
A Additional Results222

A.1 Ablations223

This section presents six ablation and sensitivity analyses shown in Table 2 examining the impact of224

model size and the proposed dataset on the encoder’s multi-modal classification performance. More225

ablations are included in the appendix.226

Model Sizes (Table 2a) Performance varies significantly among different encoder sizes. ViT-Base has227

the highest validation accuracy but lags on the test set due to distribution shifts: the training labels228

from GPT-4V are less detailed and accurate compared to human-annotated test data. However, in229

tactile-vision classification on synchronized data, ViT-Base outperforms both of the smaller models.230

Disable Tactile-Text Loss (Table 2b) resembles the setup in ImageBind [12], where data in all three231

modalities are considered but the tactile-text loss is omitted. Results suggest that using language to232

supervise the tactile encoder better aligns those two modalities.233

Data (Tables 3c-f) We perform four sensitivity analyses on the different compositions of the dataset for234

training. We find that leveraging data from all three modalities improves tactile-language alignment.235

While adding not-in-contact data prevents the model from overfitting to the training set, its test set236

performance is comparable with having only in-contact data. We also experimented with prompting237

used in vanilla CLIP training [28], which brings marginal improvements in accuracy. Lastly, we238

separately train the model on SSVTP and HCT, and we find that the pseudo-labeled dataset can239

provide comparable performance with training on the entire dataset, which suggests that TVL’s240

tactile encoder can effectively leverage self-supervised learning to reduce the dependency on large,241

fully-labeled datasets while maintaining task performance.242

A.2 Performance Per Dataset243

In this section, we show a fine-grained breakdown of Table 1 of model performance on the TVU244

benchmark by showing the results per subset of the dataset. The performance of the models on the245

SSVTP subset is listed in Table 3 and the performance on the HCT subset is listed in Table 4. Results246

suggest that GPT-4V performs better on SSVTP, which is collected in a lab setting, than HCT, which247

is collected “in-the-wild".248

Tac./Text Tac./Vis.
Model % Acc. % Acc.
ViT-Tiny 36.7 79.5
ViT-Small 36.3 78.0
ViT-Base 30.7 81.7

(a) Model Architecture used for
transformer encoder backbone.

Tactile- Tac./Text Tac./Vis.
Text Loss % Acc. % Acc.
Enabled 36.3 78.0
Disabled 20.3 81.6

(b) Disable Tactile-Text Loss.
ImageBind-style training, lacking
direct supervision for tactile and
language alignment, reduces model
accuracy.

Tac./Text Tac./Vis.
Modality % Acc. % Acc.
All 36.3 78.0
−Vision 29.9 1.0
−Text 21.5 85.8

(c) Modality-Specific Training.
Contrastive losses across all modal-
ities improve performance.

Tac./Text Tac./Vis.
Contact % Acc. % Acc.
Contact 36.2 80.1
+ 10% N.C. 36.3 78.0

(d) Contact Data Mix. Adding
non-contact frames to the training
data does not significantly improve
performance.

Tac./Text Tac./Vis.
Prompting % Acc. % Acc.
Baseline 36.3 78.0
+ Prompt 37.7 78.7

(e) Prompting. TVL Perfor-
mance does not depend strongly on
prompt formatting.

Tac./Text Tac./Vis.
Dataset % Acc. % Acc.
SSVTP 19.2 8.0
HCT 38.4 74.4
TVL 36.3 78.0

(f) Training Dataset. Models
which are exposed to the HCT
dataset in training outperform
SSVTP-only models.

Table 2: Ablations and Sensitivity Analysis for the TVL tactile encoder. We report top-1 and top-5 tactile-text
and tactile-vision classification accuracy with ViT-Small. baseline indicates the default setting for training the
TVL tactile encoder, which is the best-performing model on the validation set unless noted otherwise. Bold
indicates the highest accuracy on the test set. Such discrepancy in performance is described in Appendix A.1.
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A model that is trained with a large sample of only GPT-4V labels should achieve the same perfor-249

mance as GPT-4V. Our results in Table 4 suggest that training on a small dataset of human-labeled250

vision-touch improves the model’s tactile-visual understanding. This difference is statistically251

significant at α = 0.05.252

Score p-value
(1-10) (d.f. = 401)

