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APPENDIX FOR BSTT: A BAYESIAN SPATIAL-
TEMPORAL TRANSFORMER FOR SLEEP STAGING

A APPENDIX

A.l CALCULATION DETAILS
A.l.l CALCULATION OF EVALUATION INDICATORS

‘We use accuracy (ACC), F1 Score, and KAPPA to evaluate the our BSTT model and baseline mod-
els, the specific calculations are follows:
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where TP is the true positive for class C, N is the total number of recordings, F'1¢ is the F1 score
of per class, C is the number of sleep stages, P, is the observed agreement, and P, is the agreement
by chance.

A.1.2 CALCULATION OF POSITION EMBEDDING MATRIX

‘We use the position embedding function in groundbreaking work (Vaswani et al,, 2017) to calculate
the position embedding of Bayesian transformer module. The calculation of position embedding
matrix is defined as: )
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A.2 BASELINE DETAILS

‘We compare the Bayesian spatial-temporal transformer with the following baselines:

« MCNN (Chambon et al,, 2018): a deep learning sleep staging method utilizing multivariate
multimodal PSG signals.

« MMCNN (Jia et al, 20204): a multi-scale convolutional neural network for EEG signal
classification.

* MLP+LSTM (Dong et al, 2017): a mixed neural network, which combines multilayer

perceptron (MLP) and LSTM.
DeepSleepNet (Supra

tal, 2017): a mixed sleep staging method utilizing CNN and

Bi-LSTM.

= TinySleepNet (Supraiak & Guo, 2020): an efficient and lightweight EEG sleep staging
network.

e U-Time (Perslev et al, 2019): a temporal fully convolutional network based on U-Net

architecture for sleep staging.
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= GraphSleepNet (/i )): a spatial-temporal graph convolutional neural network
that can adaptively lea:n spatlal temporal features.

(22

*» Spatial-Temporal Transformer (Phan et al, 2022): a sleep staging method using trans-
former to extract spatial-temporal features.

A.3 VARIATIONAL INFERENCE IN BAYESIAN RELATION INFERENCE

Inspired by the variational RNN (VRNN)(Huang ef al, 2020), we propose to employ variational
inference to optimise our Bayesian relation inference component. VRNN introduces a latent variable
z; + to encode the uncertainty of input features at time #, which is assumed to have a Gaussian prior
distribution p (2;; | h; ;1) conditioned on the previous RNN hidden state h;; . The posterior
distribution of this latent variable is approximated by a variational distribution ¢ (2; \ X,y 1),
allowing us to utilise the evidence lower bound (ELBO) for joint learning and inference. This can
be formulated as follows:
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where Z is latent variables. In Bayesian relation inference component, random variables Aand S

can completely determines the random process in Bayesian relation inference as a whole. The Eq.(6)
in VRNN can be rewritten as follow:
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A.4 PIPELINE GRAPH OF BAYESIAN SPATIAL-TEMPORAL TRANSFORMER

Figure 1 shows the overall of our Bayesian spatial-temporal transformer (BSTT). The input of BSTT
is multi-channel EEG signals with time context. The embedded features first pass through the
Bayesian spatial transformer module to infer the spatial relations among channels and model their
spatial features. The Bayesian temporal transformer module infer the temporal relations and model
the temporal features.
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Figure 1: The pipeline graph of Bayesian spatial-temporal transformer.
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A.5 EXPERIMENT CONFIGURATION AND DETAILS

A.5.1 TRAINING DETAILS

The details of the resources for training and the versions of the software are provided in Table 1.
The details of the hyperparameters are provided in Table 2.
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Table 1: The hardware and software configuration for training.

Python 3.7.11
Software PyTorch 1.10.0
numpy 1212
CPU Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
Hardware RAM 128 GB
GPU GeForce RTX 2080

Table 2: The configuration of hyper-parameters for training.

Hyper-parameter Value
HiddenDim 256
GraphDim 256
Epoch 60
Layer_num_rnn 5
Spatial Lambdal 5e-5
Spatial Lambda2 4e-5

Temporal Lambdal 5e-5
Temporal Lambda2 4e-5

Heads 5
Time Series 5
‘Weight Decay 3e-5

A.6 SUPPLEMENTARY EXPERIMENT RESULTS
A.6.1 SUPPLEMENTARY VISUAL ANALYSIS

Figure 2 shows the intensity graphs of the temporal relation during some specific periods. Specif-
ically, we select the temporal intensity graphs when performing mutual transitions between REM
period and N2 period and during REM period for visual analysis. The proposed model pays more
attention to the longer-interval relations when interpreting the duration of the REM period. The
AASM standard states that the rule of continuous interpretation in REM period requires no rapid
eye movement or significant waveform changes in one or more epochs after that (Berry et al, 2012).
Hence, sleep specialists tend to focus on the long-term relation intensity and the association of
epochs following the target sleep epoch, which is consistent with our experimental results. Further-
more, in our model, the process of mutual transition between REM period and N2 period tends to
focus on the association between the last two sleep epochs. The AASM standard mentions that when
interpreting the mutual transition between REM period and N2 period, it is necessary to ensure that
there is no additional transition of the subsequent EEG signals, otherwise it may be reinterpreted

back to the original sleep period (Herry et al, 2012). Our experimental results also confirm this
result.
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Figure 2: Temporal relation intensity graphs under specific sleep periods or sleep transition pro-
cesses.
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A.6.2 ABLATION EXPERIMENT RESULTS

Table 3 and 4 show the comparison of the results of BSTT ablation experiments on the two datasets.
Specifically, we design three variants of the Bayesian spatial-temporal transformer, including:

* Bayesian Spatial Transformer (BST), which removes the Bayesian temporal transformer
module to determine the impact of modeling temporal relations on model performance.

