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Abstract

Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using1

the graph structures based on the relational inductive bias (homophily assumption).2

Though GNNs are believed to outperform NNs in real-world tasks, performance3

advantages of GNNs over graph-agnostic NNs seem not generally satisfactory.4

Heterophily has been considered as a main cause and numerous works have been5

put forward to address it. In this paper, we first show that not all cases of heterophily6

are harmful for GNNs with aggregation operation. Then, we propose new metrics7

based on a similarity matrix which considers the influence of graph structure and8

input features on GNNs. The metrics demonstrate advantages over the commonly9

used homophily metrics by tests on synthetic graphs. From the metrics and the10

observations, we find some cases of harmful heterophily can be addressed by11

diversification operation. With this fact and knowledge of filterbanks, we propose12

the Adaptive Channel Mixing (ACM) framework to adaptively exploit aggregation,13

diversification and identity operations in each GNN layer to address harmful14

heterophily. We validate the ACM-augmented baselines with 11 real-world node15

classification tasks. They consistently achieve significant performance gain and16

exceed the state-of-the-art GNNs on most of the tasks without incurring significant17

computational burden.18

1 Introduction19

Deep Neural Networks (NNs) [19] have revolutionized many machine learning areas, including20

image recognition [18], speech recognition [11] and natural language processing [2], etc.One major21

strength is their capacity and effectiveness of learning latent representation from Euclidean data.22

Recently, the focus has been put on its applications on non-Euclidean data [4], e.g., relational data23

or graphs. Combining graph signal processing and convolutional neural networks [20], numerous24

Graph Neural Networks (GNNs) [30, 7, 13, 31, 16, 25] have been proposed which empirically out-25

perform traditional neural networks on graph-based machine learning tasks, e.g., node classification,26

graph classification, link prediction and graph generation, etc.GNNs are built on the homophily27

assumption[27], i.e., connected nodes tend to share similar attributes with each other [12], which28

offers additional information besides node features. Such relational inductive bias [3] is believed to29

be a key factor leading to GNNs’ superior performance over NNs’ in many tasks.30

Nevertheless, growing evidence shows that GNNs do not always gain advantages over traditional NNs31

when dealing with relational data. In some cases, even simple Multi-Layer Perceptrons (MLPs) can32

outperform GNNs by a large margin [36, 23, 5]. An important reason for the performance degradation33

is believed to be the heterophily problem, i.e., connected nodes tend to have different labels which34

makes the homophily assumption fail. Heterophily challenge has received attention recently and35

there are increasing number of models being put forward to address this problem [36, 23, 5, 35, 34].36
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Contributions In this paper, we first demonstrate that not all heterophilous graphs are harmful for37

aggregation-based GNNs and the existing metrics of homophily are insufficient to decide whether the38

aggregation operation will make nodes less distinguishable or not. By constructing a similarity matrix39

from backpropagation analysis, we derive new metrics to depict how much GNNs are influenced by40

the graph structure and node features. We show the advantage of our metrics over the existing metrics41

by comparing the ability of characterizing the performance of two baseline GNNs on synthetic graphs42

of different levels of homophily. From the similarity matrix, we find that diversification operation43

is able to address some harmful heterophily cases, and then based on which we propose Adaptive44

Channel Mixing (ACM) GNN framework. The experiments on the synthetic datasets, real-world45

datasets and the ablation studies consistently show that baseline GNN augmented by ACM framework46

is able to obtain significant performance boost on node classification tasks on heterophilous graphs.47

The rest of this paper is mainly organized as follows: In section 2, we introduce the notation and the48

background knowledge. In section 3, we conduct node-wise heterophily analysis, derive new metrics49

based on a similarity matrix and conduct experiments to show their advantage. In section 4.3, we50

propose the ACM-GNN framework to adaptively utilize the information from different filterbank51

channels to address heterophily problem. In section 5, we discuss the related works and clarify52

the differences to our method. In section 6, we provide empirical evaluations on ACM framework,53

including ablation study and tests on 11 real-world node classification tasks.54

2 Preliminaries55

We introduce the related notation and background knowledge. We use bold fonts for vectors (e.g.,56

v). Suppose we have an undirected connected graph G = (V, E , A), where V is the node set with57

|V| = N ; E is the edge set without self-loop; A ∈ RN×N is the symmetric adjacency matrix with58

Ai,j = 1 iff eij ∈ E , otherwise Ai,j = 0. We use D to denote the diagonal degree matrix of G, i.e.,59

Di,i = di =
∑

j Ai,j and use Ni to denote the neighborhood set of node i, i.e., Ni = {j : eij ∈ E}.60

A graph signal is a vector x ∈ RN defined on V , where xi is defined on the node i. We also have a61

feature matrix X ∈ RN×F , whose columns are graph signals and whose i-th row Xi,: is a feature62

vector of node i. We use Z ∈ RN×C to denote the label encoding matrix, whose i-th row Zi,: is the63

one-hot encoding of the label of node i. The i-th column of the identity matrix I is denoted by ei.64

2.1 Graph Laplacian, Affinity Matrix and Their Variants65

The (combinatorial) graph Laplacian is defined as L = D − A, which is Symmetric Positive66

Semi-Definite (SPSD) [6]. Its eigendecomposition gives L = UΛUT , where the columns ui of67

U ∈ RN×N are orthonormal eigenvectors, namely the graph Fourier basis, Λ = diag(λ1, . . . , λN )68

with λ1 ≤ · · · ≤ λN , and these eigenvalues are also called frequencies. The graph Fourier transform69

of the graph signal x is defined as xF = U−1x = UTx = [uT
1 x, . . . ,u

T
Nx]T , where uT

i x is the70

component of x in the direction of ui.71

In additional to L, some variants are also commonly used, e.g., the symmetric normalized Laplacian72

Lsym = D−1/2LD−1/2 = I −D−1/2AD−1/2 and the random walk normalized Laplacian Lrw =73

D−1L = I − D−1A. The affinity (transition) matrices can be derived from the Laplacians, e.g.,74

Arw = I − Lrw = D−1A, Asym = I − Lsym = D−1/2AD−1/2 and are considered to be low-pass75

filters [26]. Their eigenvalues satisfy λi(Arw) = λi(Asym) = 1− λi(Lsym) = 1− λi(Lrw) ∈ (−1, 1].76

Applying the renormalization trick [16] to affinity and Laplacian matrices respectively leads to77

Âsym = D̃−1/2ÃD̃−1/2 and L̂sym = I− Âsym, where Ã ≡ A+ I and D̃ ≡ D+ I . The renormalized78

affinity matrix essentially adds a self-loop to each node in the graph, and is widely used in Graph79

Convolutional Network (GCN) [16] as follows,80

Y = softmax(Âsym ReLU(ÂsymXW0) W1) (1)

where W0 ∈ RF×F1 and W1 ∈ RF1×O are learnable parameter matrices. GCN can be trained by81

minimizing the following cross entropy loss82

L = −trace(ZT log Y ) (2)

where log(·) is a component-wise logarithm operation. The random walk renormalized matrix83

Ârw = D̃−1Ã, which shares the same eigenvalues as Âsym, can also be applied in GCN. The84
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corresponding Laplacian is defined as L̂rw = I − Ârw. Ârw is essentially a random walk matrix and85

behaves as a mean aggregator that is applied in spatial-based GNNs [13, 12]. To bridge the spectral86

and spatial methods, we use Ârw in the paper.87

2.2 Metrics of Homophily88

The metrics of homophily are defined by considering different relations between node labels and89

graph structures defined by adjacency matrix. There are three commonly used homophilies: edge90

homophily [1, 36], node homophily [29], and class homophily [22] 1 defined as follows:91

