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Efficient Face Super-Resolution via Wavelet-based Feature
Enhancement Network

Anonymous Author(s)

ABSTRACT
Face super-resolution aims to reconstruct a high-resolution face
image from a low-resolution face image. Previous methods typically
employ an encoder-decoder structure to extract facial structural
features, where the direct downsampling inevitably introduces dis-
tortions, especially to high-frequency features such as edges. To
address this issue, we propose a wavelet-based feature enhancement
network, which mitigates feature distortion by losslessly decompos-
ing the input facial feature into high-frequency and low-frequency
components using the wavelet transform and processing them sep-
arately. To improve the efficiency of facial feature extraction, a full
domain Transformer is further proposed to enhance local, regional,
and global low-frequency facial features. Such designs allow our
method to perform better without stacking many network mod-
ules as previous methods did. Extensive experiments demonstrate
that our method effectively balances performance, model size, and
inference speed. All code and data will be released upon acceptance.

CCS CONCEPTS
• Computing methodologies → Reconstruction; Computa-
tional photography; Image processing.

KEYWORDS
Face super-resolution, Efficient, Wavelet transform, Full Domain
Transformer.

1 INTRODUCTION
Face super-resolution (FSR), also known as face hallucination, aims
to convert a low-resolution (LR) face image into a high-resolution
(HR) face image. Different from image super-resolution, FSR focuses
on reconstructing essential structural information about the face,
including facial contours and the shape of facial components. This
paper aims to propose a high-fidelity FSRmethodwhile maintaining
efficiency in model size and inference speed, as depicted in Fig. 1.

Existing FSR methods [2, 4, 15] typically apply an encoder-
decoder structure, which is due to this structure facilitates the
model to grasp the overall facial structure during the encoder stage
with a larger receptive field and enhances facial details during the
decoder stage. Specifically, the encoder initially downsamples the
LR input, extracting facial features at various scales. Subsequently,
the decoder progressively upsamples the features from the encoder
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(a) PSNR, FLOPs and Params Tradeoffs. (b) PSNR, FLOPs and Speed Tradeoffs.

Figure 1: Efficiency trade-offs between ours and state-of-the-
art methods on the CelebA [21] test set. Our method achieves
a better balance in terms of performance (PSNR), model size
(number of Params and FLOPs), and inference speed.

output, refines details, and ultimately generates the HR output.
However, previous methods neglect the impact of the chosen down-
sampling technique on the restoration outcomes. For example, some
methods [4, 7] employ bicubic interpolation or strided convolution
for downsampling. These operations reduce the number of image
pixels, potentially leading to the loss of critical facial details es-
sential for reconstruction. As depicted in Fig. 2 (b) and (c), bicubic
interpolation and strided convolution lead to a significant loss of
texture in the overall facial structure, resulting in distortions in
the subsequent reconstruction of the face profile. Another example
from [12] utilizes downsampling through avgpooling operations.
As illustrated in Fig. 2 (d), this results in the aliasing artifact of high
and low-frequency facial features. This phenomenon is particularly
evident in the eye features and significantly hampers the accurate
representation of facial components.

To address the above problem, we propose to utilize discrete
wavelet transform to enhance the features. Specifically, follow-
ing the Nyquist sampling theorem, the standard downsampling
process involves a low-pass filter followed by downsampling to
prevent frequency domain aliasing. Discrete wavelet transform [24]
can simulate standard downsampling by decomposing the input
image 𝑰 ∈ R𝐻×𝑊 into four components at different frequencies,
which consist of one low-frequency component 𝑰𝐿𝐿 ∈ R

𝐻
2 ×𝑊

2 and
three high-frequency components {𝑰𝐿𝐻 , 𝑰𝐻𝐿, 𝑰𝐻𝐻 } ∈ R

𝐻
2 ×𝑊

2 . The
low-frequency component 𝑰𝐿𝐿 can be approximated as the result
obtained after low-pass filtering followed by downsampling. Simul-
taneously, the acquired high-frequency components can still be
fused with low-frequency features to enhance information, such as
face edges, to alleviate the problem of facial structure loss caused
by downsampling. As shown in Fig. 2 (e), employing wavelet fea-
ture decomposition and fusion results in significantly clearer facial
contours, and there is no occurrence of frequency domain aliasing.
This result demonstrates the strategy’s effectiveness involving us-
ing wavelet transform to decompose features for downsampling

1
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(a) Input 1 (b) Bicubic (c) Stride Conv (d) AvgPool (e) Ours

Figure 2: Feature maps (first line) and FSR results (second line) with
various downsampling methods: bicubic interpolation, stride convo-
lution, average pooling, and our wavelet feature downsample. The
loss of high-frequency features is pronounced in (a) and (b), while
frequency-domain feature aliasing is prominent in (c). Ours is effec-
tive in avoiding the above feature loss or frequency-domain aliasing.

and further utilizing the decomposed high-frequency features to
enhance the face profile. Inspired by this observation, we introduce
wavelet feature downsample (WFD) and wavelet feature upgrade
(WFU). WFD aims to minimize distortion of crucial facial structures
during downsampling in the encoder phase. WFU aims to enhance
facial contour by utilizing extra features obtained through wavelet
decomposition in the decoder phase.

