
Supplementary material for the manuscript “Implicit
Regularization in Stochastic Gradient Descent with momentum”

This appendix is organized in the following manner. In Section 1, we prove Theorem 5.1 for (SGD+M)
in the main paper by showing the following two parts:

• In Theorem 1.1 we prove that the local error between the continuous piecewise-differentiable trajectory
and the Heavy Ball momentum SGD in each iteration is O(h3). This Theorem depends on Lemma 1.3
which shows that higher order derivatives are bounded.

• Then in Theorem 1.4 we prove that the global error between the continuous trajectory and the Heavy-
ball momentum update is O(h2).

In Section 2, we prove Theorem 4.1 in the main paper for (GD+M) by showing that this is sub-case of
Theorem 5.1 (in the main paper) when the mini-batch loss Ek is the full-batch loss E for each of the piece-
wise differentiable trajectory in Corollary 2.1 (appendix). Finally, we presented the proof for Remark-5.2
and Remark-5.3 in Section 4 and Section 3.

1 Proof of Theorem 5.1
Throughout the appendix, ∥ · ∥ represents ℓ2 norm for vectors and matrices, and Frobenius norm for 3 or
4-dimensional tensors.

Theorem 1.1. [Bound on the local error] Let the loss for each mini-batch En be smooth and sufficiently
(4-times) differentiable, and its zeroth to fourth order derivatives are bounded, then in each iteration, the
Heavy Ball momentum SGD update

xn+1 = xn − h∇En(x
n) + β(xn − xn−1), n = 1, 2, ..., N

x1 = x0 − h∇E0(x
0)

x0 = x−1 = 0

(1.1)

is locally O(h3)-close to the flow of the following modified ODE when updating the nth mini-batch

x̃′(t) = −∇Gn(x̃(t))−An(x̃(t)), for tn ≤ t < tn+1 (1.2)

with tn = nh. Specifically, the following equality holds for each iteration

x̃(tn+1) = x̃(tn)− h∇En(x̃(tn)) + β(x̃(tn)− x̃(tn−1)) +O(h3). (1.3)

Here

Gn(x̃) =

n∑
k=0

βn−kEk(x̃), An(x̃) =
h

2

n∑
k=0

βn−kCk(x̃),

and Ck(x̃) = ∇2Gk(x̃)∇Gk(x̃) + β∇2Gk−1(x̃)∇Gk−1(x̃)) with initial condition C0(x) = ∇2G0(x̃)∇G0(x̃).

Proof. Before proceeding with the proof, we state that the continuous trajectory x̃(t) is differentiable in the
whole domain [0, T ] except at the grid points tn, n = 0, 1, ..., N , N = ⌊T

h ⌋. This is because in the interval
tn ≤ t < tn+1, the continuous trajectory is given by x̃′(t) = −∇Gn(x̃(t)) − An(x̃(t)), whereas in the the
interval tn−1 ≤ t < tn, the trajectory is defined by x̃′(t) = −∇Gn−1(x̃(t)) − An−1(x̃(t)). We notice the
following:
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• the right-hand side and the left-hand side derivatives of the trajectories at any boundary point tn are
not equal, i.e, x̃′(t+n ) ̸= x̃′(t−n ), n = 0, 1, ..., N . Here we define x̃′(t−0 ) = 0.

• based on Lemma 1.3, the norms of the first to third-order derivatives of the trajectory x̃(t), t ∈ [0, T ]
can be bounded by constants independent of h. Hence from 1.2 we can compute the left and right side
derivatives at tk (any boundary point ∀k = 1, 2, ..., n) as follows:

1. x̃′(t+n ) = −∇Gn(x̃(tn))−An(x̃(tn)) as it belongs to trajectory tn ≤ t < tn+1

2. x̃′′(t+n ) = ∇2Gn(x̃(tn))∇Gn(x̃(tn)) +O(h)

3. x̃′(t−n ) = −∇Gn−1(x̃(tn))−An−1(x̃(tn)) as it belongs to trajectory tn−1 ≤ t < tn

4. x̃′′(t−n ) = ∇2Gn−1(x̃(tn))∇Gn−1(x̃(tn)) +O(h)

As ∥x̃′′′(t)∥ is bounded by a constant (Lemma 1.3), the Taylor expansion of the trajectory x̃(t) is done at
the point tn on both sides:

x̃(tn+1) = x̃(tn) + x̃′(t+n )h+
h2

2
x̃′′(t+n ) +O(h3), (1.4)

x̃(tn) = x̃(tn−1) + hx̃′(t−n )−
h2

2
x̃′′(t−n ) +O(h3). (1.5)