Hedge(G) =

∣∣{euv | euv ∈ E , Zu,: = Zv,:}
∣∣

|E|
, Hnode(G) =

1

|V|
∑
v∈V

∣∣{u | u ∈ Nv, Zu,: = Zv,:}
∣∣

dv
,

Hclass(G) =
1

C − 1

C∑
k=1

[
hk −

∣∣{v | Zv,k = 1}
∣∣

N

]
+

, hk =

∑
v∈V

∣∣{u | Zv,k = 1, u ∈ Nv, Zu,: = Zv,:}
∣∣∑

v∈{v|Zv,k=1} dv

(3)
where [a]+ = max(a, 0); hk is the class-wise homophily metric [22]. They are all in the range92

of [0, 1] and a value close to 1 corresponds to strong homophily while a value close to 0 indicates93

strong heterophily. Hedge(G) measures the proportion of edges that connect two nodes in the same94

class; Hnode(G) evaluates the average proportion of edge-label consistency of all nodes; Hclass(G)95

tries to avoid the sensitivity to imbalanced class, which can cause Hedge misleadingly large. The96

above definitions are all based on the graph-label consistency and imply that the inconsistency will97

cause harmful effect to GNNs. With this in mind, we will show a counter example to illustrate the98

insufficiency of the above metrics and propose new metrics.99

3 Analysis of Heterophily100

3.1 Motivation and Aggregation Homophily101
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Figure 1: Example of harmless heterophily

Heterophily is believed to be harmful for102

message-passing based GNNs [36, 29, 5] be-103

cause intuitively features of nodes in different104

classes will be falsely mixed and this will lead105

nodes indistinguishable [36]. Nevertheless, it106

is not always the case, e.g., the bipartite graph107

shown in Figure 1 is highly heterophilous ac-108

cording to the homophily metrics in (3), but109

after mean aggregation, the nodes in classes 1110

and 2 only exchange colors and are still dis-111

tinguishable. Authors in [5] also point out the112

insufficiency of Hnode by examples to show that113

different graph typologies with the same Hnode114

can carry different label information.115

To analyze to what extent the graph structure can affect the output of a GNN, we first simplify the116

GCN by removing its non-linearity as [32]. Let Â ∈ RN×N denote a general aggregation operator.117

Then, equation (1) can be simplified as,118

Y = softmax(ÂXW ) = softmax(Y ′) (4)

After each gradient decent step ∆W = γ dL
dW , where γ is the learning rate, and the update of Y ′ will119

be (see Appendix B for derivation),120

∆Y ′ = ÂX∆W = γÂX
dL
dW

∝ ÂX dL
dW

= ÂXXT ÂT (Z − Y ) = S(Â,X)(Z − Y ) (5)

where S(Â,X) ≡ ÂX(ÂX)T is a node similarity matrix after aggregation, Z − Y is the prediction121

error matrix. The update direction of node i is essentially a weighted sum of the prediction error, i.e.,122

∆(Y ′)i,: =
∑

j∈V

[
S(Â,X)

]
i,j

(Z − Y )j,:.123

1The authors in [22] did not name this homophily metric. We name it class homophily based on its definition.
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To study the effect of heterophily, we define the aggregation similarity score.124

Definition 1. Aggregation similarity score125

Sagg

(
S(Â,X)

)
=

∣∣∣{v ∣∣Meanu

(
{S(Â,X)v,u|Zu,: = Zv,:}

)
≥ Meanu

(
{S(Â,X)v,u|Zu,: 6= Zv,:}

)}∣∣∣
|V|

(6)
where Meanu ({·}) takes the average over u of a given multiset of values or variables.126

Sagg(S(Â,X)) is the proportion of nodes v ∈ V that will put relatively larger similarity weights on127

nodes in the same class than in other classes after aggregation. It is easy to see that Sagg(S(Â,X)) ∈128

[0, 1]. But in practice, we observe that in most datasets, we will have Sagg(S(Â,X)) ≥ 0.5. Based on129

this observation, we rescale (6) to the following modified aggregation similarity for practical usage,130

. =
[
2Sagg

(
S(Â,X)

)
− 1
]
+

(7)

In order to measure the consistency between labels and graph structures without considering node131

features and make a fair comparison with the existing homophily metrics in (3), we define the graph132

(G) aggregation (Â) homophily and its modified version as133

Hagg(G) = Sagg

(
S(Â, Z)

)
, HM

agg(G) = SM
agg

(
S(Â, Z)

)
(8)

In practice, we will only check Hagg(G) when HM
agg(G) = 0. As Figure 1 shows, when Â = Ârw,134

Hagg(G) = HM
agg(G) = 1. Thus, this new metric reflects the fact that nodes in classes 1 and 2 are still135

highly distinguishable after aggregation, while other metrics mentioned before fail to capture the136

information and misleadingly give value 0. This shows the advantage of Hagg(G) and HM
agg(G) by137

additionally considering information from aggregation operator Â and the similarity matrix.138

To comprehensively compare HM
agg(G) and the metrics in (3) in terms of how they reveal the influence139

of graph structure on the GNN performance, we generate synthetic graphs and evaluate SGC [32]140

and GCN [16] on them in the next subsection.141

3.2 Evaluation and Comparison on Synthetic Graphs142

Data Generation & Experimental Setup For one dataset, we generate 95 graphs in total with 19143

edge homophily levels varied from 0.05 to 0.95, each corresponding to 5 graphs. For every generated144

graph, we have 5 classes with 400 nodes in each class. In each class, there are randomly generated145

800 intra-class edges and [(800− 800Hedge(G)) /Hedge(G)]2 inter-class edges. The features of nodes146

in each class are sampled from node features in the corresponding class of the base dataset. Nodes147

are randomly split into 60%/20%/20% for train/validation/test. We train 1-hop SGC (sgc-1 [32] and148

GCN [16] on synthetic data (see appendix A.1 for hyperparameter searching range). For each value149

of Hedge(G), we take the average test accuracy and standard deviation of runs over 5 generated graphs.150

For each generated graph, we also calculate its Hnode(G), Hclass(G) and HM
agg(G). Model performance151

with respect to different homophily values are shown in Figure 2.

(a) Hedge(G) (b) Hnode(G) (c) Hclass(G) (d) HM
agg(G)

Figure 2: Comparison of baseline performance under different homophily metrics.

152

2According to (3), Hedge(G) = #intra-class edges/(#intra-class edges +#inter-class edges)
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Comparison of Homophily Metrics The performance of SGC-1 and GCN are expected to be153

monotonically increasing with a proper and informative homophily metric. However, Figure 2(a)(b)(c)154

show that the performance curves under Hedge(G), Hnode(G) and Hclass(G) are U -shaped 3, while155

Figure 2(d) reveals a nearly monotonic curve with a little perturbation around 1. This indicates that156

HM
agg(G) can describe how the graph structure affects the performance of SGC-1 and GCN.157

In addition, we notice that in Figure 2(a), both SGC-1 and GCN get the worst performance on all158

datasets when Hedge(G) is around somewhere between 0.1 and 0.2. This interesting phenomenon can159

be explained by the following theorem.160

Theorem 1. (See Appendix C for proof). Suppose there are C classes in the graph G, edges for each161

node are i.i.d.generated such that each edge of any node has probability h of connecting with nodes in162

the same class and probability 1− h of connecting with nodes in different classes, and E(dv) = d for163

all nodes. Let the aggregation operator Â = Ârw. Then, for nodes v, u1 and u2, where Zu1,: = Zv,:164

and Zu2,: 6= Zv,:, we have165

g(h) ≡ E
(
S(Â, Z)v,u1

)
− E

(
S(Â, Z)v,u2

)
=

(
(C − 1)(hd+ 1)− (1− h)d

(C − 1)(d+ 1)

)2

(9)

and the minimum of g(h) is reached at

h =
d+ 1− C

Cd
=
dintra/h+ 1− C
C(dintra/h)

⇒ h =
dintra

Cdintra + C − 1

where dintra = dh, which is the expectation of the number of neighbors of a node that have the same166

label as the node.167

The value of g(h) in (9) is the expected differences of the similarity values between nodes in the168

same class as v and nodes in other classes. g(h) is strongly related to the definition of aggregation169

homophily and its minimum potentially implies the worst value of Hagg(G). In the synthetic experi-170

ments, we have dintra = 2, C = 5 and the minimum of g(h) is reached at h = 1/7 ≈ 0.14, which171

corresponds to the lowest point in the performance curve in Figure 2(a). In other words, the h where172

