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1 2D DISCRETE WAVELET TRANSFORM
2D discrete wavelet transform [9] (2D-DWT) is a mathematical
signal processing technique employed to decompose an image into
wavelet components of varying frequencies. This technique allows
the analysis of image features at different frequency scales. The
principle of 2D-DWT is illustrated in Fig. 1, and we explain the
process using the commonly used Haar wavelet transform. 2D-
DWT can be conceptualized as applying a 1D wavelet transform
(1D-DWT) to the image using a filter in both the row and column
directions. Assuming the size of the input face image 𝑿 ∈ R𝐻×𝑊 ,
where 𝑿 (𝑖, 𝑗) represents the pixel at position (𝑖, 𝑗). Initially, 1D-
DWT is applied to 𝑿 in the row direction, resulting in:

𝑿𝐿 (𝑖, 𝑗) = L(𝑘)
2𝑗∑︁
𝑘=1

𝑿 (𝑖, 2 𝑗 − 𝑘) , (1)

𝑿𝐻 (𝑖, 𝑗) = H(𝑘)
2𝑗∑︁
𝑘=1

𝑿 (𝑖, 2 𝑗 − 𝑘) , (2)

Where L represents low-pass filter, L = [1, 1], H represents high-
pass filter, H = [1,−1], 𝑿𝐿 ∈ R

𝐻
2 ×𝑊 is row low-frequency com-

ponent after 1D-DWT, and 𝑿𝐻 ∈ R
𝐻
2 ×𝑊 is row high-frequency

component after 1D-DWT. Next, 1D-DWT on columns is performed
on 𝑿𝐿 and 𝑿𝐻 to get output:

𝑨𝐿𝐿 (𝑖, 𝑗) = L(𝑘)
2𝑖∑︁
𝑘=1

𝑿𝐿 (2𝑖 − 𝑘, 𝑗) , (3)

𝑯𝐿𝐻 (𝑖, 𝑗) = H(𝑘)
2𝑖∑︁
𝑘=1

𝑿𝐿 (2𝑖 − 𝑘, 𝑗) , (4)

𝑽𝐻𝐿 (𝑖, 𝑗) = L(𝑘)
2𝑖∑︁
𝑘=1

𝑿𝐻 (2𝑖 − 𝑘, 𝑗) , (5)

𝑫𝐻𝐻 (𝑖, 𝑗) = H(𝑘)
2𝑖∑︁
𝑘=1

𝑿𝐻 (2𝑖 − 𝑘, 𝑗) , (6)

where 𝑨𝐿𝐿 ∈ R
𝐻
2 ×𝑊

2 denotes the low-frequency part of the im-
age, which contains the overall structure and general shape infor-
mation in the image, 𝑯𝐿𝐻 ∈ R

𝐻
2 ×𝑊

2 denotes the high-frequency
information in the horizontal direction of the image, including
the horizontal variation of edges and details, 𝑽𝐻𝐿 ∈ R

𝐻
2 ×𝑊

2 de-
notes the high-frequency information in the vertical direction of
the image, including the vertical variation of edges and details, and
𝑫𝐻𝐻 ∈ R

𝐻
2 ×𝑊

2 denotes the high-frequency information in the di-
agonal direction of the image, including the diagonal variation of
edges and details.

On the contrary, 2D inverse discrete wavelet transform
(2D-IDWT) diminishes the four frequency-domain components
{𝑿𝐿𝐿,𝑿𝐿𝐻 ,𝑿𝐻𝐿,𝑿𝐻𝐻 } back to the input 𝑿 , making the entire
process of 2D-DWT and 2D-IDWT closed and lossless. Fig. 2 shows

Input 𝑿

𝑿𝐿

𝑿𝐻

𝑨𝐿𝐿

𝑯𝐿𝐻

𝑽𝐻𝐿

𝑫𝐻𝐻

Low Pass
Filter

High Pass
Filter

Low Pass
Filter

Low Pass
Filter

High Pass
Filter

High Pass
Filter

1D discrete wavelet 
transform

1D discrete wavelet 
transform

Figure 1: Processing of 2D discrete wavelet transform (2D-
DWT), where consists of two 1D discrete wavelet transform
(1D-DWT).

