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ConsistentAvatar: Learning to Diffuse Fully Consistent Talking
Head Avatar with Temporal Guidance

Anonymous Author(s)∗

Figure 1: For short monocular RGB videos, our method synthesizes avatars demonstrating full consistency in 3D (Figure (b)),
temporal (Figure (d)), and emotional aspects (Figure (c)), while maintaining high quality (Figure (a)). Compared to state-of-
the-art methods, ours effectively addresses all three consistency issues simultaneously. Notably, for temporal consistency,
we quantify the degree of change between adjacent frames using optical flow. Comparative analysis with real data shows
significant mitigation of temporal inconsistencies by our method. For the final video demonstration and details about optical
flow, please refer to the supplementary materials.

ABSTRACT
Diffusion models have shown impressive potential on talking head
generation.While plausible appearance and talking effect are achieved,
these methods still suffers from temporal, 3D or expression incon-
sistency due to the error accumulation and inherent limitation of
single-image generation ability. In this paper, we propose Con-
sistentAvatar, a novel framework for fully consistent and high-
fidelity talking avatar generation. Instead of directly employing
multi-modal conditions to the diffusion process, our method learns
to first model the temporal representation for stability between
adjacent frames. Specifically, we propose a Temporally-Sensitive
Detail (TSD) map containing high-frequency feature and contour
that vary significantly along time axis. Using a temporal consistent
diffusion module, we learn to align TSD of the initial result to that
of the video frame ground truth. The final avatar is generated by a

fully consistent diffusion module, conditioned on the aligned TSD,
rough head normal, and emotion prompt embedding. We find that
the aligned TSD, which represents the temporal patterns, constrains
the diffusion process to generate temporally stable talking head.
Further, its reliable guidance complements the inaccuracy of other
conditions, suppressing the accumulated error while improving the
consistency on various aspects. Extensive experiments demonstrate
that ConsistentAvatar outperforms the state-of-the-art methods on
the generated appearance, 3D, expression and temporal consistency.

CCS CONCEPTS
• Computing methodologies→ Reconstruction.

KEYWORDS
3D head avatars, Diffusion model, Consistent avatars
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1 INTRODUCTION
In the realm of virtual reality and its associated applications, the cre-
ation of lifelike and animatable character avatars poses a significant
challenge. Early approaches [5, 7, 34, 47, 49] often involve gener-
ating head avatars by fitting 3D Morphable Models (3DMMs) [2],
utilizing a parameterized representation to describe the shape, tex-
ture, and details of the human face. By adjusting these parameters,
precise control over facial features can be achieved, thereby demon-
strating relatively strong 3D controllability. However, 3DMMs typ-
ically rely on certain assumptions, such as linear shape spaces,
which may not fully capture the complex variations in facial shape,
texture, and details. Consequently, the resulting facial renderings
may lack realism (see Fig. 1 (a)).

To address these issues, some methods [11, 16, 36, 39, 45, 46]
combine StyleGANs [15] with the priors of 3DMMs to improve the
fidelity of generated avatars. For example, SadTalker [45] gener-
ates 3D motion coefficients of 3DMMs from audio and implicitly
adjusts a novel 3D-aware face rendering. Thanks to the powerful
generative capabilities of GANs, these methods often yield realistic
images. However, these methods fundamentally rely on a single-
image 2D generation process, where the image rendering process
is intricately entangled and facial fitting capability is limited. Con-
sequently, these methods encounter difficulties in achieving con-
sistent 3D control (see Fig. 1 (b)). To overcome the limitations of
2D GAN-based methods, recent researches have tended to utilize
Neural Radiance Field (NeRF) or similar implicit representations
to generate face avatars [8, 17, 24, 26, 47], or integrate NeRF into
GANs for 3D-aware dynamic face synthesis [17, 24, 26]. Typically,
these methods learn dynamic NeRF based on input expressions as
the conditions to represent the deformed 3D space. For example,
IMAvatar [47] optimizes the implicit function on the mesh template
to achieve more accurate 3D control. However, as the volume ren-
dering involves manual approximation on the real-world imaging
process, it has potential to lose fidelity on the rendered images.
Additionally, NeRF struggles to decouple temporal information
from 3D representation, resulting in temporal inconsistencies in
such methods. As illustrated in Fig. 1 (a), INSTA [49] and IMAvatar
[47] suffer from inaccurate expressions or appearance degradation.
With the development of diffusion models, more recent studies
[12, 18, 19, 35] have adopted this strategy to enhance the quality of
face generation and editing. For example, DiffTalk [35] models the
generation of talking heads as a denoising process driven by audio.
Due to the powerful generation capabilities of diffusion models,
these methods often achieve highly realistic results. However, these
methods are essentially 2D-aware, so that they also lack sufficient
3D consistency.