SGC-1 and GCN perform worst is where g(h) gets the smallest value, instead of the point with the173

smallest edge homophily value. This again shows the advantage of Hagg(G) over Hedge(G) by taking174

use of the similarity matrix.175
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Figure 3: Example of how HP filter addresses harmful heterophily

4 Adaptive Channel Mixing (ACM) Framework176

4.1 How Diversification Operation Helps with Harmful Heterophily177

We first consider the example shown in Figure 3. From S(Â,X), nodes 1,3 assign relatively large178

positive weights to nodes in class 2, which will negatively affect information aggregation. Despite179

the fact, we can still distinguish between nodes 1,3 and 4,5,6,7 by considering their neighborhood180

3A similar J-shaped curve is found in [36], though using different data generation processes. It does not
mention the insufficiency of edge homophily.
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difference: nodes 1,3 are distinguishable from their neighbors while nodes 4,5,6,7 are homogeneous to181

their neighbors. This indicates, in some cases, although some nodes become similar after aggregation,182

they are still distinguishable via surrounding dissimilarities. This suggests the possibility of using183

diversification operation to address harmful heterophily i.e., high-pass (HP) filter I − Â [8] (will be184

introduced in next subsection). As S(I − Â, Z) in Figure 3 shows, nodes 1,3 assign negative weights185

to nodes 4,5,6,7, i.e., nodes 1,3 treat nodes 4,5,6,7 as negative samples and will move away from186

them. Base on this example, we propose diversification distinguishability as follows,187

Definition 2. Diversification Distinguishability (DD) based on S(I − Â,X).188

Given S(I − Â,X), a node v is diversification distinguishable if the following two conditions are189

satisfied at the same time,190

1. Meanu

(
{S(I − Â,X)v,u|u ∈ V ∧ Zu,: = Zv,:}

)
≥ 0;

2. Meanu

(
{S(I − Â,X)v,u|u ∈ V ∧ Zu,: 6= Zv,:}

)
≤ 0

(10)

Then, graph diversification distinguishability value is defined as191

DDÂ,X(G) =
1

|V|

∣∣∣{v|v is diversification distinguishable}
∣∣∣ (11)

DDÂ,X(G) ∈ [0, 1] measures the proportion of nodes that HP filter is helpful for. Its effectiveness192

can be proved for binary classification problems under certain conditions, leading us to:193

Theorem 2. (See Appendix D for proof). Suppose X = Z, Â = Ârw. Then, for a binary classifica-194

tion problem, i.e., C = 2, all nodes are diversification distinguishable and DDÂ,Z(G) = 1.195

Conducting both aggregation and diversification operations to distinctively extract the low- and high-196

frequency information from graph signals is the same as using filterbanks in graph signal processing.197

We introduce filterbanks in next subsection.198

4.2 Filterbank in Spectral and Spatial Forms199

Filterbank For the graph signal x defined on G, a 2-channel linear (analysis) filterbank [8] 4200

includes a pair of filters HLP, HHP, where HLP and HHP retain the low-frequency and high-frequency201

content of x, respectively.202

Most existing GNNs are under uni-channel filtering architecture [16, 31, 13] with either HLP or203

HHP channel that only partially preserves the input information. Unlike the uni-channel architecture,204

filterbanks with HLP + HHP = I will not lose any information of the input signal, i.e., perfect205

reconstruction property [8, 28].206

Generally, the Laplacian matrices (Lsym, Lrw, L̂sym, L̂rw) can be regarded as HP filters [8] and affinity207

matrices (Asym, Arw, Âsym, Ârw) can be treated as LP filters [26, 12]. Moreover, MLPs can be208

considered as owing a special identity filterbank with matrix I that satisfies HLP +HHP = I + 0 = I .209

Filterbank in Spatial Form Filterbank methods can also be extended to spatial GNNs. Formally,210

on the node level, left multiplying HLP and HHP on x performs as aggregation and diversification211

operations, respectively. For example, suppose HLP = Â and HHP = I − Â, then for node i we have212

(HLPx)i =
∑

j∈{Ni∪i}

Âi,jxj , (HHPx)i = xi −
∑

j∈{Ni∪i}

Âi,jxj (12)

where Âi,j is the connection weight between two nodes. To leverage HP and identity channels in213

GNNs, we propose the Adaptive Channel Mixing (ACM) architecture in the following subsection.214

4In graph signal processing, an additional synthesis filter [8] is required to form the 2-channel filterbank. But
synthesis filter is not needed in our framework, so we do not introduce it in our paper.
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4.3 Adaptive Channel Mixing(ACM) GNN Framework215

ACM framework can be applied in lots of baseline GNNs and in this subsection, we use GCN as an216

example and introduce ACM framework in matrix form. We use HLP and HHP to represent general217

LP and HP filters. The ACM framework includes 3 steps as follows,218

Step 1. Feature Extraction for Each Channel:

H l
L = HLPReLU

(
H l−1W l−1

L

)
, H l

H = HHPReLU
(
H l−1W l−1

H

)
, H l

I = I ReLU
(
H l−1W l−1

I

)
,

W l−1
L , W l−1

H , W l−1
I ∈ RFl−1×Fl ;

Step 2. Feature-based Weight Learning with Row Normalization (RN):

H̃ l
I = RN

(
H l

I

)
, H̃ l

L = RN
(
H l

L

)
, H̃ l

H = RN
(
H l

H

)
;

αl
L = σ

(
ELU

(
H̃ l

LW̃
l
L

))
, αl

H = σ
(

ELU
(
H̃ l

HW̃
l
H

))
, αl

I = σ
(

ELU
(
H̃ l

IW̃
l
I

))
,

W̃ l−1
L , W̃ l−1

H , W̃ l−1
I ∈ RFl×1;

Step 3. Channel Mixing:

H l =
(
diag(αl

L)H l
L + diag(αl

H)H l
H + diag(αl

I)H l
I

)
.

(13)
ACM-GCN first implements distinct non-linear feature extractions for 3 channels, respectively. After219

processed by a set of filterbanks, 3 filtered components H l
L, H

l
H , H

l
I are obtained. Different nodes220

may have different needs for the information in the 3 channels, e.g., in Figure 3, nodes 1,3 demand221

high-frequency information while node 2 only needs low-frequency information. To adaptively exploit222

information from different channels, ACM-GCN learns rowwise (nodewise) feature-conditioned223

(un-normalized) weights to combine the 3 channels. ACM can be easily plugged into spatial GNNs by224

replacing HLP and HHP by aggregation and diversification operations as shown in (12). See Appendix225

E for a detailed discussion of model comparison on synthetic datasets.226

Complexity Number of learnable parameters in layer l of ACM-GCN is 3Fl−1(Fl + 1), while it is227

Fl−1Fl in GCN. The computation of step 1-3 takes NFl(20 + Fl−1) + 2Fl(nnz(HLP) + nnz(HHP))228

flops, while GCN layer takes 2NFl−1Fl + 2Fl(nnz(HLP)) flops, where nnz(·) is the number of229

non-zero elements. A detailed experiments on running time is conducted in section 6.1.230

Limitations Diversification operation does not work well in all harmful heterophily cases. For231

example, consider an imbalanced dataset where several small clusters with distinctive labels are232

densely connected to a large cluster. In this case, the surrounding differences of nodes in small233

clusters are similar, i.e., the neighborhood differences are mainly from their connection to the same234

large cluster, and this possibly makes diversification operation fail to discriminate them. See a more235

detailed demonstration and discussion in Appendix F.236

5 Prior Work237

GNNs on Addressing Heterophily We discuss relevant work of GNNs on addressing heterophily238

challenge in this part. [1] acknowledges the difficulty of learning on graphs with weak homophily239

and propose MixHop to extract features from multi-hop neighborhood to get more information.240