Recall that the main objective of this theorem is to find how well the continuous trajectory x̃(t) satisfies the
H.B momentum update equation 1.1. Hence we plug x̃(tn) into 1.1 and examine the resulting error, which is
also known as the Local Truncation Error (LTE) in the numerical ODE literature. The calculation is carried
out as follows

x̃(tn+1)− x̃(tn)− β(x̃(tn)− x̃(tn−1))

= hx̃′(t+n ) +
h2

2
x̃′′(t+n )− β(hx̃′(t−n )−

h2

2
x̃′′(t−n )) +O(h3)

= − h∇Gn(x̃(tn))− hAn(x̃(tn)) +
h2

2
∇2Gn(x̃(tn))∇Gn(x̃(tn)) + βh∇Gn−1(x̃(tn)) + βhAn−1(x̃(tn))

+ β
h2

2
∇2Gn−1(x̃(tn))∇Gn−1(x̃(tn)) +O(h3)

= − h (∇Gn(x̃(tn))− β∇Gn−1(x̃(tn)))︸ ︷︷ ︸
∇En(x̃(tn))

−h (An(x̃(tn))− βAn−1(x̃(tn)))︸ ︷︷ ︸
h
2 Cn

+
h2

2
(∇2Gn(x̃(tn))∇Gn(x̃(tn)) + β∇2Gn−1(x̃(tn))∇Gn−1(x̃(tn)))︸ ︷︷ ︸

Cn(by definition)

+O(h3)

= − h∇En(x̃(tn))− h
h

2
Cn(x̃(tn)) +

h2

2
Cn(x̃(tn)) +O(h3)

= − h∇En(x̃(tn)) +O(h3).

The equation has been simplified using the following two identities which is easy to verify:

∇Gn(x̃(tn))− β∇Gn−1(x̃(tn))) = En(x̃(tn))

and
An(x̃(tn))− βAn−1(x̃(tn)) =

h

2
Cn.

Hence we proved that the solution of the continuous trajectory satisfies the discrete H.B. momentum updates
up to an error of order O(h3).
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Corollary 1.2. The piecewise ODE (1.1) in Theorem 1.1, can be equivalently written as:

x̃′(t) = −∇Ên(x̃(t)) for tn ≤ t < tn+1,

where, Ên(x̃) = Gn(x̃) +
h

4
(∥∇Gn(x̃)∥2 + 2

n−1∑
r=0

βn−r∥∇Gr(x̃)∥2),
(1.6)

which is what we used in the statement of Theorem 5.1 in the main paper.

Proof. By the definition of the ODE in Theorem 1.1, we can see

An(x̃(t)) =
h

2

n∑
k=1

βn−k
(
∇2Gk(x̃)∇Gk(x̃) + β∇2Gk−1(x̃)∇Gk−1(x̃)

)
+

h

2
βn∇2G0(x̃)∇Gk(x̃)

=
h

2

n∑
k=0

βn−k∇2Gk(x̃(t))∇Gk(x̃(t)) +
h

2

n∑
k=1

βn−k+1∇2Gk−1(x̃(t))∇Gk−1(x̃(t))

=
h

2
∇2Gn(x̃(t))∇Gn(x̃(t)) + h

n−1∑
k=0

βn−k∇2Gk(x̃(t))∇Gk(x̃(t)).

Therefore we can rewrite (1.2) as

x̃′(t) = −∇Gn(x̃(t))−
h

4
∇

(
∥∇Gn(x̃(t))∥2 + 2

n−1∑
k=0

βn−k∥∇Gk(x̃(t))∥2
)

:= ∇Ên(x̃(t)), (1.7)

where Ên(x̃) = Gn(x̃) +
h
4

(
∥∇Gn(x̃)∥2 + 2

∑n−1
k=0 β

n−k∥∇Gk(x̃)∥2
)
.

Lemma 1.3. Under the assumption of Theorem 1.1, let x̃(t) be defined as in (1.2), then the first to third
order derivatives of x̃ with respect to time are bounded, i.e., there exists constants c1, c2, c3 such that
∥x̃′(t)∥ ≤ c1, ∥x̃′′(t)∥ ≤ c2, ∥x̃′′′(t)∥ ≤ c3, for all t ∈ [0, T ].