To better enhance the low-frequency facial information obtained
after wavelet transform decomposition, we introduce a full-domain
Transformer (FDT). Specifically, as the low-frequency information
encapsulates the main features of an image, extracting comprehen-
sive low-frequency information is crucial. Despite the Transformer
demonstrating efficacy in handling low-frequency information, the
Transformer utilized in existing FSRmethods struggles to effectively
concentrate on local features (e.g., skin details), regional features
(e.g., components like eyes, noses), and global features (e.g., the
overall face profile of the face). To address this problem, FDT is
proposed to explore diverse receptive fields and uncover deeper
correlations within facial features to extract more comprehensive
information to enhance facial details.

By utilizing WFD and WFU to alleviate facial feature distortion
and employing FDT for comprehensive extraction of facial features,
our wavelet-based feature enhancement network (WFEN) achieves
robust performance without the need for excessive network mod-
ule stacking like previous methods. Results as Fig. 1, our WFEN
demonstrates outstanding efficiency compared to state-of-the-art
methods. In summary, the contributions of this paper are as follows:

• We proposeWFD andWFUmodules utilizing wavelet trans-
form to minimize the distortion of facial features and en-
hance face contour in the encoder-decoder structure.

• We propose an FDT module that extends interactions to the
local, regional, and global levels, providing our model with
richer facial receptive field information.

• We propose a WFEN, which is more efficient than state-
of-the-art methods and achieves a better balance in perfor-
mance, model size, and inference speed.

1The clearer input for the first line is to make the feature map easily observable and
the contrast pronounced.

Table 1: Comparison of encoder-decoder-based network de-
sign in existing methods.

Methods Wavelet-based What to focus on?

SPARNet [4] No Spatial attention.
Restormer [33] No Channel-based self-attention.
LAAT [15] Yes Feature fusion from coarse to fine.
SFMNet [28] No Utilizing Fourier domain feature.
Ours Yes Mitigating feature corruption in downsample.

2 RELATEDWORK
Since our method enhances FSR performance through the appli-
cation of wavelet theory, we present recent advances in FSR and
discuss the utilization of wavelet transform in super-resolution. The
difference with the main related methods can be seen in Table 1.

2.1 Face Super-resolution
With the advancements in deep learning, numerous neural net-
works [18] for FSR have been proposed to enhance performance.
Due to the highly structured nature of the human face, one cate-
gory of methods aims to leverage facial priors, such as facial land-
marks [23], facial parsing maps [5], facial attribute [32], 3D facial
shapes [10], etc., to assist in the restoration process. However, in-
corporating the face prior estimation module into the network
will unavoidably introduce an additional computational burden.
Moreover, accurately estimating facial geometric priors becomes
highly challenging when dealing with very low-resolution face
images. Inaccurate estimation of face priors frequently results in a
substantial distortion of the restoration outcomes, which limits the
development of prior-based methods in the field of FSR.

Consequently, attention-based FSR methods have gained promi-
nence. RAAN [31] utilizes channel attention to extract face shape
features, significantly enhancing the model’s expressive power.
SPARNet [4] introduces spatial attention, allowing it to capture
facial structural features efficiently. SISN [22] separately explores
facial structural information and facial texture details through the
external-internal separation of attention. AD-GNN [2] leverages a
series of spatial attention to explore feature relationship modeling
and complement facial details. To simulate long-distance model-
ing, FaceFormer [29] leverages Transformer’s capabilities for long-
distance modeling to capture global facial information. LAAT [15]
further enhances fine-grained regions of features by introducing a
self-refinement mechanism into the Transformer. CTCNet [7] and
SCTANet [3] integrate spatial attention and self-attention within
the model to effectively leverage local and global information. SFM-
Net [28] employs frequency domain branching and spatial branch-
ing to extract global and local correlations, respectively. However,
none of them consider the detrimental effect of downsampling in the
encoder-decoder on reconstruction. Moreover, unlike these meth-
ods that focus only on local or global facial features, our method
simultaneously focuses on local, regional, and global facial features.

2.2 Wavelet Transform-based Methods
Recently, wavelet theory has gained prominence in super-resolution.
DWSR [9] employs CNN representations on low-resolution wavelet

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Efficient Face Super-Resolution via Wavelet-based Feature Enhancement Network MM’24, October 28 - November 1, 2024, Melbourne, Australia.