Geom-GCN [29] precomputes unsupervised node embeddings and uses graph structure defined by241

geometric relationships in the embedding space to define the bi-level aggregation process. [14]242

proposes measurements based on feature smoothness and label smoothness that are potentially243

helpful to guide GNNs on dealing with heterophilous graphs. H2GCN [36] combines 3 key designs244

to address heterophily: (1) ego- and neighbor-embedding separation; (2) higher-order neighborhoods;245

(3) combination of intermediate representations. CPGNN [35] models label correlations by the246

compatibility matrix, which is beneficial for heterophily settings, and propagates a prior belief247

estimation into GNNs by the compatibility matrix. GPRGNN [5] uses learnable weights that can be248

both positive and negative for feature propagation, it allows GRPGNN to adapt heterophily structure249

of graph and is able to handle both high and low frequency parts of the graph signals.250

GNNs with Filterbanks Previously, there are geometric scattering networks [10, 28] that apply251

filterbanks to address over-smoothing [21] problem. The scattering construction captures different252

channels of variation from node features or labels. In geometric learning and graph signal processing,253

the band-pass filtering operations extract geometric information beyond smooth signals, thus it is254

believed that filterbanks can alleviate over-smoothing in GNNs. In ACM framework, we aim to255
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design a framework with the help of filterbanks to adaptively utilize different channels to address the256

challenge of learning on heterophilous graph. We deal with different problem as in [10, 28].257

6 Experiments on Real-World Datasets258

In this section, we evaluate ACM framework on real-world datasets. We first conduct ablation studies259

in subsection 6.1 to validate different components. Then, we compare with the state-of-the-arts260

models in subsection 6.2.261

6.1 Ablation Study & Efficiency262

Ablation Study on Different Components in ACM-SGC and ACM-GCN (%)

Baseline Model Components Cornell Wisconsin Texas Film Chameleon Squirrel Cora CiteSeer PubMed

Models LP HP Identity Mixing Acc± Std Acc± Std Acc± Std Acc± Std Acc± Std Acc± Std Acc± Std Acc± Std Acc± Std

SGC-1 w/

X 74.43± 6.01 69.75± 5.02 84.1± 2.32 25.34± 2.41 64.55± 1.38 42.8± 1.1 85.24± 1.85 79.85± 1.04 84.44± 0.38
X X X 84.92± 4.59 91.75± 4.05 89.34± 3.67 36.94± 1.07 63.11± 1.64 44.8± 1.35 85.6± 1.33 80.33± 1.25 84.5± 0.42
X X X 92.3± 3.8 93± 2.11 91.64± 3.65 38.25± 1.6 57± 1.93 40.2± 2.18 85.98± 0.84 80.2± 2.01 84.37± 0.44
X X X 88.2± 3.88 90.75± 2.37 92.3± 3.88 36.58± 1.36 61.64± 2.52 41.59± 2.29 84.98± 1.2 79.81± 1.2 87.13± 0.58
X X X X 92.46± 2.10 93.38± 2.68 91.97± 3.23 38.71± 1.22 62.39± 2.45 45.65± 1.44 86.52± 1.55 80.79± 1.65 87.69± 0.6

GCN w/

X 81.31± 3.13 70.25± 4.7 82.13± 4.05 34.45± 0.83 64.86± 1.56 45.11± 1.39 87.47± 0.82 81.3± 0.95 87.85± 0.44
X X X 82.95± 5.17 88.63± 2.51 88.03± 2.67 40.16± 1.06 68.12± 1.73 52.08± 1.47 88.44± 1.62 81.45± 0.9 90.09± 0.29
X X X 92.13± 2.65 94.37± 3.27 93.11± 2.48 40.3± 1.63 66.67± 2.16 49.45± 0.83 88.46± 1.31 81.42± 1.13 91.21± 1.17
X X X 88.52± 4.51 95± 2.25 92.3± 2.21 40.25± 1.78 65.97± 2.24 51.02± 1.64 88.7± 1.68 80.93± 1.53 90.66± 0.32
X X X X 92.62± 3.04 95.37± 2.1 94.75± 1.77 41.48± 0.78 67.79± 1.79 52.86± 1.96 89.11± 0.87 82.16± 0.84 90.72± 0.7

Average Running Time Per Epoch/Average Total Running Time Comparison

SGC-1 w/

X 2.70ms/0.59s 2.53ms/0.51s 2.63ms/0.55s 3.62ms/1.13s 4.96ms/3.99s 4.09ms/0.87s 5.34ms/8.22s 4.79ms/4.55s 5.58ms/7.70s
X X X 4.93ms/1.04s 5.03ms/1.04s 6.67ms/1.58s 6.68ms/1.37s 6.42ms/1.96s 7.41ms/1.93s 6.68ms/2.43s 6.69ms/1.96s 7.20ms/2.48s
X X X 4.73ms/0.98s 4.99ms/1.09s 4.79ms/1.02s 5.53ms/1.28s 5.89ms/1.50s 6.48ms/1.50s 6.50ms/2.09s 6.23ms/1.76s 6.73ms/2.24s
X X X 4.30ms/0.88s 4.51ms/0.91s 4.58ms/0.95s 5.86ms/1.19s 5.99ms/1.43s 6.84ms/1.63s 5.44ms/1.37s 5.72ms/1.44s 6.36ms/2.04s
X X X X 5.15ms/1.08s 5.82ms/1.28s 5.55ms/1.18s 6.28ms/1.50s 6.60ms/1.96s 7.27ms/1.52s 7.05ms/2.40s 6.99ms/1.94s 7.28ms/2.07s

GCN w/

X 3.78ms/0.78s 3.91ms/0.79s 3.80ms/0.78s 4.42ms/0.89s 4.44ms/0.89s 6.85ms/1.48s 4.19ms/0.87s 5.22ms/1.13s 4.81ms/0.99s
X X X 7.63ms/1.54s 7.99ms/1.92s 7.26ms/1.48s 8.42ms/1.73s 9.74ms/2.76s 11.19ms/2.38s 7.74ms/1.61s 9.98ms/3.56s 9.10ms/1.85s
X X X 6.75ms/1.36s 6.83ms/1.41s 6.99ms/1.46s 7.62ms/1.54s 7.80ms/1.67s 9.76ms/2.02s 7.59ms/1.54s 7.43ms/1.54s 8.28ms/1.70s
X X X 7.33ms/1.49s 6.80ms/1.38s 6.99ms/1.41s 8.76ms/2.19s 7.81ms/1.59s 11.26ms/2.29s 7.77ms/1.59s 7.66ms/1.56s 8.36ms/1.70s
X X X X 8.04ms/1.63s 8.98ms/1.83s 8.17ms/1.65s 9.29ms/2.00s 9.33ms/1.96s 12.15ms/2.53s 9.16ms/1.85s 9.48ms/1.95s 9.54ms/1.92s

Table 1: Ablation study on 9 real-world datasets [29]. Cell with Xmeans the component is applied to
the baseline model. The best test results are highlighted.