Proof. Although the continuous trajectory x̃(t) is defined piece-wise, with the a step-size h, we want to
obtain a constant (i.e., h-independent) upper bound for its derivatives so as to faithfully truncate the
Taylor-expansion (1.4) to get an error of O(h3). By the assumption of Theorem 1.1, we have boundedness
of ∥∇(α)Ek(x)∥ for 0 ≤ α ≤ 4, i.e., with some constant c0, for all 1 ≤ n ≤ N ,

sup ∥∇(α)En(x)∥ ≤ c0, 0 ≤ α ≤ 4,

where ∥ · ∥ denotes the Frobenius norm of the tensors.
Then we can immediately bound the derivatives of Gk and Ck, for any k, x, and 0 ≤ α ≤ 4,

∥∇(α)Gk(x̃)∥ =

∥∥∥∥∥
n∑

k=0

βn−k∇(α)Ek(x̃)

∥∥∥∥∥ ≤
n∑

k=0

βn−k∥∇(α)Ek(x̃)∥ ≤ c0
1− β

, (1.8)

∥Ck(x̃)∥ ≤ ∥∇2Gk(x̃)∥∥∇Gk(x̃)∥+ β∥∇2Gk−1(x̃)∥∥∇Gk−1(x̃)∥ ≤ 1 + β

(1− β)2
c20. (1.9)

Now, using (1.8) and (1.9) and the boundedness of h (i.e., h ≤ T ), we can show that for some constant c1,

∥x̃′(t)∥ ≤ ∥Gn(x̃(t))∥+
h

2

∥∥∥∥∥
n∑

k=0

βn−kCk(x̃)

∥∥∥∥∥
≤

n∑
k=0

βn−k max
x̃,k

∥Ek(x̃)∥+
h

2

n∑
k=0

βn−k max
x̃,k

∥Ck(x̃)∥

≤ c0
(1− β)2

+
c20h(1 + β)

2(1− β)3
:= c1.

(1.10)
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Next we show that ∥x̃′′(t)∥ is uniformly bounded,

x̃′′(t) = −
n∑

k=0

βn−k∇2Ek(x̃(t))x̃
′(t)

− h

2

n∑
k=0

βn−k
(
∇3Gk(x̃(t))[x̃

′(t)]∇Gk(x̃(t)) +∇2Gk(x̃(t))∇2Gk(x̃(t))x̃
′(t)
)︸ ︷︷ ︸

(I)

− h

2
β

n∑
k=0

βn−k
(
∇3Gk−1(x̃(t))[x̃

′(t)]∇Gk−1(x̃(t)) +∇2Gk−1(x̃(t))∇2Gk−1(x̃(t))x̃
′(t)
)︸ ︷︷ ︸

(II)

.

Hence we have:

∥x̃′′(t)∥ ≤ ∥
n∑

k=0

βn−k∇2Ek(x̃(t))x̃
′(t)∥+ h

2(1− β)
∥(I)∥+ hβ

2(1− β)
∥(II)∥. (1.11)

Individually examining ∥(I)∥ and ∥(II)∥, we have

∥(I)∥ ≤ ∥∇3Gk(x̃(t))[x̃
′(t)]∇Gk(x̃(t))∥+ ∥∇2Gk(x̃(t))∇2Gk(x̃(t))x̃

′(t)∥
≤ ∥∇3Gk(x̃(t))∥∥x̃′(t)∥∥∇Gk(x̃(t))∥+ ∥∇2Gk(x̃(t))∥2∥x̃′(t)∥ ≤ 2c20c1.

Here in the last inequality we used the fact that ∥x̃′∥ ≤ c1 as in (1.10). Similarly, ∥(II)∥ ≤ 2c20c1. Putting
these inequalities into 1.11, we have for some constant c2:

∥x̃′′(t)∥ ≤ ∥
n∑

k=0

βn−k∇2Ek(x̃(t))x̃
′(t)∥+ h

2(1− β)
∥(I)∥+ hβ

2(1− β)
∥(II)∥ ≤ c2.

Finally, we bound the thrid order derivative

x̃′′′(t) = −
n∑

k=0

βn−k∇3Ek(x̃(t))[x̃
′(t)]x̃′(t)−

n∑
k=0

βn−k∇2Ek(x̃(t))x̃
′′(t)

− h

2

n∑
k=0

βn−k d(I)

dt
− h

2
β

n∑
k=0

βn−k d(II)

dt
.

Bounding the norm on x̃′′′(t) based on this expression is straightforward.

