g. 80% in here), which will slightly degrade the performance
instead.

Figure 14: The critical difference diagram shows the average rank of the proposed DSN model with
different kernel sizes in UCR 85 archive. DSN(ki) illustrates that the kernel size in each dynamic
sparse CNN layer equals to i.

17



B.5 The Effect of Kernel Group for DSN

We study how the number of kernel groups N defined in Algorithm 1 affects the performance of the
proposed DSN model. From Figure 15, we can see that DSN model with N = 2 outperforms other
counterparts. As discussed in 4.5 and B.1, grouping the kernels in each dynamic sparse CNN layer
can help to achieve various NRF coverage especially with smaller sparsity ratio S. However, when
the number of kernel groups (e.g. 4) is oversized, the distribution of eNRF sizes is nearly uniform,
which will degrade the performance of DSN.

Figure 15: The critical difference diagram shows the average rank of the proposed DSN model with
different kernel groups in UCR 85 archive. DSN(N = i) illustrates that the kernels in each dynamic
sparse CNN are split into i groups.

group 1 ...
...

...

...

group 2

group N
...

...

...

...

Figure 16: Visualization of different topology initialization manners, including sequential and random.
The corresponding exploration regions for each group are shown in the red boxes. The blue color
indicates the activated weights at initialization.

B.6 The Effect of Topology Initialization

As shown in Figure 16, the activated weights can be initialized randomly and sequentially before
exploration, namely DSNinit

rand and DSNinit
seq respectively. After initialization, the topologies initialized

by DSNinit
rand and DSNinit

seq are different. In detail, DSNinit
rand randomly activates the weights within the

exploration regions, while DSNinit
seq activates the first i×k

N S weights of kernels in ith group. Figure 16
exemplifies the case where k = 16, N = 4 and S = 50%. We further investigate which type
of topology initialization is more suitable for the proposed DSN model. According to the results
shown in Figure 17 (left) and Figure 18, we can see that the proposed DSN model with sequential
initialization performs better than that with random initialization. Based on this, we adopt sequential
initialization as the default setting for DSN model in all of the experiments.

Intuitively, the DSN method with random topology can also cover various eNRF. We further study
the different performances of NRF which is from dynamic sparse training and from random topology
in DSN method. We conduct ablation studies to compare DSN with its static variant (i.e. DSNfix

rand),
which fixes its topology during training after activated weights random initialization. According to
the results shown in Figure 17 (right), we can find that the DSN model outperforms the DSNfix

rand on
UCR 85 archive, indicating that what is learned by dynamic sparse training is the suitable activated
weights together with their values.

18



is better here

is better here

is better here

is better here

init init init

Figure 17: Accuracy plotting showing how the proposed DSN model is affected by the topology
initialization on UCR 85 archive.

data name

Ac
cu

ra
cy

init

init

Figure 18: Classification accuracies on UCR 85 archive for the comparison of DSNinit
seq and DSNinit

rand
with/without dynamic exploration.

B.7 Extremely Sparse DSN

We study how the performance of our DSN is affected under extremely sparse ratios (e.g. S = 90%,
S = 95%, and S = 97%). As shown in Table 5, we can see that our DSN with sparsity ratio
S = 95% still performs better than OS-CNN while achieving more than 5× resource cost reduction
(e.g. Parameters and FLOPs). When sparsity ratio S = 97%, which means that 97% weights in
sparse CNN layer are set to zeros, the performance of our DSN model is only slightly worse than that
of OS-CNN, but the resource cost is nearly 7× less. From Figure 19, we can see that most blue dots
(corresponding to accuracies of OS-CNN) are below the orange dots (corresponding to accuracies
of DSN with extremely sparsity ratio), which means that OS-CNN performs worse than extremely
sparse DSN in most datasets. What’s more, DSN is far superior to OS-CNN in some datasets (e.g.
CinCECGtorso, MiddlePhalanxOutlineAgeGroup, and Earthquakes).

Table 5: Pairwise comparison of test accuracy (%) and mean resource cost (i.e. Params (K)↓ and
FLOPs (M )↓) of our method with extremely sparsity ratio and oS-CNN on UCR 85 archive datasets.
Note that all the accuracies in comparison are rounded to two decimal places.