We investigate the effectiveness and efficiency of adding HP, identity channels and the adaptive mixing263

mechanism in ACM framework by ablation study. Specifically, we apply the above components to264

SGC-1 and GCN separately, run 10 times on each dataset used in [29] with 60%/20%/20% random265

splits for train/validation/test and report the average test accuracy as well as the standard deviation.266

We also record the average running time per epoch(in milliseconds)/average total running time(in267

seconds) to compare the efficiency. (See Appendix A for hyperparameter searching space.)268

From the results we can see that on most datasets, the additional HP and identity channels are helpful,269

even on strong homophily datasets, such as Cora, CiteSeer and PubMed. The adaptive mixing270

mechanism also shows its advantage over the method that directly adds the three channels together.271

This illustrates the necessity of learning to customize the channel usage adaptively for different nodes.272

As for efficiency, we can see that the running time is approximately doubled in ACM framework than273

the original model.274

6.2 Comparison with State-of-the-art Models275

Datasets & Experimental Setup In this section, we implement SGC [32] with 1 hop and 2 hop276

(SGC-1, SGC-2), GCN [16] and GraphSAGE and apply them [13] in ACM framework: we use277

Ârw and mean aggregator as LP filter and the corresponding HP filter can be derived from (12).278

We compare them with several baselines and state-of-the-art models: MLP with 2 layers (MLP-2),279

GAT [31], APPNP [17], GPRGNN [5], H2GCN [36], MixHop [1], GCN+JK [16, 33, 22], GAT+JK280

[31, 33, 22] and Geom-GCN [29]. Besides the 9 benchmark datasets used in [29], we further tests281

the above models on 2 new benchmark datasets, Deezer-Europe and YelpChi, that are proposed in282
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Cornell Wisconsin Texas Film Chameleon Squirrel Deezer-Europe YelpChi Cora CiteSeer PubMed

#nodes 183 251 183 7,600 2,277 5,201 28,281 45,954 2,708 3,327 19,717
#edges 295 499 309 33,544 36,101 217,073 92,752 3,846,979 5,429 4,732 44,338

#features 1,703 1,703 1,703 931 2,325 2,089 31,241 32 1,433 3,703 500
#classes 5 5 5 5 5 5 2 2 7 6 3

Hedge(G) 0.5669 0.4480 0.4106 0.3750 0.2795 0.2416 0.5251 0.7730 0.8100 0.7362 0.8024
Hnode(G) 0.3855 0.1498 0.0968 0.2210 0.2470 0.2156 0.5299 0.7698 0.8252 0.7175 0.7924
Hclass(G) 0.0468 0.0941 0.0013 0.0110 0.0620 0.0254 0.0304 0.0520 0.7657 0.6270 0.6641
HM

agg(G) 0.8032 0.7768 0.694 0.6822 0.61 0.3566 0.5790 0.7206 0.9904 0.9826 0.9432
Data Splits(%) 60/20/20 60/20/20 60/20/20 60/20/20 60/20/20 60/20/20 50/25/25 50/25/25 60/20/20 60/20/20 60/20/20

Test Accuracy (%) of State-of-the-art Models, Baseline GNN Models and ACM-GNN models Rank

MLP-2* 91.30± 0.70 93.87± 3.33 92.26± 0.71 38.58± 0.25 46.72± 0.46 31.28± 0.27 66.55± 0.72 87.94± 0.52 76.44± 0.30 76.25± 0.28 86.43± 0.13 9.00

GAT* 76.00± 1.01 71.01± 4.66 78.87± 0.86 35.98± 0.23 63.9± 0.46 42.72± 0.33 61.09± 0.77 81.42± 2.12 76.70± 0.42 67.20± 0.46 83.28± 0.12 11.73
APPNP* 91.80± 0.63 92.00± 3.59 91.18± 0.70 38.86± 0.24 51.91± 0.56 34.77±0.34 67.21± 0.56 75.60± 0.48 79.41±0.38 68.59± 0.30 85.02± 0.09 9.09

GPRGNN* 91.36± 0.70 93.75± 2.37 92.92± 0.61 39.30± 0.27 67.48± 0.40 49.93± 0.53 66.90± 0.50 71.59± 0.38 79.51± 0.36 67.63± 0.38 85.07± 0.09 6.64
H2GCN 86.23± 4.71 87.5± 1.77 85.90± 3.53 38.85± 1.17 52.30± 0.48 30.39± 1.22 67.22± 0.90 88.48± 0.21 87.52± 0.61 79.97± 0.69 87.78± 0.28 7.27
MixHop 60.33± 28.53 77.25± 7.80 76.39± 7.66 33.13± 2.40 36.28± 10.22 24.55± 2.60 66.80± 0.58 87.02± 0.50 65.65± 11.31 49.52± 13.35 87.04± 4.10 13.09
GCN+JK 66.56± 13.82 62.50± 15.75 80.66± 1.91 32.72± 2.62 64.68± 2.85 53.40± 1.90 60.99± 0.14 64.35± 0.86 86.90± 1.51 73.77± 1.85 90.09± 0.68 10.09
GAT+JK 74.43± 10.24 69.50± 3.12 75.41± 7.18 35.41± 0.97 68.14± 1.18 52.28± 3.61 59.66± 0.92 90.04± 0.61 89.52± 0.43 74.49± 2.76 89.15± 0.87 8.27

Geom-GCN† 60.81 64.12 67.57 31.63 60.9 38.14 NA NA 85.27 77.99 90.05 12.33

SGC-1 74.43± 6.01 69.75± 5.02 84.1± 2.42 25.34± 3.41 62.34± 1.92 42.8± 1.1 59.73± 0.12 58.62± 0.85 85.16± 0.82 79.93± 1.03 80.97± 0.91 12.18
SGC-2 77.7± 4.47 72.75± 3.91 81.48± 3.88 29.39± 0.20 63.02± 0.43 37.41± 1 61.56± 0.51 57.18± 0.75 86.58± 0.26 76.23± 0.29 81.14± 0.71 11.73
GCN 81.31± 3.13 70.25± 4.7 82.13± 4.05 34.45± 0.83 64.86± 1.56 45.11± 1.39 62.23± 0.53 63.62± 1.00 87.47± 0.82 81.3± 0.95 87.85± 0.44 8.18

GraphSAGE 71.41± 1.24 64.85± 5.14 79.03± 1.20 36.37± 0.21 62.15± 0.42 41.26± 0.26 62.55± 0.48 62.57± 1.12 86.58± 0.26 78.24± 0.30 86.85± 0.11 11.00

ACM-SGC-1 91.31± 2.94 93.38± 2.68 91.97± 3.23 38.71± 1.22 62.39± 2.45 45.65± 1.44 66.42± 0.96 85.83± 1.34 86.52± 1.55 80.79± 1.65 87.69± 0.6 6.27
ACM-SGC-2 90.66± 3.36 92.13± 5.06 90.66± 2.84 38.77± 1.74 58.51± 2.42 39.37± 1.41 66.98± 0.88 85.84± 1.17 87.44± 0.8 80.03± 1.26 88.01± 0.93 6.73
ACM-GCN 92.62± 3.04 95.37± 2.1 95.08± 1.8 41.48± 0.78 67.79± 1.79 52.86± 1.96 66.85± 0.95 89.91± 1.02 89.11± 0.87 82.16± 0.84 90.72± 0.7 1.73
ACM-SAGE 91.31± 2.94 90.13± 2.67 91.97± 3.15 36.68± 2.46 61.84± 2.71 44.63± 3.02 66.21± 0.89 88.73± 1.45 86.24± 1.25 80.87± 1.36 88.51± 0.9 6.45

Table 2: Experimental results: average test accuracy± standard deviation on 11 real-world benchmark
datasets. The best results are highlighted. The "†" results are from [29] and NA means the reported
results are not available. Results "*" are from [5, 22].