+ Bayesian Temporal Transformer (BTT), which removes the Bayesian spatial transformer
module to determine the impact of modeling spatial relations on model performance.

* Spatial-Temporal Transformer (STT), which removes the relational inference component
to determine the impact of Bayesian relational inference on model performance.

Table 3: Ablation experiments on the ISRUC dataset.
method ACC(%) Fl scroe(%) KAPPA(%)

BST 80.76 78.24 75.13
BTT 80.57 78.13 75.02
STT 80.35 78.05 74.71
BSTT 81.96 80.30 76.78

Table 4: Ablation experiments on the MASS dataset.
method ACC(%) Fl scroe(%) KAPPA(%)

BST 88.76 83.64 83.28
BTT 88.62 83.64 83.02
STT 88.64 83.53 83.16
BSTT 89.50 85.00 84.37

A.6.3 COMPARISON OF SOME MAIN BASELINES WITH BSTT AT CLASS F1 SCORE

Table 5 and 6 show the comparison of class F1 score of BSTT and some main baseline models.

Table 5: Class F1 score for some main baselines and BSTT on ISRUC dataset.

Method F1_Wake(%) FIN1(%) F1.N2(%) FI1N3(%) FIREM(%)
U-Time 84.63 5243 79.18 86.32 75.47
GraphSleepNet 87.19 58.92 79.98 89.70 78.71
ST-Transformer 87.53 57.69 80.83 88.63 78.79
BSTT (QOur) 88.89 59.81 82.15 89.75 80.71

Table 6: Class F1 score for some main baselines and BSTT on MASS dataset.

Method Fl_Wake(%) FINI(%) FIN2(%) FI1.N3(%) Fl1_REM(%)
U-Time 86.48 51.81 88.32 80.10 87.05
GraphSleepNet 89.92 64.18 92.81 82.10 90.89
ST-Transformer 91.28 65.32 92.09 83.14 90.81
BSTT (Our) 90.92 64.28 92.77 85.14 91.88

A.6.4 RELATION INTENSITY GRAPHS OF BAYESIAN RELATION INFERENCE COMPONENT

To further demonstrate the effectiveness of our proposed Bayesian spatial-temporal relation infer-
ence component, we display other spatial-temporal relationship intensity matrices generated by this
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component. Evidently, brain spatial connectivity is very strong during Wake period and REM pe-
riod, whereas brain spatial connectivity is gradually weakened during NREM periods and N3 period
comes o the weakest. Besides, the temporal relationship intensity matrices also have interpretabil-
ity. For example, when the sleep transition from N2 to N3 occurscomponent focus more on the
relation between the second and third time slices and fourth time slices. Same as sleep spacial-
ists, the proposed component is more concerned with the persistence of the sleep signal afier the
transition has occurred during this period.
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Figure 3: Spatial relation intensity graphs on ISRUC dataset (6 channels).
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Figure 4: Temporal relation intensity graphs on ISRUC dataset.

A.6.5 EXPERIMENT OF MULTI-HEAD BAYESIAN RELATION INFERENCE COMPONENT

‘We replace the self-attention component in traditional transformer with Bayesian relation inference
component we proposed. In traditional transformer, multi-head self-attention is proposed to generate
attention graph from different angles and improve the performance. Inspired by multi-head self-
attention component, we propose multi-head Bayesian relation inference component to better infer
spatial-temporal relation and generate relation graph. The calculation is defined as follows:

heﬂd.[' = .fERl (E) (S)

MultiHead( E') = Concat ( heady, . ... head,) wo (9)
Each head represents a single Bayesian relation inference component. We have tried some values of
n, and finally chose n = 3 to train the model. Table 7 shows the result on the ISRUC dataset when
we set n to different values.

A.7 CODE AND DATASET

The code of BSTT is available at: https://github.com/YuchenLiu1225/BSTT/tree/main/BSTT.

The list of open-source baseline model code used in the experiments is as follows:
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Table 7: The influence of n on the ISRUC dataset.
n  ACC(%) Fl scroe(%) KAPPA(%)

1 80.66 78.19 75.16
3 81.96 80.20 76.78
5 81.76 80.05 76.48

= DeepSleepNet: https://github.com/akaraspt/deepsleepnet

* TinySleepNet: https://github.com/akaraspt/tinysleepnet

= GraphSleepNet: https://github.com/ziyujia/GraphSleepNet

* U-Time: https://github.com/perslev/U-Time

= MMCNN: https:/github.com/ziyujia/ECML-PKDD_MMCNN
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