LLaVA-1.5 7B 3.64 2.32× 10−3

LLaVA-1.5 13B 3.55 1.30× 10−3

ViP-LLaVA 7B 2.72 4.45× 10−8

ViP-LLaVA 13B 4.10 3.76× 10−2

LLaMA-Adapter 2.56 7.826× 10−6

BLIP-2 Opt-6.7b 2.02 2.74× 10−9

InstructBLIP 7B 1.40 1.49× 10−13

InstructBLIP 13B 1.44 4.68× 10−14

GPT-4V 5.02 -

SSVTP-LLaMA 2.58 9.33× 10−6

TVL-LLaMA (ViT-Tiny) 6.09 2.65× 10−2

TVL-LLaMA (ViT-Small) 5.81 1.02× 10−1

TVL-LLaMA (ViT-Base) 6.16 1.67× 10−2

Table 3: TVL Benchmark Performance on SSVTP. We benchmarked TVL-LLaMA against existing VLMs
and SSVTP-LLaMA, and show here the performance on only the SSVTP dataset. We report p-values from
two-sided paired sample t-tests on each model’s scores against GPT-4V’s scores.

Score p-value
(1-10) (d.f. = 401)

LLaVA-1.5 7B 3.55 8.49× 10−8

LLaVA-1.5 13B 3.63 1.74× 10−7

ViP-LLaVA 7B 3.44 4.10× 10−11

ViP-LLaVA 13B 3.76 1.57× 10−5

LLaMA-Adapter 3.08 2.05× 10−13

BLIP-2 Opt-6.7b 2.72 1.25× 10−24

InstructBLIP 7B 1.30 8.02× 10−73

InstructBLIP 13B 1.21 9.74× 10−76

GPT-4V 4.42 -

SSVTP-LLaMA 3.67 3.24× 10−6

TVL-LLaMA (ViT-Tiny) 4.79 5.79× 10−4

TVL-LLaMA (ViT-Small) 4.77 2.64× 10−3

TVL-LLaMA (ViT-Base) 4.89 6.82× 10−5

Table 4: TVL Benchmark Performance on HCT. We benchmarked TVL-LLaMA against existing VLMs and
SSVTP-LLaMA, and show here the performance on only the HCT dataset. We report p-values from two-sided
paired sample t-tests on each model’s scores against GPT-4V’s scores.

A.3 Open Vocabulary Tactile Classification Full Result253

We present the result presented in ?? in Table 5 and Table 6 at different cosine similarity thresholds254

for synonyms. We find that while ViT-Small performs well on the SSVTP subset of the dataset, ViT-255

Tiny outperforms its larger counterparts (ViT-Small and ViT-Base) on the tactile-text classification256

task. However, for tactile-vision classification (Table 6), ViT-Base performs outperforms the smaller257

models. More insights are detailed in Appendix B.1.258
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Percentile SSVTP HCT TVL
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

0
ViT-Tiny 29.4% 71.7% 34.8% 70.1% 36.7% 70.3%

ViT-Small 42.4% 76.1% 36.5% 68.0% 36.3% 66.4%
ViT-Base 38.0% 69.6% 34.8% 65.6% 30.7% 63.6%

25
ViT-Tiny 3.3% 21.7% 7.2% 22.9% 4.6% 14.1%

ViT-Small 10.9% 33.7% 9.1% 21.5% 6.7% 19.5%
ViT-Base 8.7% 31.5% 5.9% 14.0% 4.4% 13.7%

50
ViT-Tiny 3.3% 19.6% 4.8% 17.8% 3.7% 11.8%

ViT-Small 10.9% 32.6% 6.6% 15.3% 5.9% 11.0%
ViT-Base 7.6% 28.3% 4.5% 9.8% 3.5% 11.0%

75
ViT-Tiny 3.3% 19.6% 4.1% 14.2% 3.7% 10.7%

ViT-Small 10.9% 28.3% 3.5% 7.9% 3.4% 10.2%
ViT-Base 7.6% 28.3% 3.5% 7.9% 3.4% 10.2%

Table 5: Effect of Model Architecture and Similarity Threshold ϕ on Tactile-Text Classification Accuracy. The
similarity thresholds ϕ for each percentile are 0.636 (0th), 0.859 (25th), 0.893 (50th), and 0.921 (75th).