Archive Methods OS-CNN wins DSN(S) wins Tie Params FLOPs

UCR 85 archive

OS-CNN - - - 262.14 200.12
DSN(S = 80%) 33 49 3 126.22 104.88
DSN(S = 85%) 33 49 3 100.19 83.21
DSN(S = 90%) 36 47 2 74.16 61.54
DSN(S = 95%) 38 43 4 48.13 39.87
DSN(S = 97%) 41 40 4 37.72 31.20

19



Ac
cu

ra
cy

data name

Figure 19: Classification accuracies on UCR 85 archive for DSN with different sparsity ratios.

Figure 20: Learning curves of DSN models on different datasets, HAR(left), EEG2(middle), and
Daily Sports(right). The standard deviation of the accuracy over 5 runs is shown in the shaded region.

B.8 Learning Curve on Three Multivariate TS Dataset

Figure 20 shows the learning behaviors of our DSN model and OS-CNN. We can see that our DSN
model has a convergence speed similar to that of OS-CNN, while the resource requirements (memory
and computational cost) are much less. Furthermore, the performance of DSN is far superior to that
of OS-CNN for EEG2 datasets.

B.9 Additional Experiments on other TSC datasets

In order to evaluate if the good learning capabilities of DSN can be generalized over other larger
scale of univariate and multivariate time-series datasets we evaluate it on the following datasets:

• UCR 2018 archive [6]. This archive consists of 128 univariate TS datasets, which is the
updated version of the UCR 85 archive. Among them, 15 datasets are with unequal lengths
and one (Fungi) has a single instance per class in the training files. As shown in [37], most
implementations are not set up to handle these kinds of data; therefore, we also only report
our results on the remaining 112 problems in UCR 2018 archive.

• University of East Anglia (UEA) 30 archive [2]. It consists of 30 multivariate TS datasets
with distinguishable characteristics, and various levels of complexity. The class numbers
vary from 2 to 39, and their numbers of variates vary from 2 to 963.

For UEA 30 archive, we add the resource awareness method Rocket [7] and the transformer based
method TST [61] as our baselines.We summarize the performance on both additional univariate
and multivariate TSC benchmarks in Table 6-7. We can see that, in terms of test accuracy, our
method can still match the state-of-the-art methods, while having much smaller computational cost
(e.g. the number of parameters and FLOPs). It is worth highlighting our proposed DSN method
achieves a trade-off between the resource cost and performance in both univariate and multivariate
TSC benchmarks.

20



Table 6: Pairwise comparison of test accuracy (%) and mean resource cost (i.e. Params (K)↓ and
FLOPs (M )↓) of our method and other univariate TS baseline methods on UCR 112 archive datasets.
Note that all the accuracies in comparison are rounded to two decimal places.

Archive Methods Baseline wins DSN wins Tie Params FLOPs

UCR 112 archive

ResNet 43 64 5 479.28 1049.12
InceptionTime 52 51 9 389.42 425.06
OS-CNN 48 59 5 264.19 259.30
DSN (ours) - - - 126.30 136.91

Table 7: Pairwise comparison of test accuracy (%) and mean resource cost (i.e. Params (K)↓ and
FLOPs (M )↓) of our method and other multivariate TS baseline methods on UEA 30 archive datasets.
Note that all the accuracies in comparison are rounded to two decimal places.

Archive Methods Baseline wins DSN wins Tie Params FLOPs

UEA 30 archive

TapNet 11 17 2 1344.67 966.46
MLSTM-FCN 7 23 0 383.41 638.53
OS-CNN 15 14 1 389.65 547.34
TST 12 18 0 343.78 628.95
Rocket 15 14 1 - 526.874

DSN (ours) - - - 148.74 305.37

C Detailed Results

For UCR 85 archive, the reported results of ResNet and InceptionTime are from [7], while that of
OS-CNN are from the official repository 5. For three multivariate datasets from UCI, the reported
results of LSTM-FCN are from the original paper, and that of TapNet and OS-CNN are from the
implementation of official repository with default settings. For UEA 30 archive, the detailed results,
including test accuracy and resource cost on each dataset, can be found in Table 9.