𝑿 𝑨𝐿𝐿 𝑯𝐿𝑅

𝑽𝑅𝐿 𝑫𝑅𝑅

2D-DWT

2D-IDWT

Figure 2: 2D discrete wavelet transform (2D-DWT) and 2D
inverse discrete wavelet transform (2D-IDWT) processes are
applied to a face image. The 2D-DWT decomposes the input
face image 𝑿 into one low-frequency component 𝑨𝐿𝐿 and
three high-frequency components {𝑯𝐿𝑅, 𝑽𝑅𝐿,𝑫𝑅𝑅}. The 2D-
IDWT reduces these frequency domain components back to
the original face image 𝑿 .

an example of 2D-DWT and 2D-IDWT performed on a face image,
where the meaning of the variables is consistent with the above
formulation.

2 MORE QUALITATIVE COMPARISONS
In this section, we additionally add a series of qualitative com-
parisons with existing methods, including prior-based methods
like FSRNet [3], FACN [11] and DIC [8], attention-based methods
like SPARNet [2] and AD-GNN [1], as well as Transformer-based
methods such as Restormer [12], LAAT [6] and SFMNet [10]. Specif-
ically, in Fig 3, we give more qualitative comparisons for ×8 FSR on
CelebA [7] and Helen [5] test datasets. In the facial region where
the eyes are located, our method excels in recovering finer details
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Figure 3: Qualitative comparison for ×8 FSR on CelebA [7] and Helen [5] test datasets. Our method recovers face images that
are closer to ground truth and contain more facial details than existing methods.

LR FSRNet [3] FACN [11] SPARNet [2] ADGNN [1] Restormer [12] LAAT [6] SFMNet [10] Ours

Figure 4: Qualitative comparison for ×8 FSR on SCface [4] test dataset. Our method can restore the clearer face components,
especially the eye region, which is critical for downstream face recognition tasks.

such as the pupil of the eye. Moreover, the details we restore are
closer to ground truth than existing methods.

In Fig 4, we give more qualitative comparisons for ×8 FSR on
SCface [4] test datasets. In the current scenario with high levels of

2
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Table 1: Ablation studies of down-sampling mechanisms in
our method on Helen [5] test dataset, where “Stride” denotes
stride convolution, “Avgpool” denotes average pool, “Bicu-
bic” denotes bicubic downsample, and “WFD” denotes our
proposed wavelet feature downsample module. All down-
sampling scales are set to 2.

Methods Stride Avgpool Bicubic WFD Params FLOPs PSNR / SSIM

Case1 ! % % % 0.830M 1.131G 26.22 / 0.7743
Case2 % ! % % 0.830M 1.129G 26.26 / 0.7747
Case3 % % ! % 0.830M 1.129G 26.21 / 0.7731
Ours % % % ! 0.848M 1.164G 26.36 / 0.7795

blurring, prior-based methods exhibit poor performance, showing
severe distortion. Transformer-based methods fare better by recov-
ering general contours, yet they struggle with finer details like eye
pupils. Our method excels in recovering above facial details, facili-
tating enhanced accuracy in downstream tasks such as recognition,
significantly outperforming existing methods.

3 MORE ABLATION STUDIES
In the main text, we only provide an ablation study using stride
convolution instead of our proposed wavelet feature downsample
(WFD) module for downsampling. TABLE 1 is additionally supple-
mented with experimental results of encoder stage downsample
using average pool (Avgpool), and bicubic downsample (Bicubic).
Compared with these common downsample strategies, our pro-
posed WFD module can minimize the adverse effects of downsam-
ple on FSR reconstruction, achieving a performance improvement
of more than 0.1dB PSNR with only a small number of params and
FLOPs gains. This experiment demonstrates the advantages of our
proposed WFD over existing downsample strategies. Additionally,
it also confirms that reducing the feature corruption caused by
downsampling in the encoding stage can significantly improve the
model’s performance and further enhance the model’s efficiency.

4 LIMITATION
Our method aims to preserve identity accuracy. It can restore face
images with higher fidelity compared to existing generative prior-
basedmethods, but its clarity is not as sharp as theirs. In this context,
we will further discuss how to integrate the generative prior based
on this method to enhance clarity while maintaining the identity
accuracy of the restored face images.
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