SSVTP HCT TVL
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ViT-Tiny 34.8% 70.7% 85.3% 99.0% 79.5% 95.7%
ViT-Small 28.3% 69.6% 84.4% 98.9% 78.0% 95.2%
ViT-Base 34.8% 66.3% 87.8% 99.7% 81.7% 95.7%

Table 6: Effect of Tactile Encoder Model Architecture on Tactile-Vision Classification.

A.4 Additional Open Vocabulary Downstream Tasks259

In the tactile classification experiment in ??, the results suggest that the model can classify tactile260

inputs by the texture of surfaces. In this section, we add an experiment to perform object category261

classifications. For simplicity of this test, we perform binary classification of whether the touched262

surface is “fabric” or “plastic” (to answer the question of “identifying the object category”). Note that263

since the model binds to the CLIP latent space, we carry out the experiment in a zero-shot manner.264

We relabelled 50 instances in the test set with 20 as fabric and 30 as plastic. We then fed “fabric” and265

“plastic” into the CLIP text encoder to extract the latent to perform cosine-similarity calculation with266

the tactile latent extracted from the tactile observations. On this specific test, the ViT-Small version267

of the TVL tactile encoder achieved 82% classification accuracy. We hope future works can explore268

other potential downstream applications of the dataset and the learned tactile representations.269

B Training Details and Hyperparameters270

In this section, we offer more insights and details of the training process and the particular hyperpa-271

rameters.272

B.1 Overfitting to Pseudo-labels273

A core obstacle with leveraging pseudo-labels generated by GPT-4V (gpt-4-vision-preview) is that274

the logits are not provided for us to build uncertain estimates for the generated labels, which is usually275

required for prior works in computer vision that leverages pseudo-labels for model prediction (e.g.276

Lee et al. [19], Sohn et al. [30], Wang et al. [35]). This makes pseudo-labels noisy and challenging277

to fit for ViT-Small on the contact only dataset, even when 4K human labels are introduced (see278

Figure 3).279

In 3.1, we address this problem by letting 10% of the data be in contact. We sample 10% of the280

data uniformly at random without replacement at the start of the training. This prevents the model281

from overfitting on all three model sizes: (ViT-Tiny, ViT-Small, and ViT-Base). However, since the282

test set is all labeled by human annotators, the distribution shift leads to worse tactile-image, and283

tactile-language classification performance (observed in ??). As an ablation study, we also finetuned284

the ViT-Small trained only on in-contact data for tactile language generation. The test set performance285
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Figure 3: Overfitting is significant when all data is in contact. When 10% not in contact data is added, the
overfitting issue is addressed.

is 4.81, only very marginally lower than that obtained by the ViT-Small trained with not-in-contact286

data (4.89). Future works can look into how to scale with noisy inputs or leverage existing works on287

learning from a teacher model that does not give uncertain estimates.

Figure 4: While we find that the model scales on the dataset, the test set performance does not align with the
validation set performance. One potential cause of this is distribution shift: the validation set uses pseudo-labels
generated by GPT-4V, while the test set is human-labeled.

288

B.2 Ablation: Background Subtraction289

While we find that naively performing contrastive learning amongst tactile, vision, and language290

works for zero-shot classification, to further facilitate generalization across different tactile sensors291

used in data collection, a solution is to leverage the still background of tactile sensors (i.e. the readings292

from the sensor when it is not in contact). We preprocess the tactile observation by performing293

background subtraction, and normalize the input observations based on the post-processed dataset294

statistics. Empirically, we find that this method, when used jointly with not-in-contact data, improves295

classification accuracy and the downstream TVL-LLaMA’s performance (Table 7).

Tac./Text
% Acc

Tac./Vis
% Acc

TVL
Score

In-Contact Frames 36.2 80.1 4.81
+10% No-Contact 36.3 78.0 4.89

+ Background Subtract 42.3 78.9 5.06
Table 7: Effect of no-contact data and background subtraction during ViT-Small tactile encoder training on
classification accuracy and performance on the TVL benchmark.

296
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B.3 Ablation: (Zero-shot) Single Modality For Generation (Out of Distribution)297

Because we naively average the tactile latent and the image latent during the training of TVL-LLaMA,298

as a zero-shot experiment to see consistency between vision and tactile embeddings, we can at test299

time arbitrarily drop one of the vision or tactile modalities. We report the results in Table 8. While a300

larger encoder may be more expressive, we find that a larger tactile encoder results in worse zero-shot301

performance in this experimental setting, which aligns with Table 2a. Interestingly, background302

subtraction (in Appendix B.2) improves the zero-shot performance on tactile.