Based on the above discussion, it seems that using more widely-
covered conditions lead to fully consistent generated avatars in
diffusion models. Actually, several efforts [6, 21] have integrated
3D-aware conditions like face normal or depth to guide their dif-
fusion models. To further analyse relative strategies, we build a
baseline diffusion model to generate avatars, conditioned on the
low-resolution face image / normal generated from pre-trained
INSTA [49] and emotion label embedding from CLIP [30]. As il-
lustrated in Fig. 1 (d), we observe that DiffusionRig [6] and our
baseline model both suffer from high temporal error and instability,

revealing that employing more conditions for diffusion models may
not always lead to superior results. We argue the reason behind
is two-fold: 1) the inaccuracy within these conditions disturbs the
diffusion process and accumulates to the final result; 2) the based
diffusion model [33] is image but not video generation model, and
thus temporal consistency cannot be modeled or guaranteed. Note
that, given a video as training data, the ground truth of temporal
patterns has been implicitly contained. This motivate us to learn
these patterns and constrain other noisy conditions for talking
avatar generation.

To this end, we introduce ConsistentAvatar, a novel framework
that combines diffusion models with the temporal, 3D-aware, and
emotional conditions, for generating fully consistent and high-
fidelity head avatars. Instead of directly generating avatar, we learn
to first generate temporally consistent representation as a con-
straint to guide other conditions. Concretely, our method starts
from the efficient INSTA method [49] and utilize its outputs as
the initial results. In order to model the temporal consistency, we
propose a Temporally-Sensitive Detail (TSD) generated by Fourier
transformation, containing high-frequency information and con-
tours that change significantly between frames. We extract TSD
from coarse RGB output of INSTA and the target video frame, and
propose a temporal consistency diffusion model to align the input
TSD to the precise one. Besides, we utilize the coarse normal out-
put of INSTA as the 3D-aware condition, and propose an emotion
selection module to generate emotion embedding for each frame
in an unsupervised manner. With the aligned TSD, normal, and
emotion embedding as conditions, we then propose a fully consis-
tent diffusion model to generate the final avatars. In this way, we
guarantee the temporal consistency during the avatar generation,
and complement other conditions to contribute to a fully consis-
tent and high-quality avatar generation result. In summary, our
contributions are as follows:

• We propose ConsistentAvatar, a diffusion-based neural ren-
derer that generates temporal, 3D, and expression consis-
tent talking head avatars.

• We learn to align a novel Temporally-Sensitive Details
(TSD) to maintain the stability between generated frames,
and complement rough normal and emotion conditions for
high-fidelity generation.

• Extensive experiments demonstrate that ConsistentAvatar
outperforms the state-of-the-art methods on the generated
appearance quality, details, expression and temporal con-
sistency.

2 RELATEDWORK
2.1 3D Face Animation
Early methods [4, 32, 45] use 3DMM priors to instruct the generator.
SadTalker [45], for instance, generates head poses and expressions
of 3DMMs from audio and implicitly modulate a 3D-aware face
synthesis model. Recent methods [1, 8, 10, 27, 47, 49], combined 3D
representation techniques with 3DMMs to control the expressions
and poses of avatars. For example, NHA [10] and IMAvatar [47]
refine the mesh topology of FLAME [22] to achieve more realistic
mesh-based avatars. INSTA [49] and RigNeRF [1] utilize 3DMMs
to construct radiance fields. Additionally, other 3D representation
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methods , such as GaussianAvatars [29], construct dynamic 3D
representations based on 3D Gaussian splats rigged to a paramet-
ric morphable face model. More recent works [6, 19, 21, 35] have
leveraged the powerful generation capabilities of 2D diffusion mod-
els. For instance, DiffusionAvatars [21] utilizes the 3D priors of
the recent Neural Parametric Head Model (NPHM) [9] combines
with a 2D rendering network for high-quality image synthesis. In
our work, we integrate 3D representation with diffusion models,
simultaneously leveraging 2D and 3D priors for consistent head
avatar synthesis.