[22]5. We test these models 10 times on Cornell, Wisconsin, Texas, Film, Chameleon, Squirrel, Cora,283

Citeseer and Pubmed following the same early stopping strategy, the same data splitting and Adam284

[15] optimizer used in GPRGNN [5]. For Deezer-Europe and YelpChi, we test the above models285

5 times with the same early stopping strategy, the same splits and AdamW [24] used in [22]. The286

details of hyperparameter search are reported in appendix A.287

The main results of this set of experiments with statistics of datasets are summarized in Table 2, where288

we report the mean accuracy and standard deviation. We can see that after applied in ACM framework,289

the performance of baseline models are boosted on almost all tasks. Especially, ACM-GCN performs290

the best in terms of average rank (1.73) across all datasets and achieves SOTA performance on 6 out291

of 11 datasets. Overall, It suggests that ACM framework can help GNNs to generalize better on node292

classification tasks on heterophilous graphs.293

7 Future Work294

The similarity matrix and the new metrics defined in this paper mainly capture the linear relations295

of the aggregated nodes. But this might be insufficient sometimes when nonlinearity information in296

feature vectors are important for classification. In the future, similarity matrix that is able to capture297

nonlinear relations between nodes can be proposed to define new homophily metrics.298

From experimental results, the standard deviation of ACM-GNNs are relatively higher than GNNs on299

some tasks and this is suspiciously caused by the feature-based weight learning mechanism. In the300

future, a stabilizer or a more robust weight learning method can be proposed to reduce the variance.301

8 Social Impact302

We do not find any direct path of this work to any negative social impact.303

5The authors proposed 8 new datasets. From the reported results, GCN only underperform MLP-2 on
Deezer-Europe and YelpChi, which demonstrates the heterophily of these 2 datasets, therefore we choose them.
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1. For all authors...388

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s389

contributions and scope? [Yes]390

(b) Did you describe the limitations of your work? [Yes] In the Appendix F, we discussion391

cases that high-pass filter cannot tackle.392

(c) Did you discuss any potential negative societal impacts of your work? [No] It is in393

Section 8, we have not come up with significant social negative impact.394

(d) Have you read the ethics review guidelines and ensured that your paper conforms to395

them? [Yes]396

2. If you are including theoretical results...397

(a) Did you state the full set of assumptions of all theoretical results? [Yes] In Section398

3&4, we mainly define a new homophily metric and it is followed by two theorems.399

(b) Did you include complete proofs of all theoretical results? [Yes] In Appendix B&C&400

D, we justify the new metric and two theorems.401

3. If you ran experiments...402

(a) Did you include the code, data, and instructions needed to reproduce the main experi-403

mental results (either in the supplemental material or as a URL)? [Yes] The settings are404

provided in details and the source code is submitted in the supplemental material.405

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they406

were chosen)? [Yes] In Section 6, we specify model details.407

(c) Did you report error bars (e.g., with respect to the random seed after running exper-408

iments multiple times)? [Yes] We include average test accuracy of times of running409

with standard deviation.410

(d) Did you include the total amount of compute and the type of resources used (e.g., type411

of GPUs, internal cluster, or cloud provider)? [Yes] We include hardware details in412

Appendix, which is not computationally expensive.413

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...414

(a) If your work uses existing assets, did you cite the creators? [Yes] In Section 6, we415

specify the datasets with their data split sources in footnotes.416

(b) Did you mention the license of the assets? [No]417

(c) Did you include any new assets either in the supplemental material or as a URL? [No]418

(d) Did you discuss whether and how consent was obtained from people whose data you’re419

using/curating? [No]420

(e) Did you discuss whether the data you are using/curating contains personally identifiable421

information or offensive content? [No] None included.422

5. If you used crowdsourcing or conducted research with human subjects...423

(a) Did you include the full text of instructions given to participants and screenshots, if424

applicable? [No] None included.425

(b) Did you describe any potential participant risks, with links to Institutional Review426

Board (IRB) approvals, if applicable? [No] None included.427

(c) Did you include the estimated hourly wage paid to participants and the total amount428

spent on participant compensation? [No] None included.429
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A Hyperparameters & Details of The Experiments430

A.1 Hyperparameters Searching Range for GNNs on Synthetic Graphs431

Hyperparameter Searching Range for Synthetic Experiments

Models\Hyperparameters lr weight_decay dropout hidden

MLP-1 0.05 {5e-5, 1e-4, 5e-4} - -
SGC-1 0.05 {5e-5, 1e-4, 5e-4} - -

ACM-SGC-1 0.05 {5e-5, 1e-4, 5e-4} { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} -

MLP-2 0.05 {5e-5, 1e-4, 5e-4} { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} 64
GCN 0.05 {5e-5, 1e-4, 5e-4} { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} 64

ACM-GCN 0.05 {5e-5, 1e-4, 5e-4} { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} 64

Table 3: Hyperparameter Searching Range for Synthetic Experiments

A.2 Hyperparameters Searching Range for GNNs on Ablation Study432

Hyperparameter Searching Range for Ablation Study

Models\Hyperparameters lr weight_decay dropout hidden

SGC-LP+HP {0.05, 0.1}{0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3} - -
SGC-LP+Identity {0.05, 0.1}{0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3} - -

ACM-SGC-no adaptive mixing {0.05, 0.1}{0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}{ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} -
GCN-LP+HP {0.05, 0.1}{0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}{ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} 64

GCN-LP+Identity {0.05, 0.1}{0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}{ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} 64
ACM-GCN-no adaptive mixing {0.05, 0.1}{0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}{ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} 64

Table 4: Hyperparameter Searching Range for Ablation Study

A.3 Hyperparameters Searching Range for GNNs on Real-world Datasets433

Hyperparameter Searching Range for Real-world Datasets

Models\Hyperparameters lr weight_decay dropout hidden head layers JK type

H2GCN 0.01 0.001 0, 0.5 {8, 16, 32, 64} - {1, 2} -
MixHop 0.01 0.001 0.5 {8, 16, 32} - {2, 3} -
GCN+JK {0.1, 0.01, 0.001} 0.001 0.5 {4, 8, 16, 32, 64} - 2 {max, cat}
GAT+JK {0.1, 0.01, 0.001} 0.001 0.5 {4, 8, 12, 32} {2,4,8} 2 {max, cat}
SGC-1 {0.002,0.01,0.05} {0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3} - - - - -
SGC-2 {0.002,0.01,0.05} {0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3} - - - - -
GCN {0.002,0.01,0.05} {0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3} { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} 64 - - -

GraphSAGE {0.01,0.05} {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3} { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} 8 for Deezer and YelpChi, 64 for others - - -
ACM-SGC-1 {0.002,0.01,0.05} {0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3} { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} - - - -
ACM-SGC-2 {0.002,0.01,0.05} {0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3} { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} - - - -
ACM-GCN {0.002,0.01,0.05} {0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3} { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} 64 - - -
ACM-SAGE {0.01,0.05} {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3} { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8,0.9} 8 for Deezer and YelpChi, 64 for others - - -

Table 5: Hyperparameter Searching Range for Real-world Datasets

A.4 Computing Resources434

For all experiments on synthetic datasets and real-world datasets, we use NVidia V100 GPUs with435

16/32GB GPU memory, 8-core CPU, 16G Memory. The software implementation is based on436

PyTorch and PyTorch Geometric [9].437
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B Details of Gradient Calculation in (5)438

B.1 Derivation in Matrix Form439

In output layer, we have440

Y = softmax(ÂXW ) ≡ softmax(Y ′) =
(
exp(Y ′)1C1

T
C

)−1 � exp(Y ′) > 0

L = −trace(ZT log Y )

where 1C ∈ RC×1, (·)−1 is point-wise inverse function and each element of Y is positive. Then441

dL = −trace
(
ZT ((Y )−1 � dY )

)
= −trace

(
ZT
(

(softmax(Y ′))
−1 � d softmax(Y ′)

))
Note that442

d softmax(Y ′) =−
(
exp(Y ′)1C1

T
C

)−2 � [(exp(Y ′)� dY ′)1C1
T
C ]� exp(Y ′)

+
(
exp(Y ′)1C1

T
C

)−1 � (exp(Y ′)� dY ′)

=− softmax(Y ′)�
(
exp(Y ′)1C1

T
C

)−1 � [(exp(Y ′)� dY ′)1C1
T
C ]