Zero-Shot
Tactile

Zero-Shot
Vision

Tactile
& Vision

TVL-LLaMA
(ViT-Tiny) 4.56 4.66 4.94

TVL-LLaMA
(ViT-Small) 3.50 4.81 4.89

TVL-LLaMA
(ViT-Base) 2.80 4.85 5.03

TVL-LLaMA
(ViT-Small)
+ Background Subtract

4.52 - 5.06

Table 8: Dropping one modality (out-of-distribution) zero shot experiments

303

B.4 Ablation: Finetuning v.s. Freezing the Language Model304

We add the experiment of just freezing the language model without LoRA fine-tuning. Interestingly,305

on the HCT test set, the frozen LLM with the trained encoders gives a score of 4.92, resulting in a306

marginal improvement compared to the score of a fine-tuned LLM of 4.89 (Table 1). This suggests307

that the vision and tactile modalities are already well aligned to the language space and further308

fine-tuning is unnecessary.309

B.5 Preprocessing310

The tactile observation is first zero-padded to have equal width and height, optionally background311

subtracted, normalized by the calculated data statistics, and resized the inputs to 224x224. The key312

differences with SSVTP are 1) the input is resized to 128x128, and 2) SSVTP does not perform313

normalization or background subtraction. The image observation follows the same center cropping314

procedure as SSVTP on the SSVTP dataset. On HCT, instead of the center crop, we start the crop315

from the top of the image but maintain the crop size. Note that this procedure is kept consistent when316

generating pseudo-labels from GPT-4V. Different from SSVTP, we use the statistics provided by317

OpenCLIP to normalize the post-crop observations. The specific statistics are provided in Table 9318

and Table 10.

Tactile Statistics Mean Std.

With Background
0.292
0.297
0.291

0.188
0.195
0.219

Background Subtracted
-0.008
-0.019
-0.018

0.045
0.044
0.053

Table 9: Tactile Normalization Statistics

319

B.6 TVL Tactile Encoder Hyperparameters320

All of ViT-Tiny, ViT-Small, and ViT-Base share the same hyperparameters (see Table 11). All321

experiments are run on a single NVIDIA A100 GPU.322
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Image Statistics Mean Std.

OpenCLIP Statistics
0.481
0.458
0.408

0.269
0.261
0.276

Table 10: RGB Normalization Statistics

Config Value
optimizer AdamW [25]

base learning rate 1.5e-4
learning rate schedule cosine decay [24]

batch size 256
weight decay 0.05

optimizer momentum β1, β2 = 0.9, 0.95 [5]
warm up epoch [13] 10

total epochs 200

RGB Augmentation

RandomHorizontalFlip,
ColorJitter,

RandomGrayscale,
GaussianBlur

Tactile Augmentation (Optional) Background Subtraction

Table 11: Encoder Pretraining Hyperparameters

B.7 TVL-LLaMA Hyperparameters323

We follow the hyperparameter setup in ImageBind-LLM [15]. Since the original experiments were324

conducted on 8 NVIDIA A100 GPUs, we use gradient accumulation of 2 for both pre-training and325

finetuning the model to fit the model on 4 NVIDIA A100 GPUs so that the batch size is maintained.326

We use the same data augmentation as in the encoder pretraining (Table 11).327

C Dataset328

C.1 Hardware329

Figure 5: Alternative perspectives of the sensor holder CAD model: face-down view (left) and exploded view
(right).

We design and 3D print a set of handheld, low-cost data collection devices for human subjects to330

carry around and collect data. As shown in Fig. 5, the hardware consists of a DIGIT tactile sensor and331

a Logitech BRIO camera, which are connected via USB to a portable computing device, such as a332

laptop. The angle and distance between the tactile sensor and the camera are adjustable, allowing the333

user to collect data from a variety of viewing angles and ranges. To ensure the utility of our dataset334
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for multimodal training, we always set the relative positions such that the tactile sensor and its point335

of contact with the object of interest are in view of the camera during each trajectory. The handle336

design was conceptualized in Autodesk Fusion 360 and printed on a Bambu Lab P1P 3D FDM printer.337

