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APPENDIX

A ⌘crit ⇡ ⌘̃crit FOR WIDE NEURAL NETWORKS

A.1 DERIVATION FOR INITIALIZATION

For MSE L(w;X) = 1
n

Pn
i=1(f(w;xi) � yi)2, we can compute its HL by the chain rule:

HL(w) =
2

n

nX

i=1

✓
@f(w;xi)

@w

◆T @f(w;xi)

@w
| {z }

A(w)

+
2

n

nX

i=1

(f(w;xi) � yi)
@2f(w;xi)

@w2

| {z }
B(w)

.

Assume kxik = O(1) and |yi| = O(1) for all i 2 [n]. For B(w0), by random initialization
of weights w0, with high probability, we have |f(w0;xi) � yi| = O(logm), and

���@2f(w0;xi)
@w2

���
2
=

Õ(1/
p
m) (Liu et al., 2020; Zhu et al., 2022a) where m denotes the width of the network. Therefore,

by the union bound, with high probability, we have B(w0) = Õ(1/
p
m).

Note that �max(A(w)) = 2
n�max(K(w)) for any w. Combining all the bounds together, we have���max(HL)(w0) � 2

n�max(K)(w0)
�� = Õ(1/

p
m). Then we have

|⌘crit � ⌘̃crit| =
����

2

�max(HL)(w0)
� n

�max(K)(w0)

���� = Õ(1/
p
m)

as long as �max(K)(w0) = ⌦(1), which is true with high probability over random initialization for
wide networks (Nguyen et al., 2018; Banerjee et al., 2023).

A.2 EMPIRICAL VALIDATION FOR THE WHOLE TRAINING PROCESS

In this section, we show that Claim 2 still holds if we use ⌘̃crit which approximates ⌘crit. Recall that
⌘̃crit = b/�max(K(w;Xbatch)) where b is the batch size.

Similar to Figure 4(a), to verify the claim, we compare the sign of PDi↵1 and ⌘ � ⌘̃crit for each
batch. In Figure 9, we show the number of events where sgn(PDi↵1(Xbatch)) = sgn(⌘ � ⌘̃crit)
divided by the number of iterations until convergence. We allow a small perturbation, ✏, in ⌘ to
account for error in estimating ⌘ due to using finite width models.

In Figure 9(a), we can see that the sign of PDi↵1(f t(Xbatch)) and ⌘ � ⌘̃crit(f t(Xbatch)) is well
matched throughout the training process. Additionally, Figure 9(b) illustrates that ⌘crit is close to
⌘̃crit.

B ADDITIONAL EXPERIMENTS FOR GD/SGD SPIKES
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(a) Sign match between ⌘�⌘crit and PDi↵1
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Figure 9: Validation of ⌘crit ⇡ ⌘̃crit during SGD with catapults. Panel(a): The alignment between
sgn(⌘ � ⌘̃crit) and sgn(PDi↵t

1), for which the catapults occur. Panel (b): plot of points (⌘crit, ⌘̃crit)
at each iteration of SGD for the shallow network. All the experiments use CIFAR-10 dataset.
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Figure 10: Catapult dynamics for 5-layer FCN (a-b) and CNN (c-d) on multiclass classification
tasks. Panel (a) and (c) are training loss and the spectral norm of the tangent kernel with different
learning rates, and Panel (b) and (d) are training loss decomposed into non-top eigenspace of the
tangent kernel, PL?

1 ,PL?
3 and PL?

5 (e.g., PL?
1 = 1

n

��P?
1 (f(X) � y)

��2

2
). All the networks are

trained on a subset of CIFAR-10 with 10 classes. Here the dimension of the eigenspace s = 1, 3, 5
refers to 10, 30, 50 respectively due to the output dimension 10.
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(a) Wide ResNets 10-10
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(b) ViT-4

Figure 11: Cataput dynamics in SGD for modern deep architectures. The complete versions
corresponding to Figure 5(c,d).
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(a) FCN
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(b) CNN
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(c) Wide ResNets 10-10
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(d) ViT-4

Figure 12: Cataput dynamics in SGD for modern deep architectures with Pytorch default pa-
rameterization. The tasks are the same with Figure 5 except that we use Pytorch default parameter-
ization. The training loss is decomposed into the top eigenspace of the tangent kernel PL1 and its
complement PL?

1 . Here L = PL1 + PL?
1 . The training loss and the spectral norm of the tangent

kernel correspond to the whole training set.