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3
 x

 3 +

3 
x 

3

Element-wise Sum

3 x 3 Conv2d3 x 3 

WT Wavelet Transform

IWT Inverse Wavelet Transform

Concatenation Operator

Global Self-Attention

Regional Self-Attention

𝑰𝐿𝑅 𝑰𝑆𝑅
𝐻 ×𝑊 × 𝐶

𝐻 ×𝑊 × 𝐶 𝐻 ×𝑊 × 𝐶 𝐻 ×𝑊 × 3𝐻 ×𝑊 × 3 𝐻 ×𝑊 × 𝐶

𝑭0 𝑭𝑑

𝑭𝑙

𝑭1

𝑭2

Full-domain
Transformer

Encoder 
Stage  

R
SA𝐻

2
×
𝐻

2
× 2𝐶

Decoder 
Stage  

𝑯𝐿𝑅
1 𝑽𝑅𝐿

1 𝑫𝑅𝑅
1

Residual 
Block

𝑨𝐿𝐿
1

Wavelet Feature Downsample (WFD) 

𝑉𝑅𝐿𝐻𝐿𝑅

C

Wavelet Feature Upgrade (WFU) 

𝐴𝐿𝐿

𝐷𝑅𝑅

𝑭𝑠+1

𝑭𝑠
′

Enhanced

EnhancedResidual 
Block

Low-frequency

High-frequency

𝑭𝑠

IW
T

W
T

Full-domain Transformer (FDT) 

W
T Low-frequency

High-frequency

+ +

Enhanced

WFD

WFD

Full-domain
Transformer

Full-domain
Transformer

Full-domain
Transformer

Full-domain
Transformer

Full-domain
Transformer

Full-domain
Transformer

Full-domain
Transformer

C

C

C

WFUWFD

Wavelet Feature Downsample

Wavelet Feature Upgrade

Low-frequency Feature

High-frequency Feature

GSA

RSA

WFD

WFU

C

+

𝑭𝑒

𝐻 ×𝑊 × 𝐶

𝐻

2
×
𝐻

2
× 2𝐶

𝐻

4
×
𝐻

4
× 4𝐶

𝐻

4
×
𝐻

4
× 4𝐶

𝐻

8
×
𝐻

8
× 4𝐶

𝐻

8
×
𝐻

8
× 4𝐶

𝑭1

𝐻

8
×
𝐻

8
× 4𝐶

Enhanced

Enhanced

Enhanced

Full-domain
Transformer

WFU

WFU

𝑭𝑙𝑜𝑤
𝑭ℎ𝑖𝑔ℎ

M
LP

G
SA

M
LP

Multilayer PerceptronMLP

Figure 3: Overview of our method, where cascading WFD and WFU constitute the wavelet-based encoder-decoder structure.

subbands to recover missing details. Wavelet-SRNet [11] recon-
structs a face image from a sequence of wavelet coefficients of the
HR corresponding to the LR learned by the network. SRCliqueNet [36]
explores relationships between wavelet transform subbands to aid
the reconstruction process. JWSGN [37] employs wavelet transform
to reconstruct the frequency domain details of images. WTRN [20]
reconstructs the texture by computing the correlation of thewavelet-
transformed subbands with the reference image. FOF [16] considers
data characteristics in the frequency domain through wavelet trans-
forms, thereby enhancing the efficiency of the network. LAAT [15]
employs a wavelet fusion module to combine shallow structures
and deep details to recover realistic images in the frequency domain.
Unlike these methods, we focus on utilizing wavelet transform to
decompose the high and low-frequency components for lossless
downsampling, which in turn reduces the feature corruption of
downsampling in encoder-decoder structure.

3 PROPOSED METHOD
3.1 Overview
As shown in Fig. 3, from a given degraded face image 𝑰𝐿𝑅 ∈ R𝐻×𝑊 ×3,
we aim to reconstruct a clean face 𝑰𝑆𝑅 ∈ R𝐻×𝑊 ×3 by employing a
wavelet-based encoder-decoder structure integrated with residual
block and our full-domain transformer. The wavelet-based encoder-
decoder structure encompasses our wavelet feature downsample
in the encoder stage and wavelet feature upgrade in the decoder
stage for downsampling and upsampling.

Specifically, our method initially extracts shallow facial features
𝑭 0 ∈ R𝐻×𝑊 ×𝐶 from 𝑰𝐿𝑅 , where 𝐻 ×𝑊 denotes the spatial reso-
lution, and 𝐶 denotes the number of channels. Subsequently, 𝑭 0
undergoes hierarchical level-by-level processing through wavelet

feature downsample, gradually transforming the 𝑭 0 into a low-
resolution latent representation 𝑭 l ∈ R

𝐻
8 ×𝑊

8 ×4𝐶 . At each level, the
low-frequency part of the transform is fed to our full-domain Trans-
former, while the high-frequency part is fed to the residual block.
During the bottleneck stage, situated between the encoder and de-
coder stages, a sequence of full-domain Transformers is employed to
refine 𝑭 l to obtain 𝑭 e ∈ R

𝐻
8 ×𝑊

8 ×4𝐶 . Then, we incorporate wavelet
feature upgrade before each decoding level, which effectively per-
forms cross-scale feature fusion to obtain accurate depth features
𝑭 d ∈ R𝐻×𝑊 ×𝐶 . Finally, the output 𝑭 d from the decoder stage re-
covers a clean face image 𝑰𝑆𝑅 after residual concatenation and
dimensionality reduction. In the following subsections, we provide
a detailed description of the core modules we have constructed.

3.2 Wavelet-based Encoder-Decoder Structure
As depicted in Fig. 3, the central components of the wavelet-based
encoder-decoder structure consist of a series of wavelet feature
downsamples in the encoder and a series of wavelet feature up-
grades in the decoder. They are tasked with progressively downsam-
pling and upsampling, forming the main structure of our network.