CAD files will be open-sourced.338

C.2 List of Prompts for Tactile Language Generation339

When finetuning our language model for tactile language generation, we formulate it as a visual340

instruction tuning problem [23]. We randomly select from the following set of semantically similar341

prompts as the question and treat the set of human labels as the answer. This serves to increase the342

diversity of data seen during training.343

This image gives tactile feelings of344

This image evokes a sense of345

This visual representation imparts a tactile sensation of346

This picture conveys a touchable quality of347

This image communicates a palpable feeling of348

This graphic suggests a tactile experience of349

This artwork manifests a tangible sensation of350

This visual elicits a haptic impression of351

This depiction gives rise to a tactile perception of352

This illustration induces a touch -sensitive feeling of353

This photo brings forth a tactile awareness of354

This image arouses a tactile familiarity of355

This snapshot renders a tactile essence of356

This visual stimulates a touch -based sensation of357

This portrayal invokes a tactile resonance of358

This image delivers a touch -oriented impression of359

This visual medium offers a tactile nuance of360

This rendering provides a tactile sense of361

This image yields a touch -felt experience of362

This composition reveals a tactile characteristic of363

This picture bestows a tactile attribute of364

This image imparts a sense of tactile365

This visual stimulates tactile sensations of366

This artwork hints at a tactile experience of367

This photo embodies a tactile quality of368

This depiction resonates with tactile feelings of369

This snapshot conveys tactile impressions of370

This illustration suggests a tactile nature of371

This rendering evokes tactile attributes of372

This graphic communicates a tactile essence of373

This visual piece reveals tactile characteristics of374

This image portrays tactile elements of375

This picture brings to mind tactile aspects of376

This visual representation offers tactile nuances of377

This composition provides tactile insights into378

This visual art form captures tactile features of379

This image projects tactile properties of380

This visual work hints at tactile textures of381

This image introduces tactile dimensions of382

This visual scene manifests tactile facets of383

This image presents tactile qualities of384

This image elucidates tactile attributes of385

C.3 Distribution of Vocabulary Words386

The list and counts of human labels and pseudo-labels in the TVL dataset are reproduced here in387

dictionary format (note that all typos are carried over from the dataset). A visual representation is388

provided in Figure 6.389

’smooth’: 14577, ’textured’: 12443, ’hard’: 10758, ’cool’: 10433, ’reflective’: 8643, ’soft’: 8415,390

’glossy’: 6416, ’cushioned’: 6011, ’rigid’: 5799, ’firm’: 5659, ’sleek’: 5628, ’uneven’: 5379, ’flat’:391
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Distribution of Tactile Descriptor Words in the TVL Dataset

Figure 6: Distribution of Words in the TVL Dataset: The TVL dataset contains 254 unique tactile descriptors,
ranging from common tactile descriptions (smooth, hard, firm) to unusual and optical descriptors. These less-
common adjectives include a small fraction of misspellings and non-tactile descriptors which were generated
by the VLM. The long-right-tailed distribution common in image classification [34] presents a challenge for
learning predictors on tactile-semantic data as well.

5343, ’fibrous’: 4825, ’plush’: 4534, ”: 4363, ’matte’: 4230, ’polished’: 4203, ’flexible’: 3553,392

’grainy’: 3513, ’solid’: 3337, ’warm’: 3227, ’woven’: 2559, ’fabric’: 2124, ’yielding’: 1908, ’rough’:393

1889, ’slippery’: 1683, ’slick’: 1587, ’rubbery’: 1553, ’coarse’: 1504, ’lined’: 1480, ’durable’:394

1362, ’pliable’: 1281, ’curved’: 1240, ’bumpy’: 1076, ’metallic’: 970, ’patterned’: 949, ’cloth-like’:395

889, ’resilient’: 785, ’abrasive’: 668, ’plastic’: 631, ’ridged’: 599, ’gritty’: 551, ’deformable’: 544,396

’compressible’: 517, ’synthetic’: 444, ’fuzzy’: 434, ’varnished’: 430, ’dimpled’: 423, ’wooden’:397

399, ’thin’: 337, ’irregular’: 311, ’splotchy’: 301, ’even’: 267, ’uniform’: 257, ’perforated’: 239,398

’granular’: 234, ’indistinct’: 230, ’plastic-like’: 220, ’grooved’: 204, ’paper-like’: 203, ’blurred’:399

191, ’sewn’: 183, ’elastic’: 179, ’contoured’: 173, ’shiny’: 165, ’blurry’: 159, ’level’: 159, ’taut’:400