C EXPERIMENTS FOR SGD SPIKES WITH LOGISTIC LOSS

In this work, our focus has been exclusively on the catapult phase phenomenon in the context of
mean squared error. This specific focus stems from the fact that the catapult phase was originally
observed in training with mean squared error Lewkowycz et al. (2020). Indeed, there is currently no
well-established definition of the catapult phenomenon with alternative loss functions. Additionally,
it remains unclear whether there is a controlled experiment for the catapult to occur with other loss
functions, such as logistic/cross-entropy loss Lewkowycz et al. (2020).

In this section, we show the training dynamics of neural networks with logistic loss. We consider
the same experimental setting with Figure 5(c,d), with the only modification being the substitution
of mean squared error for logistic loss, i.e., L(w; (X, y)) = 1

n

Pn
i=1 log

�
1 + e�f(w;xi)yi)

�
. Inter-

estingly, we observe that there are spikes in the training loss using SGD, and the spectral norm of the
tangent kernel also decreases when there is a loss spike. See Figure 15. This observation aligns with
our findings related to mean squared error, as discussed in Section 3.3. It implies that the catapult
phase phenomenon may also occur with logistic loss. However, additional evidence is required for
conclusive verification.
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(a) 5-layer FCN
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(b) 5-layer CNN
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(c) Wide ResNets 10-10 (zoomed-in)
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(d) ViT-4 (zoomed-in)

Figure 13: Cataput dynamics in SGD for modern deep architectures on 2-class SVHN. The
tasks are the same with Figure 5 except that we train the neural networks on a subset of SVHN
dataset. The training loss is decomposed into the top eigenspace of the tangent kernel PL1 and its
complement PL?

1 . Here L = PL1 + PL?
1 . The training loss and the spectral norm of the tangent

kernel correspond to the whole training set.

D ADDITIONAL EXPERIMENTS FOR FEATURE LEARNING IN GD

We present the validation loss/error for the tasks corresponding to Figure 6. The learning rate is
repeatedly increased during training to generate multiple catapults.

We compare the performance of networks exhibiting multiple catapults with those initialized using
small initialization scheme, i.e., each weight is sampled i.i.d. from N (0,�2) with � = 0.1. This
is in contrast to the NTK parameterization where we use � = 1. We can see that small initializa-
tion achieves the smallest test loss/error as well as the best AGOP alignment, which indicates that
learning AGOP correlates strongly with the test performance.

For the Rank-2 regression task, we visualize the AGOP in the following Figure 18, where we can see
that the features are learned better, i.e., closer to the True AGOP, with a greater number of catapults.

E ADDITIONAL EXPERIMENTS FOR FEATURE LEARNING IN SGD
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(a) 5-layer FCN
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(b) 5-layer CNN
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(c) Myrtle network myrtle.ai

Figure 14: Catapult dynamics in SGD for large datasets (Panel (a) and (b)) and multi-class
classification problems (Panel(c)). Panel(a,b): The networks are trained on 5, 000 data points from
CIFAR-2. Panel(c): The network is trained on 128 points from CIFAR-10. The training loss is
decomposed into the top eigenspace of the tangent kernel PL1 and its complement PL?

1 . Here
L = PL1 + PL?

1 . The training loss corresponds to the whole training set.
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Figure 15: Catapult dynamics in SGD with logistic loss. The experimental setting is the same as
Figure 5(c,d), with the only modification being the substitution of mean squared error for logistic
loss.

(a) Rank-2 regression (b) Rank-3 regression (c) Rank-4 regression (d) SVHN-2 (e) CelebA

Figure 16: Validation loss/error of multiple catapults in GD corresponding to Figure 6.
Panel(d)&(e) only present first 200 iterations.
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Figure 17: Multiple catapults in GD compared to the small initialization scheme. We train a
2-layer FCN in Panel(a), a 4-layer FCN in Panel(b,c,e) and a 5-layer CNN in Panel(d). For small
initialization, each weight parameter is i.i.d. from N (0,�2) with � = 0.1. The experimental setup
is the same as Figure 6.

Figure 18: Visualization of AGOP for rank-2 regression task. All pixels are normalized to the
range [0, 1] and the top 10 rows and columns of the AGOP are plotted.
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Figure 19: Similarity between AGOP alignment and test performance with Pytorch default
parameterization. The tasks are the same with Figure 7 except that we use Pytorch default param-
eterization.
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Figure 20: Validation loss/error corresponding to Figure 7. Panel(c) presents the validation error
from iteration 4000.
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Figure 21: Validation loss/error with Pytorch default parameterization corresponding to Fig-
ure 19. Panel(c) presents the validation error from iteration 2000.