Theorem 1.4 (Bound on the global error). Let x̃(t) be the solution to (1.2) and assume the conditions in
Theorem 1.1 hold. Then the global error ∥en∥ = ∥x̃(tn)− xn∥ is of order O(h2), where x̃(tn) is the solution
of the ODE in (1.2) at the nth boundary point and xn is the discrete H.B Momentum update.

Proof. In Theorem 1.1, we already showed that the solution of the piecewise ODE x̃(tn) satisfies

x̃(tn+1) = x̃(tn)− h∇En(x̃(tn)) + β(x̃(tn)− x̃(tn−1)) +O(h3), (1.12)

and by definition, the discrete H.B momentum update satisfy

xn+1 = xn − h∇Ek(x
n) + β(xn − xn−1). (1.13)

Let the error at the nth update is denoted by en = x̃(tn)− xn, then subtracting the two updates, we have:

en+1 = en + β(en − en−1)− h (∇En(x
n)−∇En(x̃(tn)))︸ ︷︷ ︸

M

+O(h3). (1.14)
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By the assumption in Theorem 1.1, there exists some constant c1 such that ∥∇2En∥∞ := maxx ∥∇2En(x)∥ ≤
c1. Then M can be bounded by

∥M∥ = ∥∇En(x
n)−∇En(x̃(tn))∥ ≤ ∥∇2En∥∞∥en∥ ≤ c1∥en∥. (1.15)

Now taking the norm on en+1 − en and applying triangular inequality on the right hand side of (1.14),
we have for some constant c:

∥en+1 − en∥ ≤ β∥en − en−1∥+ h∥M∥2 + ch3 ≤ β∥en − en−1∥+ hc1∥en∥+ ch3. (1.16)

Defining three quantities d1 = c
c1

, d2 = 2c1
1−β , and d3 = 2c

1−β , now we prove the following statement using
principle of induction

∥en∥ ≤ d1e
d2hnh2, ∥en+1 − en∥ ≤ d3e

d2hnh3, n ≥ 0. (1.17)

We first show that base case. When n = 0, by definition we have ∥e0∥ = ∥x̃(0) − x0∥ = 0. And by (1.14),
∥e1 − e0∥ ≤ ch3 < d3h

3, hence the induction base holds.
Assume the proposition(1.17) holds for (n − 1), that is, ∥en−1∥ ≤ d1e

d2h(n−1)h2, and ∥en − en−1∥ ≤
d3e

d2h(n−1)h3, then in the nth case,

∥en∥ ≤ ∥en−1∥+ ∥en − en−1∥
≤ d1e

d2h(n−1)h2 + d3e
d2h(n−1)h3

= d1(1 +
d3h

d1
)ed2h(n−1)h2 = d1(1 + d2h)e

d2h(n−1)h2

≤ d1e
d2hnh2

and by (1.16),

∥en+1 − en∥ ≤ βd3e
d2h(n−1)h3 + hc1d1e

d2hnh2 + ch3

≤ d3 (
d1c1
d3

+ β +
c

d3
)︸ ︷︷ ︸

=1

ed2hnh3 = d3e
d2hnh3.

Then we have proven that the claim (1.17) also holds for the nth case.

2 Proof of Theorem 4.1 (IGR-M)
Corollary 2.1. Let the loss E for full-batch gradient descent be smooth and 4-times differentiable, then
GD-momentum update

xn+1 = xn − h∇E(xn) + β(xn − xn−1), n = 1, 2, ..., N

is O(h2) close to the flow of the piecewise ODE

x̃′(t) = − 1

1− β
∇Ên(x̃(t)), t ∈ [tn, tn+1], (2.1)

where the modified loss is given as

Ên(x̃(t)) = (1− βn+1)∇E(x(t)) +
h

2(1− β)

[
(1 + β)

(1− β)
(1− β2n+2)− 4(n+ 1)βn+1

]
∇2E(x(t))∇E(x(t)).

For later intervals when k ≫ log h
log β (we only ruled out a very small number of the initial intervals, as this lower

bound grows very slowly (logarithmically) as h → 0), the modified loss and the ODE both become independent
of k, that is, the the later GD+momentum updates xn is O(h2) close to x̃(tn) which is the solution to

x̃′(t) = − 1

1− β
∇Ê(x̃(t)),

with Ê(x̃(t)) = E(x̃(t)) + (1+β)h
4(1−β)2 ∥∇E(x̃(t))∥2.
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Proof. Corollary (2.1) is a special case of Theorem 1.1, and the result straightforwardly follows by setting
En = E for all 1 ≤ n ≤ N .