149, ’grid-like’: 149, ’creased’: 145, ’porous’: 145, ’grippy’: 135, ’cushiony’: 132, ’speckled’: 126,401

’leather-like’: 120, ’grained’: 116, ’knitted’: 107, ’padded’: 99, ’worn’: 94, ’round’: 89, ’twisted’:402

77, ’supple’: 76, ’lightweight’: 76, ’dry’: 73, ’rugged’: 72, ’fabric-like’: 72, ’spongy’: 69, ’wired’:403

67, ’stiff’: 67, ’unclear’: 66, ’indented’: 66, ’dense’: 62, ’dark’: 61, ’iridescent’: 61, ’undefined’:404

59, ’knobby’: 55, ’grid-patterned’: 53, ’layered’: 52, ’resonant’: 51, ’fluffy’: 50, ’translucent’: 50,405

’soft-focus’: 49, ’absorbent’: 44, ’slightly textured’: 43, ’leathery’: 43, ’obscured’: 42, ’cylindrical’:406

42, ’wrinkly’: 41, ’unfocused’: 40, ’ribbed’: 39, ’rippled’: 39, ’thick’: 38, ’sturdy’: 36, ’striated’:407

36, ’hairy’: 34, ’hazy’: 33, ’embroidered’: 32, ’raised’: 30, ’cottony’: 30, ’colorful’: 29, ’slightly408

compressible’: 29, ’straight’: 28, ’silky’: 28, ’braided’: 28, ’straight-edged’: 28, ’overexposed’: 27,409

’angular’: 27, ’ethereal’: 27, ’glowing’: 26, ’lettered’: 25, ’tough’: 25, ’edged’: 25, ’rounded’: 25,410

’transparent’: 23, ’smeared’: 23, ’carpeted’: 23, ’stretchy’: 22, ’slightly squishy’: 22, ’fleshy’: 21,411

’ceramic’: 21, ’engraved’: 19, ’opaque’: 19, ’clothlike’: 19, ’bright’: 18, ’folded’: 17, ’striped’:412

17, ’embossed’: 17, ’brushed’: 17, ’mesh’: 16, ’stable’: 16, ’bendable’: 16, ’slightly bendable’: 16,413

’frayed’: 15, ’printed’: 15, ’vague’: 14, ’cardboard’: 14, ’clickable’: 14, ’organic’: 14, ’delicate’:414

14, ’undulating’: 14, ’clear’: 13, ’stringy’: 13, ’clicky’: 13, ’smooth edges’: 13, ’sticky’: 12, ’out-of-415

focus’: 12, ’lace’: 11, ’brittle’: 11, ’regular’: 10, ’open’: 10, ’continuous’: 10, ’muted’: 10, ’slightly416

abrasive’: 10, ’malleable’: 9, ’incised’: 9, ’motion-blurred’: 9, ’slightly warm’: 9, ’intricate’: 9,417

’obscure’: 9, ’laced’: 8, ’slightly curved’: 8, ’compliant’: 8, ’metal’: 7, ’sewed’: 7, ’pressed’: 7,418
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’flimsy’: 6, ’sandy’: 6, ’insulated’: 6, ’convex’: 6, ’sharp’: 4, ’crinkled’: 4, ’springy’: 3, ’complex’: 3,419

’grainy fabric’: 3, ’line’: 3, ’slightly gritty’: 3, ’consistent’: 2, ’loose’: 2, ’paper’: 2, ’fraying’: 2,420

’lustrous’: 2, ’spotty’: 2, ’light’: 2, ’bristly’: 2, ’woolen’: 2, ’wrinkled’: 2, ’griany’: 2, ’precise’: 2,421

’non-glossy’: 2, ’wavy’: 2, ’lacey’: 1, ’meshed’: 1, ’imprinted’: 1, ’flat smooth’: 1, ’sewn fabric’:422

1, ’shadow’: 1, ’bendy’: 1, ’rigit’: 1, ’jagged’: 1, ’flash’: 1, ’frabric’: 1, ’patterened’: 1, ’floor’: 1,423

’flawless’: 1, ’long’: 1, ’spolotchy’: 1, ’granulated’: 1, ’cloth’: 1, ’thready’: 1, ’patterend’: 1, ’smooth424

fabric’: 1, ’deformalbe’: 1, ’smmoth’: 1, ’wirey’: 1, ’fabric granular’: 1, ’graint’: 1, ’lined sewn’:425