20



Under review as a conference paper at ICLR 2024

0

2

Tr
ai

ni
ng

lo
ss

L

0

1

P
L

1

=

0 500 1000 1500 2000 2500 3000 3500
Iteration

0

1

P
L

� 1

+

(a) Loss decomposition (Rank-2)
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(b) Loss decomposition (Rank-4)

Figure 22: Verification of catapult dynamics: loss decomposition of Rank-2 and Rank-4 regres-
sion tasks corresponding to Figure 7. The training loss is decomposed into the top eigenspace of
the tangent kernel PL1 and its complement PL?

1 . Here L = PL1 + PL?
1 .

(a) Rank-2 (b) Rank-4

Figure 23: The networks are trained with a small learning rate corresponding to Figure 20a
&b. With a small learning rate, no catapults occur during training, hence the effect of batch size is
not sigfinicant.

F EXPERIMENTAL DETAILS

For all the networks considered in this paper, we use ReLU activation functions. Except for the
experiments in Figure 12 and 19, we parameterize the network by NTK parameterization.

NTK parameterization. Given a neural network with NTK parameterization,
all the trainable weight parameters are i.i.d. from N (0, 1). For a fully con-
nected layer, it takes the form f `+1 = ReLU

⇣
1p
m`

W `f ` + b`
⌘

where W ` 2
Rm`+1⇥m` , f ` 2 Rm` , b` 2 Rm`+1 . For a convolutional layer, it takes the form

f `+1
i,j,k = ReLU

✓
1p
m`s2

Pd s+1
2 e

p=0

Pd s+1
2 e

q=0

Pm`

o=1 W
`
p,q,o,kf

`
i�d s�1

2 e,j�d s�1
2 e,o + b`k

◆
, where

W ` 2 Rs⇥s⇥m`⇥m`+1 , f ` 2 Rh⇥w⇥m` , b` 2 Rm`+1 . Note that s is the filter size and we assume
the stride to be 1 in this case. For f ` with negative indices, we let it be 0, i.e., zero padding. For the
output layer, we use a linear layer without activation functions.
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Dataset. For the synthetic datasets, we generate data {(xi, yi)}ni=1 by i.i.d. xi ⇠ N (0, I100) and
yi = f⇤(x) + ✏ with ✏ ⇠ N (0, 0.12). For two real-world datasets, we consider a subset of CelebA
dataset with glasses as the label and the Street View House Numbers (SVHN) dataset. Due to
computational limitations with GD, for some tasks, we select two classes of SVHN dataset (number
0 and 2), which we refer to as SVHN-2.

True AGOP. Note that for these low-rank polynomial regression tasks, we know the target func-
tions hence we can compute the true AGOP by G⇤ = 1

n

Pn
i=1

@f⇤

@xi

@f⇤

@xi

T
. For real-world datasets,

we estimate the true AGOP by using one of the state-of-the-art models that achieve high test accu-
racy.

In the following, we provide the detailed experimental setup for each experiment. Note that in the
classification tasks, i.e. CeleA and SVHN datasets, the test error refers to the classification error on
the test split.

F.1 FIGURES IN SECTION 3.1

Figure 2: We use a 2-class subset of CIFAR-10 dataset Krizhevsky et al. (2009) (class 7 and class
9) and randomly select 128 data points out of it. For the network architectures, we use a 5-layer
FCN with width 1024 and 5-layer CNN with 512 channels per layer. For CNN, we flatten the image
into a one-dimensional vector before the last fully connected layer.

F.2 FIGURES IN SECTION 3.2

Figure 3: We use the same training tasks as in Figure 2. For FCN, we start with lr = 6 and we
increase the learning rate to [10, 15] at iteration [15, 60]. For CNN, we start with lr = 8 and we
increase the learning rate to [15, 20] at iteration [10, 40].

F.3 FIGURES IN SECTION 3.3

Figure 4: For the 5-layer FCN and 5-layer CNN, we use the same network architectures as in
Figure 2. For the shallow network, we use a 2-layer FCN with width 1024. We train the model on
128 datapoints from CIFAR 2 using SGD with batch size 32. The learning rates for 5-layer FCN,
5-layer CNN and the shallow network are 6, 8, 0.8 respectively. We stop training when the training
loss is less than 10�3.