3 Proof of Remark 5.2
Theorem 3.1. The expectation of the IGRM for (SGD+M) taken over the draw of random batches is
E(IGRMs) =

h(1+β)
4(1−β)3 ∥∇E(x̃(t))∥2+ h

4(1−β)2E(∥∇Ej(x̃(t))−∇E(x̃(t))∥2). This expected IGR for (SGD+M)
is greater than that of the expected IGR for (SGD) taken with respect to the draw of the batches.

Proof. To avoid confusion of notation use, we use E as the symbol for expectation and E as the loss-function.
Here the operator E denotes the expectation is with respect to the draw of all the random batches. Recalling
from (1.7), the implicit regularizer while updating the nth mini-batch was of the form:

IGRMs =
h

4

(
∥∇Gn(x̃(t))∥2 + 2

n−1∑
k=0

βn−k∥∇Gk(x̃(t))∥2
)
,

E(IGRMs) =
h

4

(
E(∥∇Gn(x̃(t))∥2) + 2

n−1∑
k=0

βn−kE(∥∇Gk(x̃(t))∥2)

)
. (3.1)

Here as the expectation E is taken over the draw of random batches, we first derive E(∥∇Gn(x̃)∥2) as follows

E
(
∥∇Gn(x̃(t))∥2

)
= E

(( n∑
k=0

βn−k∇Ek(x̃(t))
)T ( n∑

r=0

βn−r∇Ek(x̃(t))
))

=

n∑
i=0

β2n−2iE
(
∥∇Ei(x̃(t))∥2

)
+

n∑
k=0

n∑
r=0,k ̸=r

β2n−r−kE
(
∇Ek(x̃(t))

T∇Er(x̃(t))
)

=

n∑
i=0

β2n−2iE(∥∇Ei(x̃(ti))∥2) +
n∑

k=0

n∑
r=0,k ̸=r

β2n−r−kE
(
∇Ek(x̃(tk))

T∇Er(x̃(tr))
)

︸ ︷︷ ︸
III

+O(h).

(3.2)

We obtain the last step by replacing the variables x̃(t) by x̃(ti), x̃(tk) and x̃(tr), respectively. We note that
changing from x̃(t) to x̃(ti) introduces an O(h) error from Taylor series. This O(h) error gets multiplied
with the coefficient h

4 in front of the regularizer. This overall O(h2) error does not affect the regularizer
because it is of O(h).

Note that the random selection of ith mini-batch Ei is independent of x̃(ti), we calculate III as

III =

n∑
k=0

n∑
r=0,k ̸=r

β2n−r−k∇E(x̃(tk))
T∇E(x̃(tr)).

Recall that the full-batch gradient loss is defined as ∇E(x̃) = 1
M

∑M
j=1 ∇E(j)(x̃), where E(j) is the jth

mini-batch as in (7) of the main paper. The summands in the first term in (3.2) become

E(∥∇Ei(x̃(ti))∥2) = ∥∇E(x̃(ti))∥2 + E∥∇Ei(x̃(ti))−∇E(x̃(ti))∥2. (3.3)
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We can calculate E(∥∇Gn(x̃(t))∥2) as follows

E(∥∇Gn(x̃(t))∥2)

=

n∑
i=0

β2n−2iE(∥∇Ei(x̃(ti))∥2) +
n∑

k=0

n∑
r=0,k ̸=r

β2n−r−k∇E(x̃(tk))
T∇E(x̃(tr)) +O(h)

=

n∑
i=0

β2n−2i
(
∥∇E(x̃(ti))∥2 + E(∥∇Ei(x̃(ti))−∇E(x̃(ti))∥2)

)
+

n∑
k=0

n∑
r=0,k ̸=r

β2n−r−k∇E(x̃(tk))
T∇E(x̃(tr)) +O(h)

=

n∑
k=0

n∑
r=0

β2n−r−k∇E(x̃(tk))
T∇E(x̃(tr)) +

n∑
i=0

β2n−2iE(∥∇Ei(x̃(ti))−∇E(x̃(ti))∥2) +O(h)

=

∥∥∥∥∥
n∑

k=0

βn−k∇E(x̃(t))

∥∥∥∥∥
2

+

n∑
i=0

β2n−2iE
(
∥∇Ei(x̃(t))−∇E(x̃(t))∥2

)
+O(h).

=

(
1− βn+1

1− β

)2

∥∇E(x̃(t))∥2 + 1− β2n+2

1− β2
E
(
∥∇Ei(x̃(t))−∇E(x̃(t))∥2

)
+O(h).