2.2 Controllable face generation with 2D
Diffusion

Denoising Diffusion Probabilistic Models (DDPMs) [13] integrate
image generation with a sequential denoising process of isotropic
Gaussian noise. In this process, the model is trained to anticipate
noise levels from the input image. Due to their remarkable ability
to generate 2D content, they have gradually found application in
face-related tasks. Many studies [6, 19, 21, 35], refine pre-trained
diffusion models by introducing additional control factors like land-
marks or depth. For example, DiffusionRig [6] suggests conditioning
the diffusion model on rasterized grids, considering factors such as
normals and albedo. Conversely, DiffTalk [35] utilizes audio-driven
and landmark-based conditioning to improve identity generaliza-
tion. Despite the good controllability and visual quality of these
methods, they often lack accurate 3D representations or precise 2D
detail priors. As a result, they struggle to maintain consistent 3D
rendering across various viewpoints and temporal consistency in
video rendering simultaneously.

2.3 Emotional Talking Video Portraits
Undoubtedly, emotions play a crucial role in shaping the authentic-
ity of the synthesized portrait. Recently, there has been a growing
effort to incorporate emotions into the synthesis process for better
control over the final output. For instance, EMOCA [3] introduces
a novel deep perceptual emotion consistency loss, ensuring align-
ment between the reconstructed 3D expression and the depicted
emotion in the input image. Meanwhile, GMTalker [41] proposes a
Gaussian mixture-based Expression Generator (GMEG), enabling
the creation of a continuous and multimodal latent space for more
versatile emotion manipulation. However, approaches like EVP [14]
and EMMN [38], which directly infer emotions from labeled audio,
may encounter accuracy issues due to the inherent complexity of
emotional expression. In contrast, methods such as MEAD [40]
and the work by Sinha et al. [37] implicitly learn the intrinsic re-
lationship between emotions and facial expressions through the
use of emotion labels. In our methodology, we leverage the MEAD
[40] dataset to assign emotion labels to the experimental dataset
based on emotional similarities, facilitating precise control over the
emotions of the resulting portraits.

3 PRELIMINARY
INSTA. INSTA [49] is based on a dynamic neural radiance field
composed of neural graphics primitives embedded around a para-
metric face model. It is capable of reconstructing photorealistic

digital avatars instantaneously in less than 10 minutes, while al-
lowing for interactive rendering of novel poses and expressions.
We choose INSTA to get a proxy of talking head under a target
expression and head pose. The proxy, i.e., initial result used as input
for our method is 512 × 512 rendered by volume rendering process,
containing limited appearance quality and expression accuracy.
Our method is capable of lifting the proxy to a high-fidelity and
consistent avatar.

Denoising Diffusion Probabilistic Models. Denoising Diffu-
sion Probabilistic Models (DDPMs) [13, 25, 31] belong to a class
of generative models that take random noise images as input and
progressively denoise them to produce photorealistic images. This
process can be viewed as the reverse of the diffusion process, which
gradually adds noise to images. The core component of DDPMs
is a denoising network denoted as 𝑓𝜃 , During training, it receives
a noisy image 𝑥𝑡 and a timestep 𝑡 (1 ≤ 𝑡 ≤ 𝑇 ), and predicts the
noise at time 𝑡 : 𝜖𝑡 . More formally, the predicted noise at time 𝑡

is 𝜖𝑡 = 𝑓𝜃 (𝑥𝑡 , 𝑡), where 𝑥𝑡 = 𝛼𝑡𝑥0 +
√︃
1 − 𝛼2𝑡 𝜖𝑡 , 𝜖𝑡 is a random,

normally distributed noise image, and 𝛼𝑡 is a hyperparameter that
gradually increases the noise level of 𝑥𝑡 with each step of the for-
ward process. The loss is computed based on the distance between
𝜖𝑡 and 𝜖𝑡 . Therefore, the trained model can generate images by
taking a random noise image as input and progressively denoising
it to achieve photorealism.

4 METHOD
In this section, we introduce ConsistentAvatar, a framework specif-
ically designed for generating high-quality avatars while maintain-
ing full consistency. An overview of this framework is illustrated
in Fig. 2. Ensuring temporal consistency in generating portraits
remains a challenge as the diffusion model struggles to directly
learn time-related information from images. Therefore, we learn
to generate temporally consistent representations as constraints
to guide other conditions. We define Temporally-Sensitive Details
(TSD), a detail map 𝐼𝑇𝑆𝐷 generated by Fourier transformation from
the coarse RGB output of INSTA [49] and the target video frame.
Furthermore, our experiments reveal that directly using the ex-
tracted TSD as a condition does not yield satisfactory temporal
consistency, we propose a temporal consistency diffusion model to
align the input TSD to the precise one (Sec. 4.1). After ensuring tem-
poral consistency during the avatar generation process, we utilize
the coarse normal output of INSTA and emotional text embeddings
as conditions to construct a fully consistent diffusion model (Sec.
4.2). Finally, to expedite and further optimize our model, we draw
inspiration from LCM [23] and SDXL [28], significantly reducing
the necessary inference steps and further enhancing the quality of
image generation (Sec. 4.3).