Figure 5: The 5-layer FCN and CNN are the same as in Figure 2. And we use the standard Wide
ResNets and ViT architectures. All the models are trained on 128 data points from CIFAR-2 using
SGD with batch size 32.

F.4 FIGURES IN SECTION 4

Figure 6: For rank-2 task, we train a 2-layer FCN with width 1024. The size of the training set,
testing set and validation set are 2000, 5000 and 5000 respectively.

For rank-3 task, rank-4 task and CelebA tasks, we train a 4-layer FCN with width 256. The size of
the training set, testing set and validation set are 1000, 5000 and 5000 respectively.

For SVHN-2 tasks, we train a 5-layer CNN with width 256. We select class 0 and class 2 out of
the full SVHN datasets as SVHN-2. The size of the training set, testing set and validation set are
1000, 5000 and 5000 respectively.

We increase the learning rate during training. For Rank-2 task, we increase the learning rate to
[8, 16, 30, 50, 75, 80] at iteration [50, 150, 220, 280, 350, 400]. For Rank-3 task, we increase the
learning rate to [40, 100, 150] at iteration [20, 60, 80]. For Rank-4 task, we increase the learning
rate to [15, 40, 60] at iteration [50, 75, 110]. For SVHN-2 task, we increase the learning rate to
[30, 60, 90] at iteration [10, 35, 50]. For CelebA task, we increase the learning rate to [40, 70, 100]
at iteration [10, 35, 50]. We decay the learning rate if necessary after the catapult to avoid extra
catapults until the end of training.
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Figure 7: For both Rank-2 and Rank-4 tasks, we let the size of training set, testing set and vali-
dation set be 2000, 5000 and 5000. For the SVHN task, we train the full SVHN using the 5-layer
Myrtle network. For the CelebA task, we train the full 2-class CelebA dataset with glasses feature
using 4-layer FCN with width 256. To obtain the true AGOP , we use one of the SOTA mod-
els (WideResNet 16-2) which achieves 97.2% test accuracy on SVHN and 5-layer Myrtle network
which achieves 95.7% test accuracy on CelebA.

We use the same learning rate across batch sizes for each task. The learning rate is chosen as 1
2⌘crit

corresponding to the whole training set. For SVHN and CelebA tasks, we estimate ⌘crit using a
subset with size 5000 of the whole training set. For all tasks, we stop training when the training loss
is less than 10�3. We report the average of 3 independent runs.

Figure 8: We use the same network architectures and training/validation/testing sets as in Figure 6.

For all the tasks, except for GD, all the optimizers use a mini-batch size 100.

We stop training when the training loss is less than 10�3. We report the average of 3 independent
runs.

For the rank-2 task and rank-4 task, we know the target function hence we can analytically compute
the exact true AGOP . For SVHN-2 task and CelebA task, to estimate the true AGOP , we use one
of the SOTA models, Myrtle-5 which achieves 98.4% test accuracy on two-class SVHN dataset and
95.7% test accuracy on CelebA dataset.

The following table is the learning rate we choose for the experiments:

Task SGD GD SGD+M Adadelta Adagrad RMSprop Adam

Rank-2 2.0 2.0 2.0 2.0 0.1 10�2 10�2

Rank-3 2.0 2.0 2.0 2.0 10�2 10�2 10�3

Rank-4 1.0 1.0 1.0 1.0 5 ⇥ 10�3 10�3 10�3

SVHN-2 5.0 5.0 5.0 5.0 5 ⇥ 10�3 10�4 10�3

CelebA 10.0 10.0 10.0 10.0 5 ⇥ 10�3 10�3 10�3

Table 2: Choice of learning rates for Figure 8.

The experiment is to demonstrate the correlation between AGOP alignment and test performance.
For this reason, we did not fine-tune the learning rate to achieve the best test performance.

F.5 FIGURES IN APPENDIX B

Figure 10: We use the same network architectures as in Figure 2 and we train 128 data point from
CIFAR-10.

Figure 13: We use the same setting as Figure 5, except we train the networks on 128 data points
from SVHN-2(number 0 and 2).

Figure 14: For panel(a) and panel(b), we train the same 5-layer FCN and CNN as in Figure 2 and
on 5,000 data points from CIFAR-2. For panel(c), we train a 5-layer Myrtle network on 128 points
from CIFAR-10.

F.6 FIGURES IN APPENDIX E

Figure 19: We use the same setup with Figure 7 except that all the networks are parameterized
with Pytorch default parameterization. The learning rates are 0.01, 0.01, 0.05 and 1.0 for each task.
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