We write the second to last line similarly as before because changing x̃(tk) to x̃(t) only introduces O(h)
error.

Similarly for any such k, we will have

E(∥∇Gk(x̃(t))∥2) =
(
1− βk+1

1− β

)2

∥∇E(x̃(t))∥2 + 1− β2k+2

1− β2
E(∥∇Ei(x̃(t))−∇E(x̃(t))∥2) +O(h).

Putting the expression for E(∥∇Gn(x̃(t))∥2) and E(∥∇Gk(x̃(t))∥2) into 3.1, we get:

E(IGRMs) (3.4)

≈ h

4

(
E(∥∇Gn(x̃(t))∥2) + 2

n−1∑
k=0

βn−kE(∥∇Gk(x̃(t))∥2)

)
(3.5)

=
h

4
∥∇E(x̃(t))∥2

((
1− βn+1

1− β

)2

+ 2

n−1∑
k=0

βn−k

(
1− βk+1

1− β

)2
)

(3.6)

+
h

4
E(∥∇Ei(x̃(t))−∇E(x̃(t))∥2)

(
1− β2n+2

1− β2
+ 2

n−1∑
k=0

βn−k 1− β2k+2

1− β2

)
+O(h2) (3.7)

For large number of iterations n, (3.7) reduces to

E(IGRMs) =
h(1 + β)

4(1− β)3
∥∇E(x̃(t))∥2 + h

4(1− β)2
E(∥∇Ei(x̃(t))−∇E(x̃(t))∥2).

4 Proof of Remark 5.3
Theorem 4.1. Let C be the covariance matrix of the driving force of (SGD) at the kth iteration ,i.e,
cov(∇Ek(x)) = C ∈ Rp×p then the covariance matrix for the driving force for (SGD+M) (with adjusted
learning rate) is cov((1− β)∇Gk(x)) =

1−β
1+βC. Here the random vectors Ek and Gk are evaluated at a fixed

point x.
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Proof. Assuming the stochastic gradient ∇Ek(x) is sampled from a distribution with i.i.d entries where the
mean is the full-batch gradient ∇E(x) and the covariance matrix is C. Then by definition,

E((1− β)∇Gk(x)) = (1− β)

k∑
i=0

βk−iE(∇Ei(x)) = (1− βk+1)∇E(x) ≈ ∇E(x).

From definition of C we have

C = E((∇Ek(x)−∇E(x))(∇Ek(x)−∇E(x))T ) = E(∇Ek(x)∇Ek(x)
T )−∇E(x)∇E(x)T . (4.1)

Then the covariance matrix for (SGD+M) is :

cov((1− β)Gk(x))

= E(((1− β)∇Gk(x)− E((1− β)∇Gk(x)))((1− β)∇Gk(x)− E((1− β)∇Gk(x))
T )

= E(∇Gk(x)∇Gk(x)
T )(1− β)2 − E((1− β)∇Gk(x))E((1− β)∇Gk(x))

T

≈ E(∇Gk(x)∇Gk(x)
T )(1− β)2 −∇E(x)∇E(x)T . (4.2)

Now let’s evaluate E(∇Gk(x)∇Gk(x)
T ) as follows:

E(∇Gk(x)∇Gk(x)
T )

= E((
n∑

k=0

βn−k∇Ek(x))(

n∑
k=0

βn−k∇Ek(x))
T )

=

n∑
p=0

β2n−2p E(∇Ep(x)∇Ep(x)
T )︸ ︷︷ ︸

C+∇E(x)∇E(x)T from 4.1

+

n∑
i=0

n∑
j=0,j ̸=i

β2n−i−j E(∇Ei(x)∇Ej(x)
T )︸ ︷︷ ︸

∇E(x)∇E(x)T

= (C+∇E(x)∇E(x)T )
(1− β2k+2)

(1− β2)
+∇E(x)∇E(x)T [(

1− βk+1

1− β
)2 − 1− β2k+2

1− β2
]

=
1− β2k+2

1− β2
C+ (

1− βk+1

1− β
)2∇E(x)∇E(x)T . (4.3)

Putting 4.3 into 4.2, we have:

cov((1− β)Gk(x))

≈ E(∇Gk(x)∇Gk(x)
T )(1− β)2 −∇E(x)∇E(x)T

=

(
1− β2k+2

1− β2
C+ (

1− βk+1

1− β
)2∇E(x)∇E(x)T

)
(1− β)2 −∇E(x)∇E(x)T

=
(1− β2k+2)(1− β)2

1− β2
C− βk+1(2− βk+1)∇E(x)∇E(x)T .