Wavelet Feature Downsample (WFD). During the encoder pro-
cess, downsampling is typically employed to decrease the size of the
feature map. However, as mentioned above, existing methods over-
look the irreversible distortion caused by downsampling, resulting
in unclear edges in the FSR results. It occurs because traditional
downsampling operations, which decrease resolution by merging
neighboring pixels, can result in feature distortion, particularly in
regions with significant gradient changes, due to the reduction in
sampling points. In this context, as shown in Fig. 3, we introduce a
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Figure 4: Architecture of our proposed full-domain Transformer, which can focus on local, regional, and global facial features.

WFD using wavelet transform to alleviate this phenomenon. Ad-
ditional information about wavelet transform can be found in our
supplementary materials.

For input facial feature 𝑭 1 ∈ R𝐻×𝑊 ×𝐶 , we initially apply awavelet
transformWT , allowing us to decompose 𝑭 1 into four sub-wavelet
bands: low-pass feature 𝑨1

𝐿𝐿
, and high-frequency facial in horizon-

tal, vertical, and diagonal directions 𝑯 1
𝐿𝑅

, 𝑽 1
𝑅𝐿

, and 𝑫1
𝑅𝑅

:

{𝑨1
𝐿𝐿,𝑯

1
𝐿𝑅, 𝑽

1
𝑅𝐿,𝑫

1
𝑅𝑅} = WT (𝑭1), (1)

where {𝑨1
𝐿𝑅

,𝑯 1
𝐿𝑅

, 𝑽 1
𝑅𝐿

,𝑫1
𝑅𝑅

} ∈ R
𝐻
2 × 𝐻

2 ×𝐶 . As the low-frequency
part predominantly carries essential information in the image, we
focus on low-frequency face details on the main path while paying
attention to high-frequency face textures on the residual path:

𝑭 𝑙𝑜𝑤 , 𝑭ℎ𝑖𝑔ℎ = T
(
𝑨1
𝐿𝐿

)
,R

(
𝑯 1

𝐿𝑅, 𝑽
1
𝑅𝐿,𝑫

1
𝑅𝑅

)
, (2)

where 𝑭 low denotes the enhanced low-frequency features, 𝑭 high
denotes the enhanced high-frequency features, T denotes our full-
domain Transformer, and R denotes residual block. We opt for
different structures to extract high and low-frequency features be-
cause prior researches [14, 26] indicate that Transformer is more
sensitive to low-frequency features, while CNN is more sensitive
to high-frequency features. Next, the full downsampled enhanced
feature 𝑭 2 ∈ R

𝐻
2 × 𝐻

2 ×2𝐶 is obtained by fusing 𝑭 low and 𝑭 high. With
this thoughtful design, our model can enhance efficiency in han-
dling both high and low-frequency facial features.

Wavelet Feature Upgrade (WFU). To obtain more details, several
methods [2, 7, 15] propose using residual concatenation to enable
the decoder to leverage information from the encoder. As the reso-
lution of features at different scales differs, upsampling is employed
to align them to the same resolution before feature fusion. Never-
theless, direct fusion operation is not optimal as it may introduce
some degree of high and low-frequency aliasing. To better fuse
features from the encoder, we leverage the wavelet transform for
image scale transformations, developing a WFU to effectively uti-
lize features from different scales in the decoder to enhance facial
details by fusing high and low-frequency features separately.

Specifically, as shown in Fig. 3, for larger scale feature 𝑭 𝑠 ∈ R
𝐻
4 ×𝑊

4 ×4𝐶

from the encoder and smaller scale feature 𝑭 𝑠+1 ∈ R
𝐻
8 ×𝑊

8 ×4𝐶 from
the decoder, we initially apply the wavelet transform to the larger
scale feature 𝑭 𝑠 , resulting in four wavelet subbands of same scale
as R

𝐻
8 ×𝑊

8 ×4𝐶 :

{𝑨𝑠
𝐿𝐿,𝑯

𝑠
𝐿𝑅, 𝑽

𝑠
𝑅𝐿,𝑫

𝑠
𝑅𝑅} = WT (𝑭 𝑠 ), (3)

where 𝑨𝑠
𝐿𝐿

represents the low-frequency part of 𝑭 𝑠 and 𝑯𝑠
𝐿𝑅

, 𝑽𝑠
𝑅𝐿

,
𝑫𝑠
𝑅𝑅

represent the three high-frequency parts of 𝑭 𝑠 . Considering
that small-scale feature 𝑭 𝑠+1 is presumed to contain low-frequency
information predominantly, we combine 𝑨𝑠

𝐿𝐿
with it as the en-

hanced low-frequency subband. Simultaneously, we employ a resid-
ual block to strengthen the high-frequency components of the
image, and ultimately, output 𝑭 ′𝑠 ∈ R

𝐻
4 ×𝑊

4 ×4𝐶 can be obtained
through the inverse wavelet transform:

𝑭 ′𝑠 = IWT
(
C
(
𝑨𝑠
𝐿𝐿, 𝑭 𝑠+1

)
,R

(
𝑯𝑠

𝐿𝑅, 𝑽
𝑠
𝑅𝐿,𝑫

𝑠
𝑅𝑅

) )
, (4)

where IWT denotes the inverse wavelet transform, C denotes
the concatenation, and R denotes the standard residual block.