The detailed results for UCR 85 archive are given in Table 8. We also visualize the detailed results in
Figure 21, where we can see that the accuracies of DSN are nearly on the top in most of the datasets.
In addition, it is worth noting that DSN loses by a slight margin in some datasets, but wins by a big
margin in others.

data name

Ac
cu

ra
cy

Figure 21: Visualizing classification accuracies on UCR 85 archive for the comparison of DSN and
the baselines.

4For transform operation with 1000 random convolution kernels.
5https://github.com/Wensi-Tang/OS-CNN.

21



D More Implementation Details

In our dynamic sparse training algorithm 1, we choose the cosine annealing defined in Eq. 4 with
∆T = 5 epochs and α = 0.5. For UEA 30 archive, in each dynamic sparse CNN layer, the output
channel is set to 177 with sparsity ratio S = 90%. For UCR 112 archive, except for each CNN
layer is padded with zero-value, other hyper-parameters are the same as in UCR 85 archive. We use
PyTorch6 to implement our method and run our experiments on Nvidia Tesla P100.

Table 8: Test accuracies (ACC(%)) for UCR 85 archive and resource cost (i.e. Params (K) and FLOPs
(M)) of our method. Test accuracies of our method are run five times and reported with (mean±std).

ResNet InceptionTime OS-CNN DSN (ours) Params FLOPs

50Words 73.96 84.18 81.60 83.16±0.69 132.27 68.36
Adiac 82.89 83.63 83.45 85.06±0.73 130.41 44.68
ArrowHead 84.46 82.86 83.77 86.40±0.23 125.55 62.31
Beef 75.33 70.00 80.67 82.67±2.49 125.83 116.65
BeetleFly 85.00 85.00 81.50 95.00±0.00 125.40 126.97
BirdChicken 88.50 95.00 88.50 91.00±2.00 125.40 126.97
CBF 99.50 99.89 99.99 98.78±0.31 125.55 31.82
Car 92.50 90.00 93.33 90.67±2.26 125.69 143.14
ChlorineConcentration 84.36 87.53 83.87 86.33±0.20 125.55 41.24
CinCECGtorso 82.61 85.14 82.75 99.20±0.18 125.69 406.37
Coffee 100.00 100.00 100.00 100.00±0.00 125.40 70.95
Computers 81.48 81.20 70.68 79.84±0.54 125.40 178.53
CricketX 79.13 86.67 85.51 77.28±1.57 126.83 74.71
CricketY 80.33 85.13 86.72 80.51±1.04 126.83 74.71
CricketZ 81.15 85.90 86.31 77.13±1.85 126.83 74.71
DiatomSizeReduction 30.13 93.14 97.71 96.99±0.48 125.69 85.63
DistalPhalanxOutlineAgeGroup 71.65 72.66 73.81 84.20±0.33 125.55 19.92
DistalPhalanxOutlineCorrect 77.10 79.35 76.59 81.13±1.09 125.40 19.89
DistalPhalanxTW 66.47 67.63 66.40 79.40±0.37 125.98 20.00
ECG200 87.40 91.00 90.80 80.40±0.49 125.40 23.85
ECG5000 93.42 94.09 94.01 94.32±0.12 125.83 34.85
ECGFiveDays 97.48 100.00 99.95 98.51±0.48 125.40 33.77
Earthquakes 71.15 74.10 66.98 81.06±0.00 125.40 126.97
ElectricDevices 72.91 72.27 72.36 73.02±0.74 126.12 24.00
FISH 97.94 98.29 98.74 97.71±0.72 126.12 114.97
FaceAll 83.88 80.41 84.47 76.91±0.16 127.12 32.87
FaceFour 95.45 96.59 95.11 96.59±0.00 125.69 86.88
FacesUCR 95.47 97.32 96.74 96.62±0.23 127.12 32.87
FordA 92.05 94.83 95.48 94.64±0.16 125.40 124.00
FordB 91.31 93.65 83.79 93.62±0.67 125.40 124.00
GunPoint 99.07 100.00 99.93 98.93±0.53 125.40 37.24
Ham 75.71 71.43 70.38 72.76±1.66 125.40 106.89
HandOutlines 91.11 95.95 92.95 87.90±0.68 125.40 671.54
Haptics 51.88 56.82 51.01 56.43±2.30 125.83 270.82
Herring 61.88 70.31 60.78 63.44±4.49 125.40 126.97
InlineSkate 37.31 48.55 42.93 52.73±4.52 126.12 466.69
InsectWingbeatSound 50.65 63.48 63.52 57.49±0.52 126.69 63.77
ItalyPowerDemand 96.30 96.79 94.72 96.05±0.13 125.40 6.01
LargeKitchenAppliances 89.97 90.67 89.57 89.92±0.26 125.55 178.56
Lighting2 77.05 80.33 80.66 74.43±2.45 125.40 157.95
Lighting7 84.52 80.82 79.32 78.63±1.40 126.12 79.27
MALLAT 97.16 96.29 96.38 92.71±1.83 126.26 254.05