For a high enough iteration k, it reduces to:

cov((1− β)Gk(x)) =
(1− β)2

1− β2
C =

1− β

1 + β
C.
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5 Additional Experiments
We delay the result for CIFAR-100 classification here in the appendix. The final test accuracy is reported
in Table-1 in the manuscript.

5.1 CIFAR-100 classification results

(a) WideresNet-16-8 (b) ResNet-18

(c) ResNet-50 (d) DenseNet-121

Figure 1: Classification results for CIFAR-100 dataset with various network architectures with combinations of (h, β)
chosen such that the effective learning rate h

(1−β)
remains same. In all of the experiments, external regularization

like weight-decay, l.r scheduler, dropout,label-smoothing are kept off (except Batch-normalization). The results have
been averaged over 3 random seeds having different initializations

.

5.2 Effect of learning-rate scheduler
Learning rate schedulers are a common practice in training classification networks hence exploring the effect
of IGR and IGR-M in schedulers is important. In the experiment, we train a Resnet-18 and a Resnet-50
network to classify CIFAR-10 dataset to compare the performance of (SGD) and (SGD+M) under the effect
of learning rate scheduler.

We observe that just like our previous experiments comparing (SGD) and (SGD+M), the test accuracy is
higher with increasing β. We attributed this effect due to the stronger implicit regularization for momentum
than plain SGD. However, after the effect of scheduler, the learning rate is decreased by a factor of 10. This
diminishes the effect of the implicit regularizer for both SGD and SGD+M as IGR ∝ h. However, from
empirical observations (Fig-2) the difference in test accuracy of (SGD) and (SGD+M) (near convergence)
still exists but may not be in a pronounced way as the initial iterations. We believe this is because during
the earlier iterations, the significantly stronger IGR for (SGD+M) guides it’s trajectory through flatter sub-
manifolds than that of (SGD). The effect is prominent enough that even after scheduler is activated (also
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(a) Resnet-18 (b) Resnet-50

Figure 2: Classification result of CIFAR-10 with step scheduler ( 1
10

) activated at epoch =250 with various β but the
same effective learning rate h

(1−β)
.

near convergence), (SGD+M) still has a slightly higher test accuracy than (SGD).

6 In the stable regime, convergence-rate of (GD+M) is 1
(1−β) larger

than (GD) using classical convergence analysis
In this section, we show that when (GD) with a learning-rate h and (GD+M) with an effective learning rate

h
(1−β) both fall inside the stable regime of (GD),then the convergence-rate of (GD+M) is 1

(1−β) larger than
(GD).

Classical convergence of (GD) and (GD+M) is considered in a locally quadratic surface. On a standard
quadratic, the minimization is minx f(x) =

1
2x

TAx− bTx+ c, where A is positive semi-definite matrix with
eigen-values in [µ,L]. A simple change of variable would mean doing a minimization of the form minx

1
2x

TΣx,
where Σ contains the eigenvalues of A on the diagonal. Hence ∇f(x) = Σx and ∇2f(x) = Σ. Furthermore,
the condition number of the objective function is denoted as κ = L

µ .
For Heavy-Ball method, the iterates follow:

xk+1 = xk − h∇f(xk) + β(xk − xk−1) (6.1)

On a locally quadratic, the iterates roughly follow

xk+1 = xk − hΣx+ β(xk − xk−1) = ((1 + β)I− hΣ)xk − βxk−1 (6.2)

With slight rearrangement, which could be written as :

xk+1

xk

 =

(1 + β)I− hΣ −βI

I 0

 xk

xk−1

 (6.3)

Denoting yk =

xk+1

xk

 and T =

(1 + β)I− hΣ −βI

I 0

, the norm of ∥yk∥2 is derived as follows:

∥yk∥ = ∥Tyk−1∥ = ∥Tky0∥ ≤ ∥Tk∥2∥y0∥ ≤ (ρ(T))kκ(V )∥y0∥ (6.4)
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where ρ(T) is the spectral radius of T and T has an eigen-decomposition T = V DV −1, κ(V ) being the

condition number of V . T is permutation-similar to the block-diagonal matrix T =


T1 0 . . 0

0 T2 . . 0

. . . . .