1, ’smotth’: 1, ’wiry’: 1, ’torn’: 1, ’vauge’: 1, ’facrib’: 1, ’gariny’: 1, ’plain’: 1, ’intertwined’: 1,426

’smoth’: 1, ’stripped’: 1, ’ragged’: 1, ’denoisy’: 1, ’slightly rough’: 1, ’dull’: 1, ’interwoven’: 1,427

’slightly worn’: 1428

C.4 Prompting for Psuedo-Label Generation429

We use the following prompt with GPT-4V in order to label the images with tactile descriptions:430

1 Surface Type: [Specify the surface type , e.g., "metal ," "fabric "]431

2 Images: The first image is from a camera observing the tactile sensor432

(shiny , near the top of the image) and the surface. The second433

image is a cropped version of the first image that focuses on the434

contact patch.435

3 Example: For a smooth and cold surface , the description might be "436

slick , chilly , hard , unyielding , glossy ."437

4 Task: Based on these images , describe the possible tactile feelings of438

the contact patch using sensory adjectives. Limit your response439

up to five adjectives , separated by commas.440

C.5 Prompting GPT-4 for Evaluation441

We use the following prompt for TVL Benchmark:442

1 [User Question ]: {prompt}443

2 [Assistant Response ]: {assistant_response}444

3 [Correct Response ]: {correct_response}445

4446

5 We would like to request your feedback on the performance of an AI447

assistant in response to the user question displayed above.448

6 The user asks the question on observing an image. The assistant ’s449

response is followed by the correct response.450

7451

8 Please evaluate the assistant ’s response based on how closely it452

matches the correct response which describes tactile feelings.453

Please compare only the semantics of the answers. DO NOT consider454

grammatical errors in scoring the assistant. The assistant455

receives an overall score on a scale of 1 to 10, where a higher456

score indicates better overall performance.457

9458

10 Please first output a single line containing only one value indicating459

the score for the assistant.460

11461

12 In the subsequent line , please provide a comprehensive explanation of462

your evaluation , avoiding any potential bias.463

C.6 Improved Prompting Format464

To investigate the effect of the prompting format, we conduct reference-guided grading for evaluation.465

In addition, to mitigate the position bias mentioned in [33], we randomly shuffle the order of the466

agent’s response and human label on the test set. The prompt is adjusted to the following:467

1 [User Question ]: {prompt}468

2 {assistant_response or human_label}469

3 {human_label or assistant_response}470

4 We would like to request your feedback on the performance of an AI471

assistant in response to the user question displayed above.472
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5 The user asks the question on observing an image. The assistant ’s473

response is followed by the correct response.474

6 Please evaluate the assistant ’s response based on how closely it475

matches the correct response which describes tactile feelings.476

Please compare only the semantics of the answers. DO NOT consider477

grammatical errors in scoring the assistant. The assistant478

receives an overall score on a scale of 1 to 10, where a higher479

score indicates better overall performance. Please first output a480

single line containing only one value indicating the score for the481

assistant. In the subsequent line , please provide a comprehensive482

explanation of your evaluation , avoiding any potential bias.483

7 Example:484

8 [User Question ]: This image gives tactile feelings of?485

9 [Assistant Response ]: fabric , grainy.486

10 [Correct Response ]: coarse , fabric , deformable.487

11 9.5488

12 The assistant ’s response is very close to the correct response. Fabric489

and grainy are similar to coarse and fabric. The assistant ’s490

response is missing the word deformable , which is a minor error.491

13 Example:492

14 [User Question ]: This image gives tactile feelings of?493

15 [Assistant Response ]: flat , hard494

16 [Correct Response ]: soft , smooth , deformable495

17 1496

18 The assistant ’s response is not close to the correct response. Hard497

and flat are opposite to soft and smooth.498

We tested TVL-LLaMA (ViT-B) with the reformed prompt. The score achieved by the model on499

the prompt above is similar to the prompt mentioned in Appendix C.5 used for Table 1 (5.15 v.s.500

5.03) with a slightly smaller p-value (1.08e-8 v.s. 3.46e-6). We encourage future works to further501

investigate the effect of prompting on multimodal models.502

D Generation Examples503

We provide a few positive and negative samples of image-tactile pairs from our dataset and the504

language descriptions generated for them by our various baseline models.505
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