4.1 Temporally Consistent Module
As mentioned above, to ensure temporal consistency in generating
portraits, we extract Temporally-Sensitive details (TSD) generated
by Fourier transformation from the coarse RGB output of INSTA
[49] and the target video frame. We then align these details through
a diffusion model. This approach complements other conditions and
contributes to achieving fully consistent and high-quality avatar
generation results.

3
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Figure 2: Overview. ConsistentAvatar begins with the implementation of the highly efficient INSTA [49] method, leveraging its
outputs as initial results (Stage 1). To address temporal consistency, we introduce a concept termed as Temporally-Sensitive
Detail (TSD), derived through Fourier transformation. Extracting TSD from the coarse RGB output of INSTA and the target
video frame, we develop a temporal consistency diffusion model to accurately align the input TSD with the precise one (Stage
2). Subsequently, we employ the coarse normal output of INSTA as a parameter for 3D perception and introduce an emotion
selectionmodule to generate emotion embeddings for each frame. By integrating aligned TSD, normal, and emotion embeddings
as conditioning factors, we propose a fully consistent diffusion model to generate the final avatars (Stage 3).

Given amonocular RGB video containing𝐾 frames {𝐼1, 𝐼2, . . . , 𝐼𝐾 }
, camera pose 𝑃𝑐 , tracked FLAME [22] meshes 𝑴 = {𝑀𝑖 } with cor-
responding expressions 𝑬 = {𝐸𝑖 } ∈ R1×100 and poses 𝑷 = {𝑃𝑖 } ∈
R1×6. We obtain RGB output and normal using INSTA [49]. The
process is described as follows:

F𝑖𝑛𝑠𝑡𝑎 (𝐼𝑖 , 𝑃𝑐 , 𝑀𝑖 , 𝐸𝑖 , 𝑃𝑖 ) → 𝐼𝑟𝑔𝑏𝑖 , 𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖 , (1)

where F𝑖𝑛𝑠𝑡𝑎 is the INSTA model. After obtaining the RGB output,
we utilize Fourier transform and its inverse transform to extract TSD
from the RGB output. We apply the Fourier transform to shift an
image from its spatial domain to the frequency domain, revealing
various frequency components. Retaining these high-frequency
elements enables the Fourier transform to efficiently extract image
details, which are represented as:

𝐹𝑖 =

∫ +∞

−∞
𝐼𝑟𝑔𝑏𝑖 𝑒

− 𝑗𝑤𝑡𝑑𝑡 =
{
= 0, 𝑤 ∉𝑊

≠ 0, 𝑤 ∈𝑊 , (2)

where the equation represents content extraction at frequency𝑤
from the image 𝐼𝑟𝑔𝑏𝑖 , with 𝑒

− 𝑗𝑤𝑡 as the orthogonal basis and𝑊
as the frequency set of the image. Experimentally, this paper sets
𝑤=10. Then performing inverse Fourier transform to convert the

frequency domain back to images, which are represented as:

𝐼𝑇𝑆𝐷𝑖
=

∫ +∞

−∞
𝐹𝑖𝑒

𝑗𝑤𝑡𝑑𝑡 . (3)

As illustrated in Fig. 2, the TSD of a video frame contains high-
frequency information and contours that represent crucial fea-
ture of expression, head pose and details for generating the avatar.
However, TSD also varies significantly between adjacent frames.
This inspires us to predict stable TSD of a frame from inaccurate
𝐼𝑇𝑆𝐷𝑖

. Performing the same operation on the ground truth video
frames allows us to obtain the ground truth of TSD. Therefore,
we propose employing a Temporally-Sensitive Diffusion Model
(TSDM) to align 𝐼𝑇𝑆𝐷𝑖

. Specifically, inspired by [6], we first en-
code the obtained 𝐼𝑇𝑆𝐷𝑖

∈ R512×512×3 to obtain the global latent
code E(𝐼𝑇𝑆𝐷𝑖

) ∈ R1×256. Then we pass 𝑃𝑖 and 𝐸𝑖 through a linear
layer to obtain the same scale as E(𝐼𝑇𝑆𝐷𝑖