+ softmax(Y ′)� dY ′

= softmax(Y ′)�
(
−
(
exp(Y ′)1C1

T
C

)−1 � [(exp(Y ′)� dY ′)1C1
T
C

]
+ dY ′

)
Then,443

dL = − trace

(
ZT

(
(softmax(Y ′))−1 �

[
softmax(Y ′)�

(
−
(
exp(Y ′)1C1

T
C

)−1
�
[
(exp(Y ′)� dY ′)1C1

T
C

]
+ dY ′

)]))
= − trace

(
ZT
(
−
(
exp(Y ′)1C1

T
C

)−1 � [(exp(Y ′)� dY ′)1C1
T
C

]
+ dY ′

))
= trace

(((
Z �

(
exp(Y ′)1C1

T
C

)−1)
1C1

T
C

)T
[exp(Y ′)� dY ′]− ZT dY ′

)
= trace

((
exp(Y ′)�

((
Z �

(
exp(Y ′)1C1

T
C

)−1)
1C1

T
C

))T
dY ′ − ZT dY ′

)
= trace

((
exp(Y ′)�

(
exp(Y ′)1C1

T
C

)−1)T
dY ′ − ZT dY ′

)
= trace

(
(softmax(Y ′)− Z)T dY ′

)
where the 4-th equation holds due to

(
Z �

(
exp(Y ′)1C1

T
C

)−1)
1C1

T
C =

(
exp(Y ′)1C1

T
C

)−1
. Thus,444

we have445

dL
dY ′

= softmax(Y ′)− Z = Y − Z

For Y ′ and W , we have446

dY ′ = ÂXdW and dL = trace

(
dL
dY ′

T

dY ′

)
= trace

(
dL
dY ′

T

ÂX dW

)
= trace

(
dL
dW

T

dW

)

To get dL
dW we have,447

dL
dW

= XT ÂT dL
dY ′

= XT ÂT (Y − Z) (14)
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B.2 Component-wise Derivation448

Denote X̃ = XW . We rewrite L as follows:449

L = −trace
(
ZT log

(
(exp(Y ′)1C1

T
C)−1 � exp(Y ′)

))
= −trace

(
ZT
(
− log(exp(Y ′)1C1

T
C) + Y ′

))
= −trace

(
ZTY ′

)
+ trace

(
ZT log

(
exp(Y ′)1C1

T
C

))
= −trace

(
ZT ÂXW

)
+ trace

(
ZT log

(
exp(Y ′)1C1

T
C

))
= −trace

(
ZT ÂXW

)
+ trace

(
1T
C log (exp(Y ′)1C)

)
= −

N∑
i=1

∑
j∈Ni

Âi,jZi,:X̃
T
j: +

N∑
i=1

log

 C∑
c=1

exp(
∑
j∈Ni

Âi,jX̃j,c)


= −

N∑
i=1

log

exp

 C∑
c=1

∑
j∈Ni

Âi,jZi,cX̃j,c

+

N∑
i=1

log

 C∑
c=1

exp

∑
j∈Ni

Âi,jX̃j,c



= −
N∑
i=1

log

exp

(
C∑

c=1

∑
j∈Ni

Âi,jZi,cX̃j,c

)
(

C∑
c=1

exp(
∑

j∈Ni

Âi,jX̃j,c)

)

Note that
C∑

c=1
Zj,c = 1 for any j. Consider the derivation of L over X̃j′,c′ :450

dL
dX̃j′,c′

=−
N∑
i=1

C∑
c=1

exp(
∑

j∈Ni

Âi,jX̃j,c)

exp

(
C∑

c=1

∑
j∈Ni

Âi,jZi,cX̃j,c

)

×


(
Âi,j′Zi,c′

)
exp

(
C∑

c=1

∑
j∈Ni

Âi,jZi,cX̃j,c

)(
C∑

c=1
exp(

∑
j∈Ni

Âi,jX̃j,c)

)
(

C∑
c=1

exp(
∑

j∈Ni

Âi,jX̃j,c)

)2

−

(
Âi,j′

)
exp

(
C∑

c=1

∑
j∈Ni

Âi,jZi,cX̃j,c

)(
exp(

∑
j∈Ni

Âi,jX̃j,c′)

)
(

C∑
c=1

exp(
∑

j∈Ni

Âi,jX̃j,c)

)2



=−
N∑
i=1


(
Âi,j′Zi,c′

)( C∑
c=1

exp(
∑

j∈Ni

Âi,jX̃j,c)

)
−
(
Âi,j′

)(
exp(

∑
j∈Ni

Âi,jX̃j,c′)

)
(

C∑
c=1

exp(
∑

j∈Ni

Âi,jX̃j,c)

)

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=−
N∑
i=1

Âi,j′

(
C∑

c=1,c 6=c′
(Zi,c′) exp(

∑
j∈Ni

Âi,jX̃j,c)

)
+ (Zi,c′ − 1)

(
exp(

∑
j∈Ni

Âi,jX̃j,c′)

)
(

C∑
c=1

exp(
∑

j∈Ni

Âi,jX̃j,c)

)


=−
N∑
i=1

Âi,j′

(
Zi,c′ P̂ (Yi 6= c′) + (Zi,c′ − 1)P̂ (Yi = c′)

)
=−

N∑
i=1

Âi,j′

(
Zi,c′ − P̂ (Yi = c′)

)
Writing the above in matrix form, we have451

dL
dX̃

= Â(Z − Y ),
dL
dW̃

= XT ÂT (Z − Y ), ∆Y ′ ∝ ÂXXT ÂT (Z − Y ) (15)

C Proof of Theorem 1452

Proof. According to the given assumptions, for node v, the expectation of the number of intra-class453

edges is dh (here the self-loop edge introduced by dintra = Ârw is not counted) and inter-class edges454

is (1 − h)d. Thus, we have E[dv] = d for all nodes. Suppose there are C ≥ 2 classes. Consider455

matrix ÂZ,456

E
[
(ÂZ)v,c

]
= E

[∑
k∈V

Âv,k1{Zk,:=eT
c }

]
=

{
hd+1
d+1 , v is in class c
(1−h)d

(C−1)(d+1) , v is not in class c

where 1 is the indicator function. For nodes v, u, we have457

E
[
S(Â, Z)v,u

]
= E

[
< (ÂZ)v:, (ÂZ)u: >

]
=


(

hd+1
d+1

)2
+ ((1−h)d)2

(C−1)(d+1)2 , u, v are in the same class
2(hd+1)(1−h)d
(C−1)(d+1)2 + (C−2)(1−h)2d2

(C−1)2(d+1)2 , u, v are in different classes

For nodes u1, u2, and v, where Zu1,: = Zv,: and Zu2,: 6= Zv,:,458

g(h) ≡ E
[
S(Â, Z)v,u1

]
− E

[
S(Â, Z)v,u2

]
=

(C − 1)2(hd+ 1)2 + (C − 1) [(1− h)d]
2 − (C − 1) (2(hd+ 1)(1− h)d)− (C − 2) [(1− h)d]

2

(C − 1)2(d+ 1)2

=

(
(C − 1)(hd+ 1)− (1− h)d

(C − 1)(d+ 1)

)2

Setting g(h) = 0, we obtain the optimal h:459

h =
d+ 1− C

Cd
(16)

For the data generation process in the synthetic experiments, we fix dintra, then d = dintra/h, which is460

a function of h. We change d in (16) to dintra/h, leading to461

h =
dintra/h+ 1− C

Cdintra/h
(17)

It is easy to observe that h satisfying (17) still makes g(h) = 0, when d in g(h) is replaced by dintra/h.
From (17) we obtain the optimal h in terms of dintra:

h =
dintra

Cdintra + C − 1

462
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D Proof of Theorem 2463

Proof. Define W c
v = (ÂZ)v,c. Then,464

W c
v =

∑
k∈V

Âv,k1{Zk,:=eTc } ∈ [0, 1],

C∑
c=1

W c
v = 1

Note that465

S(I − Â, Z) = (I − Â)ZZT (I − Â)T = ZZT + ÂZZT ÂT − ÂZZT − ZZT ÂT (18)