6https://pytorch.org/

22



ResNet InceptionTime OS-CNN DSN (ours) Params FLOPs

Meat 96.83 95.00 94.67 92.33±2.91 125.55 111.13
MedicalImages 77.03 79.87 76.95 74.39±0.24 126.55 24.82
MiddlePhalanxOutlineAgeGroup 56.88 53.25 53.64 78.65±0.77 125.55 19.92
MiddlePhalanxOutlineCorrect 80.89 83.51 81.41 81.33±1.27 125.40 19.89
MiddlePhalanxTW 48.44 51.30 51.95 61.45±0.40 125.98 20.00
MoteStrain 92.76 90.34 92.64 90.73±0.43 125.40 20.88
NonInvasiveFatalECGThorax1 94.54 96.23 96.27 94.36±0.50 131.12 187.11
NonInvasiveFatalECGThorax2 94.61 96.74 96.01 94.72±0.33 131.12 187.11
OSULeaf 97.85 93.39 94.01 98.84±0.31 125.98 106.01
OliveOil 83.00 86.67 78.67 94.00±3.27 125.69 141.40
PhalangesOutlinesCorrect 83.90 85.43 82.97 83.87±0.78 125.40 19.89
Phoneme 33.43 33.54 30.45 33.70±0.79 130.70 254.93
Plane 100.00 100.00 100.00 100.00±0.00 126.12 35.89
ProximalPhalanxOutlineAgeGroup 85.32 85.37 84.39 86.05±0.50 125.55 19.92
ProximalPhalanxOutlineCorrect 92.13 93.13 90.79 93.20±0.14 125.40 19.89
ProximalPhalanxTW 78.05 77.56 77.32 81.95±0.29 125.98 20.00
RefrigerationDevices 52.53 50.93 50.29 55.84±1.27 125.55 178.56
ScreenType 62.16 57.60 52.64 63.95±1.11 125.55 178.56
ShapeletSim 77.94 98.89 79.94 72.67±4.87 125.40 124.00
ShapesAll 92.13 92.50 92.03 92.50±0.61 133.70 128.63
SmallKitchenAppliances 78.61 77.87 72.08 81.76±0.40 125.55 178.56
SonyAIBORobotSurface 95.81 88.35 97.95 89.32±1.82 125.40 17.41
SonyAIBORobotSurfaceII 97.78 95.28 95.38 97.46±0.75 125.40 16.17
StarLightCurves 97.18 97.92 97.50 98.20±0.09 125.55 253.91
Strawberry 98.05 98.38 98.19 97.72±0.29 125.40 58.31
SwedishLeaf 95.63 97.12 97.12 97.79±0.19 127.26 32.16
Symbols 90.64 98.19 96.12 97.43±0.40 125.98 98.82
ToeSegmentation1 96.27 96.93 95.39 97.28±0.33 125.40 68.72
ToeSegmentation2 90.62 93.85 94.62 95.54±0.58 125.40 85.08
Trace 100.00 100.00 100.00 100.00±0.00 125.69 68.28
TwoLeadECG 100.00 99.56 99.92 99.70±0.07 125.40 20.38
TwoPatterns 99.99 100.00 100.00 98.50±0.26 125.69 31.84
UWaveGestureLibraryAll 85.95 95.45 94.25 90.99±0.38 126.26 234.46
Wine 74.44 66.67 74.44 80.00±2.96 125.40 58.06
WordsSynonyms 62.24 75.55 74.23 72.01±1.38 128.69 67.64
Worms 79.09 80.52 76.49 65.86±1.83 125.83 223.23
WormsTwoClass 74.68 79.22 65.71 77.90±1.35 125.40 223.15
syntheticcontrol 99.83 99.67 99.93 99.40±0.13 125.98 15.05
uWaveGestureLibraryX 78.05 82.47 82.18 84.06±0.39 126.26 78.31
uWaveGestureLibraryY 67.01 76.88 75.72 77.10±0.64 126.26 78.31
uWaveGestureLibraryZ 75.01 76.97 76.36 77.98±0.41 126.26 78.31
wafer 99.86 99.87 99.84 99.91±0.02 125.40 37.74
yoga 87.02 90.57 91.06 93.63±0.48 125.40 105.65