) and concatenate them
to get 𝑓𝑐 ∈ R3×256. We add new cross-attention layers to the U-
Net, following IPAdapter [43]. Let 𝑍 be the intermediate feature
map computed by an existing cross-attention operation in the pre-
trained LDM [33]: 𝑍 = 𝐴𝑇𝑇𝐸𝑁𝑇𝐼𝑂𝑁 (𝑄,𝐾,𝑉 ). Then, we perform
direct conditioning by adding another cross-attention layer:

𝑍 ← 𝑍 = 𝐴𝑇𝑇𝐸𝑁𝑇𝐼𝑂𝑁 (𝑄,𝑊 𝑘 𝑓𝑐
𝑡 ,𝑊 𝑣 𝑓𝑐

𝑡 ) . (4)
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The more specific denoising process can be represented as follows:

𝜖𝑡 = F ([𝑥𝑡 , 𝑓𝑐𝑡 ], 𝑡, 𝑥0), (5)

where 𝑥𝑡 is the noisy image at timestep 𝑡 ∈ {1, 2, . . . ,𝑇 }, 𝑥0 is
the ground truth latent image, 𝜖𝑡 is the predicted noise, and F
represents the denoising model. The optimization objective of the
entire denoising process is as follows:

L𝑇𝑆𝐷 = ∥𝜖𝑡 − 𝜖𝑡 ∥22 . (6)

𝑥𝑡−1 = 𝑥𝑡 − 𝜖𝑡 is the denoising result of 𝑥𝑡 at time step t. The
final denoised result 𝑥0 is then upsampled to the pixel space with
the pretrained image decoder 𝐼 ′

𝑇𝑆𝐷𝑖
= D𝑇𝑆𝐷 (𝑥0), where 𝐼 ′𝑇𝑆𝐷𝑖

∈
R512×512×3 is the reconstructed TSD image. In this way, we align
𝐼𝑇𝑆𝐷𝑖

to an accurate one, providing the key information of real
portrait changes along time axis. Further, 𝐼 ′

𝑇𝑆𝐷𝑖
can be used as a

reliable guidance for temporally-consistent avatar generation.

4.2 Fully Consistent Module
In Sec. 4.1, after passing TSD through the diffusion model, we
obtain precise and temporally stable TSD. This compensates for
other conditions that may not be particularly accurate. Therefore,
by adding normal condition and emotion condition, we alleviate
3D consistency and expression consistency.

Emotion Condition: For emotion condition, we propose uti-
lizing the MEAD [40] dataset to acquire emotion labels for our
experimental dataset. As described in Fig. 3, the MEAD comprises
numerous monocular video clips {𝑉1,𝑉2, . . . ,𝑉𝑀 }, each clips corre-
sponds to an emotional label 𝐿𝑚 ∈ {𝐿1, 𝐿2, . . . , 𝐿𝑀 } (such as anger,
happy, etc.). Leveraging this rich emotion dataset, we construct
a facial expression database. Subsequently, employing DECA [7],
we compute facial expression vectors for each frame in every clip
𝐸𝑚𝑛 , 𝑛 represents the frame index of the clip. And then determine
the similarity between the current frame’s facial expression vector
𝐸𝑖 and those in the database. Finally, we assign the emotion label
corresponding to the facial expression vector with the highest sim-
ilarity in the database as the emotion label for the current frame.
The process is described as follows:

EMO(𝐼𝑖 ) = 𝐿(𝑎𝑟𝑔𝑚𝑎𝑥 (𝑐𝑠 (𝑑𝑒𝑐𝑎(𝐼𝑖 ), 𝑑𝑒𝑐𝑎(𝑉𝑚𝑛)))), (7)

where 𝐼𝑖 is an image from our dataset, and 𝑉𝑚𝑛 is a frame from
the MEAD dataset, 𝑐𝑠 () represents the cosine similarity function,
which is used to measure the similarity between two expression vec-
tors. 𝑎𝑟𝑔𝑚𝑎𝑥 () retrieves the image corresponding to the maximum
similarity, which belongs to the MEAD dataset. After acquiring
emotional labels corresponding to image through EMO(𝐼𝑖 ), we
use the text encoder in CLIP [30] to extract textual features of emo-
tion labels, obtaining the final emotion code 𝑇𝑖 ∈ R1×768. After
acquiring STD, normal, and emotion conditions, we perform the
same linear operation on 𝑇𝑖 as on 𝐸𝑖 and 𝑃𝑖 , and then concatenate
them to obtain 𝑓𝑑 ∈ R4×256. At that time, it can be utilized as a
condition through cross-attention operation. Finally, we construct
a Fully Consistent Stable Diffusion model (FCSD). Specifically, we
utilize the pretrained Stable Diffusion model (SD) [33] as the back-
bone network to expedite training and enhance generation quality.
Additionally, we incorporate a fully consistency module, effectively
integrating consistency-related information into the backbone net-
work, to construct a ControlNet [44]. The final rendering is achieved