For any node v, let the class v belongs to be denoted by cv. For two nodes v, u, if Zv,: 6= Zu,:, we466

have467

(ZZT )v,u = 0

(ÂZZT ÂT )v,u =

C∑
c=1

W c
vW

c
u

(ÂZZT )v,u = W cu
v

(ZZT ÂT )v,u = (ÂZZT )u,v = W cv
u

Then, from (18) it follows that468

(S(I − Â, Z))v,u =

C∑
c=1

W c
vW

c
u −W cu

v −W cv
u

When C = 2,469

S(I − Â, Z)v,u = W cu
v (W cu

u − 1) +W cv
u (W cv

v − 1) ≤ 0

If Zv,: = Zu,:, i.e., cv = cu, we have470

(ZZT )v,u = 1

(ÂZZT ÂT )v,u =

C∑
c=1

W c
vW

c
u

(ÂZZT )v,u = W cv
v

(ZZT ÂT )v,u = (ÂZZT )u,v = W cu
u = W cv

u

Then, from (18) it follows that471

S(I − Â, Z)v,u = 1 +

C∑
c=1

W c
vW

c
u −W cv

v −W cv
u

=

C∑
c=1,c 6=cv

W c
vW

c
u + 1 +W cv

v W cv
u −W cv

v −W cv
u

=

C∑
c=1,c 6=cv

W c
vW

c
u + (1−W cv

v )(1−W cv
u ) ≥ 0

Thus, if C = 2, for any v ∈ V , if Zu,: 6= Zv,:, we have S(I − Â, Z)v,u ≤ 0; if Zu,: = Zv,:, we have472

S(I − Â, Z)v,u ≥ 0. Apparently, the two conditions in (10) are satisfied. Thus v is diversification473

distinguishable and DDÂ,X(G) = 1. The theorem is proved.474
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E Model Comparison on Synthetic Graphs475
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Figure 4: Comparison of test accuracy (mean± std) of MLP-1, SGC-1 and ACM-SGC-1 on synthetic
datasets
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Figure 5: Comparison of test accuracy (mean ± std) of MLP-2, GCN and ACM-GCN on synthetic
datasets

In order to separate the effects of nonlinearity and graph structure, we compare sgc with 1 hop476

(sgc-1) with MLP-1(linear model). For GCN which includes nonlinearity, we use MLP-2 as the477

graph-agnostic baseline model. We train the above GNN models, graph-agnostic baseline models and478
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ACM-GNN models on all synthetic datasets and plot the mean test accuracy with standard deviation479

on each dataset. From Figure 4 and Figure 5, we can see that on each HM
agg(G) level, ACM-GNNs480

will not underperform GNNs and graph-agnostic models. But when HM
agg(G) is small, GNNs will be481

outperformed by graph-agnostic models by a large margin. This demonstrate the advantage of the482

ACM framework.483

F Discussion of The Limitations of Diversification Operation484
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7: [0,0,1,0]
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Figure 6: Example of the case (the area in black box) that HP filter does not work well for harmful
heterophily

From the area in black boxes in Figure 6 we can see that nodes in class 1 and 4 assign non-negative485

weights to each other; nodes in class 2 and 3 assign non-negative weights to each other as well.486

This is because the surrounding differences of class 1 are similar as class 4, so are class 2 and487

3. In real-world applications, when nodes in several small clusters connect to a large cluster, the488

surrounding differences of the nodes in the small clusters will become similar. In such case, HP filter489

are not able to distinguish the nodes from different small clusters.490

G Estimation of The Similarity, Homophily and DDÂ,X(G) Metrics.491

In most real-world applications, not all labels are available to calculate the dataset statistics. In this492

section, We randomly split the data into 60%/20%/20% for training/validation/test, and only use the493

training labels for the estimation of the statistics. We repeat each estimation for 10 times and report494

the mean with standard deviation. The results are shown in table 6.

Cornell Wisconsin Texas Film Chameleon Squirrel Cora CiteSeer PubMed

Hagg(G) 0.9016 0.8884 0.847 0.8411 0.805 0.6783 0.9952 0.9913 0.9716
Sagg

(
S(Â,X)

)
0.8251 0.7769 0.6557 0.5118 0.8292 0.7216 0.9439 0.9393 0.8623

Sagg (S(I,X)) 0.9672 0.8287 0.9672 0.5405 0.7931 0.701 0.9103 0.9315 0.8823
DD

Â,X
(G) 0.3497 0.6096 0.459 0.3279 0.3109 0.2711 0.2681 0.4124 0.1889

Ĥagg(G) 0.9046± 0.0282 0.9147± 0.0260 0.8596± 0.0299 0.8451± 0.0041 0.8041± 0.0078 0.6788± 0.0077 0.9959± 0.0011 0.9907± 0.0015 0.9724± 0.0015
Ŝagg

(
S(Â,X)

)
0.8266± 0.0526 0.8280± 0.0351 0.6835± 0.0498 0.5345± 0.0421 0.8433± 0.0070 0.7352± 0.0132 0.9487± 0.0023 0.9451± 0.0038 0.8626± 0.0021

Ŝagg (S(I,X)) 0.9752± 0.0174 0.8680± 0.0270 0.9661± 0.0336 0.5438± 0.0184 0.8257± 0.0050 0.7472± 0.0089 0.9204± 0.0044 0.9441± 0.0036 0.8835± 0.0019
D̂D

Â,X
(G) 0.3936± 0.0663 0.6073± 0.0436 0.4817± 0.0762 0.3300± 0.0136 0.3329± 0.0151 0.3021± 0.0101 0.3198± 0.0225 0.4424± 0.0136 0.1919± 0.0046

Table 6: Estimation of similarity metrices and diversification distinguishability with only training
labels (mean ± std)

495

Estimation The statistics we estimate are Hagg(G), Sagg

(
S(Â,X)

)
, Sagg (S(I,X)) and496

DDÂ,X(G) and are denoted as Ĥagg(G), Ŝagg

(
S(Â,X)

)
, Ŝagg (S(I,X)) and D̂DÂ,X(G). The497

two similarity scores Sagg

(
S(Â,X)

)
and Sagg (S(I,X)) measures the proportion of nodes, accord-498

ing to aggregated features and nodes features respectively, that will put larger weights on nodes in the499
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same class than in other classes. The higher values of Sagg

(
S(Â,X)

)
and Sagg (S(I,X)) indicates500

the better quality of aggregated features and nodes features.501

Analysis From the reported results we can see that the estimations are accurate and the errors502

are in acceptable range, which means the proposed metrics and similarity scores can be accurately503

estimated with a subset of labels and this is important for real-world applications. Furthermore, we504

notice some interesting results, e.g., the performance of GNNs and MLP are bad on Squirrel and Film,505

and according to the aggregation homophily values, the graph structure of Film is not quite harmful506

compared to other datasets, but its features and aggregated features are much worse than others; the507

features and aggregated features of Squirrel are not too bad, buts its graph topology is more harmful508

than others. Combining the metrics defined in this paper together can help us separate different509

factors in graph structure and features and identify what might cause the performance degradations of510

GNNs.511

20


	Introduction
	Preliminaries
	Graph Laplacian, Affinity Matrix and Their Variants
	Metrics of Homophily

	Analysis of Heterophily
	Motivation and Aggregation Homophily
	Evaluation and Comparison on Synthetic Graphs

	Adaptive Channel Mixing (ACM) Framework
	How Diversification Operation Helps with Harmful Heterophily
	Filterbank in Spectral and Spatial Forms
	Adaptive Channel Mixing(ACM) GNN Framework

	Prior Work
	Experiments on Real-World Datasets
	Ablation Study & Efficiency
	Comparison with State-of-the-art Models

	Future Work
	Social Impact
	Hyperparameters & Details of The Experiments
	Hyperparameters Searching Range for GNNs on Synthetic Graphs
	Hyperparameters Searching Range for GNNs on Ablation Study
	Hyperparameters Searching Range for GNNs on Real-world Datasets
	Computing Resources

	Details of Gradient Calculation in (5)
	Derivation in Matrix Form
	Component-wise Derivation

	Proof of Theorem 1
	Proof of Theorem 2
	Model Comparison on Synthetic Graphs
	Discussion of The Limitations of Diversification Operation
	Estimation of The Similarity, Homophily and DD,X(G) Metrics.