3.3 Full-domain Transformer
As analyzed above, the main path of the framework consists mainly
of low-frequency information. Therefore, utilizing the Transformer
structure, which exhibits greater sensitivity to low-frequency in-
formation, is more advantageous for facial feature extraction. To
enhance the restoration of facial images, it is crucial to effectively
utilize face features at local, regional, and global levels. Specifi-
cally, local regions encompass multiple pixels and are most effec-
tively modeled using small 1 × 1 or 3 × 3 kernels, capturing typical
features such as local facial details. Regional features encompass
dozens of pixel points, such as eyes, nose, and other facial com-
ponents. Due to their larger spatial extent, they are better mod-
eled using convolution with large kernels [6, 27] or window-based
Transformers [19]. Global features involve the structural correla-
tion of the entire face, such as the overall facial contour, and are
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Table 2: Quantatitive evaluation for ×8 FSR on CelebA [21] and Helen [13] test sets. The best and second-best results are
emphasized in bold and underlined. Our method achieves the best results with the second least computational load and speed.

CelebA [21] Helen [13]Methods Params FLOPs Speed PSNR↑ SSIM↑ LPIPS↓ VIF↑ ID↑ PSNR↑ SSIM↑ LPIPS↓ VIF↑
Bicubic - - - 23.61 0.6779 0.4899 0.1821 5.9% 22.95 0.6762 0.4912 0.1745
FSRNet [5] 27.5M 40.7G 89.8ms 27.05 0.7714 0.2127 0.3852 66.7% 25.45 0.7364 0.3090 0.3482
FACN [32] 4.4M 12.5G 26.7ms 27.22 0.7802 0.2828 0.4366 67.1% 25.06 0.7189 0.3113 0.3702
DIC [23] 22.8M 35.5G 120.5ms 27.42 0.7840 0.2129 0.4234 71.6% 26.15 0.7717 0.2158 0.4085
SPARNet [4] 10.6M 7.1G 36.6ms 27.73 0.7949 0.1995 0.4505 80.3% 26.43 0.7839 0.2674 0.4262
AD-GNN [2] 15.8M 15.0G 107.9ms 27.82 0.7962 0.1937 0.4470 81.2% 26.57 0.7886 0.2432 0.4363
Restormer-M [33] 11.7M 16.1G 63.2ms 27.94 0.8027 0.1933 0.4624 82.4% 26.91 0.8013 0.2258 0.4595
LAAT [15] 22.4M 8.9G 35.1ms 27.91 0.7994 0.1879 0.4624 84.8% 26.89 0.8005 0.2255 0.4569
SFMNet [28] 8.6M 30.6G 49.2ms 27.96 0.7996 0.1937 0.4644 84.6% 26.86 0.7987 0.2322 0.4573
Ours 7.0M 7.8G 33.9ms 28.04 0.8032 0.1803 0.4682 86.8% 27.01 0.8051 0.2148 0.4631

LR FACN [32] DIC [23] SPARNet [4] AD-GNN [2] Restormer-M [33] LAAT [15] SFMNet [28] Ours GT

Figure 5: Qualitative quality comparison for ×8 FSR on CelebA [21] and Helen [13] test sets. Our method recovers more detailed face images.

best modeled using the global Transformer. However, many meth-
ods [7, 17, 29, 33] only focus on leveraging local and global features
or local and regional features. Thus, as shown in Fig. 4, we propose
a full-domain Transformer as our primary module for feature ex-
traction, which consists of two main parts: regional self-attention
(RSA) focuses on extracting local and regional facial features, while
global self-attention (GSA) is responsible for extracting local and
global facial features. Subsequently, we will elaborate on how FDT
effectively captures local, regional, and global facial features.

Regional Self-Attention (RSA). For an input layer normalized fa-
cial feature 𝑿 ∈ R𝐻×𝑊 ×𝐶 , we first extract a set of window features
from input 𝑿 :

{𝑿1,𝑿2, ...,𝑿𝑛} = 𝑆𝑝𝑙𝑖𝑡 (𝑿 ), (5)

where {𝑿1,𝑿2, ...,𝑿𝑛} ∈ R
𝐻𝑊

𝑁 2 ×𝑁×𝑁×𝐶 denotes a set of window
feature patches, 𝑁 denotes the size of the window, and 𝑛 = 𝐻

𝑁
= 𝑊

𝑁
.

Subsequently, the model initially captures the local facial details
to enhance the network’s contextual information. Local details
are captured by combining a 1 × 1 point-wise convolution and
a 3 × 3 depth-wise convolution. Then for each window feature
patch 𝑿𝑖 that enhances the local context, we project it into query
𝑸𝑖 ∈ R

𝐻𝑊

𝑁 2 ×𝑁 2×𝐶 , key𝑲𝑖 ∈ R
𝐻𝑊

𝑁 2 ×𝑁 2×𝐶 , and value 𝑽 𝑖 ∈ R
𝐻𝑊

𝑁 2 ×𝑁 2×𝐶 .