through an iteratively denoising the full noise 𝑥𝑇 with our fully-
consistent neural renderer S conditioned on 𝑧𝑐 :

𝜖𝑡 = S([𝑥𝑡 , 𝑓 𝑡𝑑 ], 𝑡, 𝑥0,𝐶 (𝑥𝑡 , 𝑧𝑐 )), (8)

where C is the ControlNet architecture and 𝑧𝑐 is the concatenation
of the normal condition and the TSD condition. During training,
we minimize the following loss:

L𝑝𝑜𝑟𝑡𝑟𝑎𝑖𝑡 = ∥𝜖𝑡 − 𝜖𝑡 ∥22 . (9)

Similar to Sec. 4.1, the final denoised result 𝑥0 is then upsam-
pled to the pixel space with the pretrained image decoder 𝐼𝑔𝑒𝑛𝑖
=D𝑝𝑜𝑟𝑡𝑟𝑎𝑖𝑡 (𝑥0), where 𝐼𝑔𝑒𝑛𝑖 ∈ R512×512×3 is the reconstructed face
image. This process provides the network with additional multi-
modal conditions, helping it control the 3D and expression consis-
tency of the characters under the well-guided aligned TSD, thereby
assisting in generating portrait animations with more precise mo-
tion.

4.3 Optimization
It is indisputable that both generation speed and the quality of
portrait generation are pivotal criteria for task assessment. We
closely follow the development of diffusion models and, based on
this foundation, further accelerate efficiency and enhance image
quality.

Latent Consistency Model (LCM). To ensure our model main-
tains high-quality generation while minimizing the required steps,
we employ LCM [23] to expedite the generation process. The core
concept of this model lies in redefining the fundamental logic of
traditional diffusion models (such as DDPM [13]) in the genera-
tion process. Traditional diffusion models generate final results
by gradually reducing noise in images, typically through iterative
and time-consuming processes. In contrast, LCM [23] transforms
traditional numerical ordinary differential equation (ODE) solvers
into neural network-based solvers, enabling direct prediction of the
final clear image and thereby reducing intermediate steps, signifi-
cantly enhancing efficiency. By employing LCM [23] to enhance
our model, we have reduced the required steps for predicting the
final image from around 1000 steps to approximately 10 steps.

Refiner. Inspired by Stable Diffusion XL (SDXL) [28], we have
further elevated the generation quality of our model. SDXL repre-
sents the latest optimized version of Stable Diffusion, comprising a
two-stage cascaded diffusion model consisting of a Base model and
a Refiner model. Integrating the Refiner model with our own, after
the Base model generates latent features of the image, we utilize
the Refiner model to conduct minor noise reduction and enhance
detail quality on these latent features.

5 EXPERIMENT
5.1 Setup
Dataset: In our experiments, we utilize four datasets. Initially, we
employ the dataset released by INSTA [49] to train the primary
framework. This dataset comprises 10 monocular videos, each cap-
turing the performance of an individual actor. These videos undergo
cropping and resizing, achieving a resolution of 5122, effectively
removing extraneous elements from the facial region through back-
ground subtraction. Additionally, for equitable comparison with
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Figure 3: Emotion text selection module diagram.
other methods, we utilize two datasets from IMAvatar [47] and Ner-
Face [8] which share the same data format as INSTA [49]. Finally,
during the emotional labeling phase, we utilize the Multi-view
Emotional Audio-visual Dataset (MEAD) [40], which includes a
dialogue video corpus featuring 60 actors conversing with 8 differ-
ent emotions. High-quality audio-visual clips from seven different
perspectives are captured in a strictly controlled environment.

Evaluation Protocol: We utilize the final 350 frames of each
video in our dataset for testing purposes, while the remaining
frames are allocated for training. To assess image quality, we employ
metrics consistent with state-of-the-art methods [47, 49], including
L2 loss, structural similarity index (SSIM), peak signal-to-noise ratio
(PSNR), and the perceptual metric LPIPS. Additionally, to evaluate
the temporal consistency of the generated videos, we utilize optical
flow to compute the degree of change between adjacent frames.