23



Table 9: Test accuracies (ACC(%)) for UEA 30 archive and resource cost (i.e. Params (K) and FLOPs
(M)) of our method. Test accuracies of our method are run five times and reported with (mean±std).

MLSTM-FCN TapNet OS-CNN DSN (ours) Params FLOPs

ArticularyWordRecognition 97.30 98.70 98.75 98.40±0.25 146.35 41.58
AtrialFibrillation 26.70 33.30 23.33 6.67±0.00 142.00 180.42
BasicMotions 95.00 100.00 100.00 100.00±0.00 142.42 28.37
CharacterTrajectories 98.50 99.70 99.76 99.39±0.07 145.10 52.02
Cricket 91.70 95.80 99.31 98.89±0.56 143.85 338.23
DuckDuckGeese 67.50 57.50 54.00 56.80±3.25 221.60 119.04
ERing 13.30 13.30 88.15 92.22±1.12 142.66 18.55
EigenWorms 50.40 48.90 41.41 39.08±11.21 142.59 5075.34
Epilepsy 76.10 97.10 98.01 99.86±0.29 142.24 58.21
EthanolConcentration 37.30 32.30 24.05 24.49±0.89 142.24 493.68
FaceDetection 54.50 55.60 57.50 63.49±0.70 150.20 18.58
FingerMovements 58.00 53.00 56.75 49.20±1.17 143.36 14.32
HandMovementDirection 36.50 37.80 44.26 37.30±2.20 142.65 113.22
Handwriting 28.60 35.70 66.82 33.65±0.84 146.18 43.78
Heartbeat 66.30 75.10 48.90 78.34±0.79 145.30 117.00
InsectWingbeat 16.70 20.80 66.66 38.62±10.65 154.94 7.07
JapaneseVowels 97.60 96.50 99.12 98.86±0.11 143.66 8.53
LSST 37.30 56.80 41.25 60.26±4.53 144.21 10.66
Libras 85.60 85.00 95.00 96.44±0.27 144.15 13.22
MotorImagery 51.00 59.00 53.50 57.40±2.58 145.48 867.23
NATOPS 88.90 93.90 96.81 97.78±0.93 143.84 14.72
PEMS-SF 69.90 75.10 76.01 80.12±1.25 199.42 57.15
PenDigits 97.80 98.00 98.55 98.73±0.10 143.25 2.62
PhonemeSpectra 11.00 17.50 29.93 31.97±0.36 148.98 62.77
RacketSports 80.30 86.80 87.66 86.18±1.32 142.42 8.61
SelfRegulationSCP1 87.40 65.20 83.53 71.74±0.79 142.06 252.93
SelfRegulationSCP2 47.20 55.00 53.19 46.44±4.54 142.12 325.32
SpokenArabicDigits 99.00 98.30 99.66 99.10±0.21 143.90 23.85
StandWalkJump 6.70 40.00 38.33 38.67±4.99 142.12 705.04
UWaveGestureLibrary 89.10 89.40 92.66 91.56±0.44 142.95 89.08

24


	Preliminaries
	Preliminaries on Comparison of Exploration Space
	Preliminaries on Calculation of Parameters

	More Experiments
	The Statistics of eNRF Sizes with Different Sparsity Ratios
	Better Kernel Sizes for EEG2 Dataset
	Can Various eNRF Outperform the Optimal NRF?
	The Effect of Kernel Size for DSN
	The Effect of Kernel Group for DSN
	The Effect of Topology Initialization
	Extremely Sparse DSN
	Learning Curve on Three Multivariate TS Dataset
	Additional Experiments on other TSC datasets

	Detailed Results
	More Implementation Details