This process can be described as:

{𝑸𝑖 ,𝑲𝑖 , 𝑽 𝑖 } = RS (D (P (𝑿𝑖 ))) , (6)

where RS denotes a reshape operator, D denotes a depth-wise
convolution layer, and P denotes a point-wise convolution layer.
On this basis, for each window feature patch, regional self-attention
can be formulated as:

Attention(𝑸𝑖 ,𝑲𝑖 , 𝑽 𝑖 ) = 𝑽 𝑖ReLU(𝑸𝑖𝑲𝑖
𝑇 /𝛼), (7)

Here, 𝛼 denotes a learnable parameter. To avoid the computational
complexity of O(𝐻2𝑊 2), we choose to implicitly encode global
features across channels when computing the feature covariance 𝑨.
Specifically, we replace the attention map of size 𝑨 ∈ R𝐻𝑊 ×𝐻𝑊 in
the traditional sensewith a regional attentionmap of size𝑨 ∈ R𝐶×𝐶 .
Furthermore, to address the absence of connectivity among differ-
ent windows, as shown in Fig. 4, we introduce a straightforward
yet effective information exchange mechanism for RSA to facilitate
communication between adjacent windows by shifting windows.
Hence, our meticulous design allows RSA to enhance regional and
local facial features effectively.

Global Self-Attention (GSA). For an input layer normalized facial
feature 𝑿 ′ ∈ R𝐻×𝑊 ×𝐶 , similarly, we initially employ 1 × 1 point-
wise convolution and 3 × 3 depth-wise convolution to extract local
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Table 3: Comparison of face similarity on SCface [8] test set.

Average similarity↑Methods Case 1 Case 2 Case 3 Case 4 Case 5

FSRNet [5] 0.6713 0.6560 0.6794 0.6903 0.6711
FACN [32] 0.6545 0.6318 0.6571 0.6710 0.6516
DIC [23] 0.5272 0.4851 0.5772 0.5431 0.5527
SPARNet [4] 0.7100 0.6911 0.7160 0.7252 0.7041
AD-GNN [2] 0.7188 0.6947 0.7171 0.7283 0.7161
LAAT [15] 0.7193 0.7070 0.7140 0.7342 0.7238
SFMNet [28] 0.7224 0.7101 0.7243 0.7331 0.7223
Ours 0.7252 0.7239 0.7253 0.7426 0.7256

Table 4: Ablation studies of WFD and WFU, as well as shift
window (SW) mechanism and shuffle heads (SH) mechanism
in the full-domain transformer on Helen [13] test set.

Methods WFD WFU SW SH Params FLOPs PSNR / SSIM

w/o WFD % ! ! ! 0.830M 1.131G 26.22 / 0.7743
w/o WFU ! % ! ! 0.719M 1.085G 26.27 / 0.7772
w/o SW ! ! % ! 0.848M 1.164G 26.31 / 0.7763
w/o SH ! ! ! % 0.848M 1.164G 26.31 / 0.7783
Ours ! ! ! ! 0.848M 1.164G 26.36 / 0.7795

information from 𝑿 ′, ensuring the accurate recovery of facial de-
tails. Subsequently, we adhere to prior methods [33] by subdividing
the channel into multi-heads ℎ and concurrently learning distinct
self-attention maps. Specifically, we generate query𝑸 ∈ Rℎ×𝐶×𝐻𝑊 ,
key 𝑲 ∈ Rℎ×𝐶×𝐻𝑊 , value 𝑽 ∈ Rℎ×𝐶×𝐻𝑊 projections based on the
overall face feature after enhanced local detail, where𝐶 is the num-
ber of channels in each head. Next, we create a global attention
map of size 𝑨′ ∈ R𝐶×𝐶 by computing the dot product of vectors 𝑸
and 𝑲 . This process emphasizes the relationships between channels
while implicitly encoding global facial features. In summary, the
full process of global self-attention can be formulated as follows:

Attention(𝑸,𝑲 , 𝑽 ) = 𝑽ReLU(𝑸𝑲𝑇 /𝛽), (8)

where 𝛽 denotes a learnable parameter. To augment information ex-
change between the multi-heads, as illustrated in Fig. 4, we achieve
this by blending multi-head feature mechanisms. Through metic-
ulous design, our GSA effectively enhances the local and global
features of the input face images.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
In this paper, We employ the CelebA [21] dataset for training and
evaluate the models on the Helen [13] and SCface [8] datasets. Due
to variations in the length and width of the original face image, we
pre-detect the 68 landmarks of the face using OpenFace [1]. The
face images are then cropped based on these landmarks and resized
to 128×128 pixels to serve as the ground truth. The ground truth
images are further downsampled to 16×16 to generate LR images
using bicubic interpolation. Based on this foundation, we utilize

(a) LR (b) w/o WFD (c) w/o WFU (d) Ours (e) GT

Figure 6: Impact of WFD and WFU on FSR results. We use
general downsample and upsample with comparable param-
eters instead of WFD and WFU, respectively.
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(a) On the CelebA test set. (b) On the Helen test set.

Figure 7: Ablation study on the generalization of WFD+WFU.
We add them to methods SPARNet [4], LAAT [15], and SFM-
Net [28] and observe PSNR enhancement.