Implementation Details: Our framework was implemented
using PyTorch on a machine equipped with an RTX 3090 GPU. The
training process is divided into three stages. In the first stage, all
experimental configurations match those of INSTA [49], yielding
RGB and normal outputs for the portraits. Moving to the second
stage, we utilize the temporally unstable TSDs obtained from the
RGB outputs of the first stage to train an TSDs generator with
ground truth supervision. We utilize the Adam optimizer [20] with
a learning rate of 10−5 and conduct 3000 iterations with a batch size
of 4. Finally, in the third stage, we train a fully consistent portrait
generator based on the outputs of the first two stages. Once again,
we use the Adam optimizer with a learning rate of 10−4 and conduct
15000 iterations with a batch size of 4.

Baseline setting: To illustrate the role of TSD in temporal con-
sistency more clearly, we use Stage 1 combined with Stage 3 as our
baseline. Here, TSD is not learned through Stage 2, but is directly
used as a condition for ControlNet [44].

5.2 Comparison with the State-of-the-art
Methods

Image quality evaluation: We conduct comprehensive exper-
iments on our dataset, assessing the quality and consistency of
the synthetic digital human avatars generated by our method, and
comparing them with state-of-the-art methods such as IMAvatar
[47], DiffusionRig [6] and INSTA [49]. As shown in Fig. 4, our ap-
proach yields more realistic results. We capture facial details such
as wrinkles and eyeglass frames well. In contrast, other methods

Method Dataset L2 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Time(s) ↓
NHA [10]

INSTA

0.0022 27.71 0.95 0.040 0.63
NeRFace [8] 0.0018 29.28 0.95 0.070 9.68
IMAvatar [47] 0.0023 27.62 0.94 0.060 12.34
MAVavatar [42] 0.0027 25.76 0.93 0.070 1.10
INSTA [49] 0.0018 28.97 0.95 0.050 0.05
DiffusionRig [6] 0.0016 31.34 0.96 0.047 4.10
w/o stage2(Baseline) 0.0010 33.78 0.97 0.040 2.23
w/o LCM 0.0008 34.05 0.97 0.038 8.20
Ours 0.0008 34.05 0.97 0.038 2.23

PointAvatar [48] PointAvatar 0.0027 26.04 0.88 0.147 0.80
w/o stage2(Baseline) 0.0012 32.42 0.93 0.044 2.23
w/o LCM 0.0011 32.72 0.95 0.040 8.20
Ours 0.0011 32.72 0.95 0.040 2.23

NeRFace [8] NeRFace 0.0016 26.85 0.95 0.060 9.68
w/o stage2(Baseline) 0.0014 32.80 0.96 0.045 2.23
w/o LCM 0.0010 33.35 0.96 0.040 8.20
Ours 0.0010 33.35 0.96 0.040 2.23

Table 1: Quantitative analyses between our method and state-
of-the-art models.

like INSTA [49] fail to capture wrinkle information and other de-
tails. Tab. 1 presents quantitative results, demonstrating that our
method achieves state-of-the-art performance across three different
datasets. Particularly noteworthy is the substantial improvement
in both PSNR and L2 loss compared to INSTA [49]. Taken together,
these metrics indicate that our generated portraits are closer to
ground truth and more realistic. Additionally, our ability to better
capture facial expressions contributes to the overall enhancement
of the results. Additional. We are well aware of the importance of
real-time performance, so as mentioned in Sec. 1, we have focused
on improving speed by introducing LCM [23] on top of our model.
As shown in the data in the Tab. 1, we have significantly reduced
the time. Note that the above results were obtained with a time
step setting of 10 during the denoising process, while the default
diffusion model step size is set to 1000. The incorporation of LCM
[23] significantly reduces the time step.

3D consistency results: 3D consistency measures whether the
character maintains the correct appearance from different view-
points. As shown in Fig. 1 (b), methods like SadTalker [45] do not
naturally exhibit good 3D consistency since they do not involve 3D
operations during learning and rely on a single-image 2D gener-
ation process. From Fig. 5, we can also observe the advantage of
our method, with the angles of head rotation being closer to the
ground truth and the results appearing more realistic. For quantita-
tive results, we utilize DECA [7] to estimate the pose coefficients of
the generated portraits, calculating the error between the predicted
pose coefficients and the ground truth, referred to as Pose Error
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Figure 4: Qualitative Results. Clearly, the facial avatars reconstructed by our method exhibit accurate and lifelike details,
including intricate features such as wrinkles and eyes. Other methods produce excessively smooth results.

Method PE ↓ Method EE ↓
SadTalker [45] 0.0755 INSTA [49] 1.9236
w/o aligned TSD 0.02328 Diffusionrig [6] 1.7665
w/o normal 0.03653 w/o aligned TSD 1.4355
Ours 0.0096 w/o emotion text 1.1922
– – Ours 0.8452

Table 2: Quantitative results and ablation results compared
to state-of-the-art methods.

(PE), measured by the Euclidean distance. As shown in Tab. 2, our
method significantly outperforms SadTalker, with minimal error
compared to the ground truth.

Expression consistency results: The expression consistency
measures how well the generated results fit the target expressions.
As shown in Fig. 6, ourmethod is capable of achievingmore accurate
expressions. For quantitative analysis, similar to PE, we employ
DECA [7] to evaluate the expression coefficients of the generated
portraits, calculating the disparity between the predicted expression
coefficients and the ground truth, referred to as Expression Error
(EE). As depicted in Tab. 2, our approach surpasses both Diffusionrig
[6] and INSTA [49], exhibiting minimal error relative to the ground
truth.

Temporal consistency results: The evaluation of temporal
consistency evaluates the stability of the generated video, focusing
on the absence of jitter or significant fluctuations between frames,
ensuring smooth playback. We compare our method with state-of-
the-art approaches like INSTA[49], SadTalker[45] and DiffusionRig
[6] in various categories. We utilize optical flow to compute the
degree of change between two frames. Naturally, we consider the
normal variation between video frames. Therefore, we compare it
with the ground truth as well. From the Fig. 7, it’s evident that our
approach closely approximates the ground truth.

5.3 Ablation Studies
We conduct a series of ablation studies to analyze the different
components of our method. Specifically, we focus on 1) the impact
of unaligned coarse TSD versus aligned TSD through the diffusion
model on other conditions and on temporal consistency; 2) the
impact of the emotion condition on the final results; 3) the impact
of the normal condition on the final 3D consistency;

Aligned TSD and Unaligned TSD. From Fig. 1 (d), it is evident
that the temporal consistency of our baseline is inferior to that
of our final method. Since the baseline directly adopts unaligned
TSD conditions, this proves that aligned TSD can provide better
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Figure 5: Comparison with SadTalker in terms of 3D consis-
tency.

Figure 6: Comparison with different state-of-the-art methods
in terms of expression consistency.

Figure 7: Comparison with different state-of-the-art methods
in terms of temporal consistency.

temporal consistency. From Fig. 8 (a) and (c), it can be observed
that aligned TSD conditions offer more accurate expression and
better 3D consistency.

Emotion Condition. With the aligned TSD as a condition, we
compared the results with and without the addition of the emotion
condition. As shown in Fig. 8 (b), when the emotion condition is
included, it helps the model fine-tune facial expressions, resulting
in outcomes closer to the ground truth.

Normal Condition.With the aligned TSD as a condition, we
compare the results with and without the addition of the normal
condition. As shown in Fig. 8 (d), when the normal condition is
not included, it fails to maintain good 3D consistency, resulting in
artifacts and other noise.

Figure 8: The results of the ablation experiments on TSD
condition, normal condition, and emotion condition.

6 LIMITATION:
Although our work achieves realistic and fully consistent portraits
through the diffusion model and the utilization of TSD, normal, and
emotion conditions, there are still limitations. Our method often
lacks accurate modeling of teeth and eyeball due to the lack of
geometric constraints, as depicted in Fig. 9.

Figure 9: The results of our method’s limitations.

7 CONCLUSION
ConsistentAvatar presents a novel framework for generating talking
avatars with full consistency and high fidelity. We introduce a
Temporally-Sensitive Detail (TSD) map containing high-frequency
features and contours that exhibit significant variation over time.
Utilizing a temporal consistent diffusion module, we align the TSD
of the initial result with the ground truth of the video frame. The
final avatar is generated using a fully consistent diffusion module,
conditioned on the aligned TSD, rough head normal, and emotion
prompt embedding. Aligned TSD, representing temporal patterns,
guides the diffusion process to produce temporally stable talking
heads. Its reliable guidance supplements the inaccuracies of other
conditions, thereby reducing accumulated errors and enhancing
consistency across various aspects.
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