18,000 samples from CelebA for training. For testing purposes, we
selected 1,000 samples from CelebA and 50 samples from Helen.
As for the quality assessment metrics, we used PSNR, SSIM [30],
LPIPS [34] and VIF [25]. Recognizing the significance of identity
consistency, we introduced the identity comparison accuracy, de-
noted as ID. This metric uses SFace [35] as a recognition model,
determining whether the restored and original faces belong to the
same identity.

4.2 Implementation Details
We implement all experiments using the PyTorch framework with
a single NVIDIA GeForce RTX 4090. In the network, we first extend
the number of channels𝐶 to 40. And in R𝐻×𝑊 ×𝐶 stage, the number
of full-domain Transformer is set to 2, in R

𝐻
8 ×𝑊

8 ×4𝐶 stage the
number is set to 6, and in all the remaining stages the number is
set to 1. During the training stage, our model is optimized with an
L1 loss with a coefficient of 1, and we use the Adam optimizer with
𝛽1=0.9, 𝛽2=0.99. We set the initial learning rate to 2 × 𝑒−4 and the
batchsize to 12. In addition, the ID metric’s cosine threshold for
identity matching is set to 0.5 in the experiment.

4.3 Comparisons with State-of-the-Art Methods
We benchmark our method against several state-of-the-art FSR
methods using a unified dataset. The compared methods include
prior-based approaches like FSRNet [5], FACN [32], and DIC [23],
attention-based CNNmethods such as SPARNet [4] andAD-GNN [2],
and Transformer-based methods like Restormer-M [33], LAAT [15],
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Figure 8: Qualitative comparison of state-of-the-art methods on the SCface [8] test set. Our method can restore the clearer face
components, especially the eye region, which is critical for downstream face recognition tasks.

Table 5: Ablation studies about the efficiency of our full-
domain Transformer (FDT). We use main modules in SPAR-
Net [4], Restormer [33], and LAAT [15] for feature extraction
instead of FDT, respectively. Our FDT can achieve gained per-
formance with reduced computational costs.

Helen [13]Methods Params FLOPs PSNR / SSIM / LPIPS↓ / VIF↑
Ours+SPARNet [4] 0.925M 2.565G 26.27 / 0.7754 / 0.2804 / 0.4241
Ours+Restormer [33] 1.063M 1.663G 26.33 / 0.7770 / 0.2747 / 0.4259
Ours+LAAT [15] 1.089M 1.863G 26.33 / 0.7771 / 0.2801 / 0.4250
Ours+FDT 0.848M 1.164G 26.36 / 0.7795 / 0.2745 / 0.4283

and SFMNet [28], where Restormer-M is a generalized image restora-
tion method fine-tuned on face training sets. We present the quan-
titative results for the CelebA and Helen test datasets in TABLE 2.
The best and the second-best results are emphasized in bold and
underlined in this paper. Our method excels in various metrics, in-
cluding image structure similarity (PSNR and SSIM), visual quality
(LPIPS), fidelity (VIF), and face identity consistency (ID), achieving
the best performance. Furthermore, we provide quantitative data
about models, including the number of model parameters, FLOPs,
and inference speed, in TABLE 2 to assess the model’s efficiency.
Compared with the methods above, our method is less parametric
and computationally intensive, and faster in inference, exhibiting
excellent efficiency. Next, we visually compare the restoration re-
sults of various methods. As shown in Fig. 5, the high-frequency
face profile achieved by our method is significantly sharper and
more closely resembles the ground truth, such as key facial compo-
nents such as the eyes. More qualitative comparisons can also be
found in supplementary materials.

Additionally, we validate the efficacy of our method in a practical
surveillance scenario. For this purpose, we chose HR face images
of test subjects from the SCface dataset as the source samples. The
corresponding LR face images captured by surveillance cameras are
regarded as the target samples. We created five case groups, each

consisting of 5 pairs of randomly selected face samples. The evalu-
ation metric is the average similarity between the restored and HR
faces. As shown in TABLE 3, our method consistently reconstructs
faces with higher similarity in all cases, which indicates that our
method can be better applied to a practical scenario. In addition,
visual comparisons on the SCface test set of various methods can
be found in Fig. 8, where prior-based FSR methods exhibit varying
degrees of distortion in key facial components. This distortion could
be attributed to inaccurate prior estimation, particularly at the cur-
rent very low resolutions. Attention-based and Transformer-based
methods improved the clarity of the restored face to some extent,
but the face contours and edges were still not clear. In contrast, our
method excels at restoring the contours of the face and facial com-
ponents with superior clarity, a crucial aspect for downstream tasks
like face matching. In summary, the comprehensive results, both
quantitative and qualitative, illustrate the efficiency of our model’s
performance as well as its applicability across various scenarios.

4.4 Ablation Study
This subsection presents an experimental ablation analysis of the
causes of our method’s effectiveness, including two reasons: the
proposed wavelet-based downsample and upgrade modules and
the proposed full-domain Transformer.

Wavelet Feature Downsample and Upgrade. WFD and WFU are
important components in our wavelet-based encoder-decoder struc-
ture. To assess the efficacy of our proposed WFD and WFU, we
conducted experiments by substituting WFD with stride convolu-
tion for downsampling andWFUwith interpolation for upsampling.
As indicated in TABLE 4, the computational burden imposed by
the WFD module for downsampling is nearly negligible. However,
leveraging the WFD for downsampling significantly enhances the
model’s performance, resulting in a noteworthy PSNR gain of 0.14
dB. Subsequently, we observe that employing WFU to enhance
facial details in the decoder stage yields a modest performance
improvement compared to the conventional interpolation method
of upsampling. This enhancement leads to a PSNR gain of 0.09 dB
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Figure 9: Ablation studies on the effectiveness of local, regional, and global facial features for FSR.

while maintaining a relatively modest computational load. Mean-
while, corresponding visual comparisons are presented in Fig. 6. In
Fig. 6 (b), without using WFD, the contours around the eyes, mouth,
and corners of the face appear somewhat blurred. Similarly, in Fig. 6
(c), without using WFU, the contours around the right eye corner
and mouth appear blurred. In contrast, Fig. 6 (d) with the complete
WFD andWFU, reconstructed face component contours are sharper
and closer to ground truth. This portion of the experiment strongly
demonstrates the effectiveness of our WFD and WFU.

Subsequently, to assess the generalization of WFD plus WFU,
we incorporate both into several existing methods, replacing their
native downsampling and upsampling while preserving their pro-
posed feature extraction modules. These methods include SPAR-
Net [4], LAAT [15] and SFMNet [28]. As depicted in Fig. 7, all these
methods exhibit significant performance enhancements when inte-
grated with WFD plus WFU, with PSNR gains greater than 0.1dB.
Notably, our proposed WFD and WFU are remarkably lightweight,
imposing an almost negligible additional computational load. In
summary of the two-part ablation studies presented above, WFD
and WFU are efficient downsampling and upsampling approaches
that can be seamlessly integrated into existing methods.

Full-domain Transformer. To assess the impact of extracting lo-
cal, regional, and global facial features on facial reconstruction, we
replace the combinations of RSA and GSA in FDT with all-RSA
or all-GSA, respectively. This simulates existing FSR methods that
exclusively focus on global and local or only regional and local
facial features. Meanwhile, it can ensure that the calculated loads
of the three ablation methods are comparable for a fair compari-
son. As depicted in Fig. 9 (a) and (b), our full-domain Transformer
exhibits faster training convergence and superior performance on
both test sets. Additionally, as illustrated in Fig. 9 (c), our proposed
full-domain Transformer exhibits a balanced computational load,
including inference speed and training memory. To further show-
case the effectiveness of simultaneously capturing local, regional,
and global features of a face image, we illustrate the separated case,
mixed case, and our full-domain case in Fig. 9 (d). The separated
case refers to situations where only one of the local, regional, or
global features of the face image is focused on. Mixed case refers
to situations where two of the three facial features-local, regional,
and global-are attended to. In contrast to the above two cases, our
method achieves a notable performance enhancement by incorpo-
rating complementary features across various scales, making it the

optimal solution. All experimental results demonstrate that simulta-
neously focusing on local, regional, and global features of the face
image can effectively enhance performance without significantly
increasing computational load.

Next, TABLE 4 substantiates the significance of information
exchange mechanisms, including exchanging facial information
across distinct regions via shifting windows in RSA and exchanging
different multi-head information via shuffling heads in GSA. As in-
dicated in TABLE 4, these information exchange mechanisms incur
almost no computational cost, yet incorporating both mechanisms
separately results in a PSNR gain of 0.05 dB in the model’s perfor-
mance. Moreover, we determine the efficiency of FDT by using the
basic feature extraction modules in the three methods, SPARNet [4],
Restormer [33], and LAAT [15], instead of FDT. As can be seen from
TABLE 5, FDT achieves the best performance in several metrics
with fewer numbers of parameters and FLOPs compared to these
modules. This result fully demonstrates that the proposed FDT is a
more efficient module to deal with FSR. Therefore, with our pro-
posed FDT as the main feature extraction module, our method has a
more powerful feature extraction capability than existing methods.
More ablation studies can also be found in supplementary materials.

Discussion. Experimental results show that the efficiency of our
method is contributed by two parts: wavelet-based coder-decoder
structure and full-domain Transformer. Both parts can be inte-
grated into existing encoder-decoder-based methods [4, 15, 28] to
further enhance their performance. Therefore, our method is not
only efficient in performance but also generalizable.

5 CONCLUSION
This paper presents a wavelet-based feature enhancement network
for efficient FSR. To address the feature distortion caused by di-
rect downsampling in the encoder-decoder structure, we integrate
WFD and WFU into the encoder-decoder structure. Additionally,
by further employing our FDT to extract low-frequency facial fea-
tures comprehensively, our method can achieve a more accurate
reconstruction of facial structures. We verify the effectiveness of
WFD and WFU in minimizing facial structure distortion during
reconstruction and the comprehensive facial feature perception
capability provided by FDT. Extensive experiments, including face
matching in surveillance scenarios, demonstrate that our method
effectively achieves FSR with higher fidelity, achieving an excellent
balance between performance, model size, and inference speed.
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