0 0 . . Tn

,

where Tj =

1 + β − αλj −β

1 0

 is a 2×2 matrix for j = 1, 2..n. Letting rj denote the eigen-values for each

block matrix Tj and would satisfy

rj =

{
1
2 ((1 + β − αλj)±

√
(1 + β − hλj)2 − 4β), if (1 + β − hλj)

2 − 4β = ∆j > 0
1
2 ((1 + β − αλj)± i

√
|∆j |, otherwise

where i =
√
−1. Due

to the block-matrix structure of T, the convergence factor ρ(T) is determined by the largest vectors among
all the block matrices Tj , i.e, ρ(T) = maxj rj = max r1, rn.

Now depending upon the 4 conditions ∆j ≤ 0 ≡ β ≥ (1 −
√
hλj), ∆j > 0 ≡ β ≤ (1 −

√
hλj) ,

|1−
√
hµ| < |1−

√
hL| and |1−

√
hµ| > |1−

√
hL|, we have four sub-cases to determine ρ(T):

1. If 0 < h ≤ ( 2√
L+

√
µ
)2 and β ≥ (1−

√
hµ)2

2. If 0 < h ≤ ( 2√
L+

√
µ
)2 and β < (1−

√
hµ)2

3. h > ( 2√
L+

√
µ
)2 and β ≥ (

√
hL− 1)2

4. h > ( 2√
L+

√
µ
)2 and β < (

√
hL− 1)2

For a small h and fixed β, satisfies condition-2 and the effective learning rate lies in the stability regime
of GD. Under this particular condition (2), we have ∆1 > 0, hence the spectral radius ρ(T) becomes (by
taking the larger rj) :

ρ(GD+M) =
1

2
(1 + β − hµ+

√
(1 + β − hµ)2 − 4β) [considering the larger term] (6.5)

=
1

2
(1 + β − hµ+

√
(1− β)2 − 2hµ(1 + β) + h2µ2) (6.6)

=
1

2
(1 + β − hµ+ (1− β)(

√
1− 2hµ(1 + β) + h2µ2

(1− β)2︸ ︷︷ ︸
1− 1

2
2hµ(1+β)

(1−β)2
+O(h2)

−1) + (1− β)) (6.7)

≈ 1

2
(1 + β − hµ− hµ(1 + β)

(1− β)
+ (1− β)) [small h approximation] (6.8)

= 1− hµ

(1− β)
(6.9)

Similarly, for (GD) with learning-rate h̃ minimizing a locally quadratic function, using the classical
convergence approach, we have ∥xk∥ ≤ ρk

h̃
∥x0∥ where ρh̃ = max(|1− h̃µ|, |1− h̃L|). Hence for a small enough

h i.e,( 0 < h̃ ≤ 2
L+µ ), we have for the convergence rate for GD to be :

ρGD = 1− h̃µ (6.10)

Putting h̃ = h
(1−β) , we see that ρ(GD+M) ≈ ρ(GD). Which means if we use a learning rate 1

(1−β) times
larger for GD, it will match the convergence rate of (GD+M).

Equivalently under the same learning rate for (GD) and (GD+M) (say h), the convergence rate of
(GD+M) is 1

(1−β) times larger than that of (GD),i.e, ρ(GD+M) ≈ 1
(1−β)ρ

(GD).
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7 Role of variance in mini-batch gradients in finding better minima
Losses of deep neural network are usually highly non-convex containing a lot of local minima. A good
optimizer should have the ability of escaping local and bad (i.e., sharp) minimizers to settle for a good/flat
minimum. In SGD, the mini-batch gradient can be thought of as a noisy version of the full-batch gradient:
∇Ei(x) = ∇E(x)+ηi. So, when an optimizer is stuck in a valley having a bad local minima, the randomness
in the noisy gradient ∇Ei(x) provides a possibility of escaping the valley (having a bad local minima). Very
recently, this intuition has been mathematically formalized by Ibayashi & Imaizumi (2021). In their Theorem
2, the authors showed that the escape efficiency (reciprocal of mean exit time) of SGD is ∝ exp(−B

h∆Eλ
− 1

2
max),

where B, h, ∆E and λmax denote batch-size, learning rate, depth of minima and the largest eigenvalue of
the Hessian, respectively. In short, a smaller batch-size (B) and a larger learning rate are crucial to escaping
bad local minima.

8 IGR-M in 2D model with non-linear (sigmoid) activation
Beyond the linear case in Section-4.1 of the manuscript, now we consider a 2D nonlinear model that has
a Sigmoid activation function to explore the effect of IGR-M. The loss function E is minimized using two
learnable parameters (w1, w2) but with a sigmoid layer in-between. Here the optimization problem is as
follows:

(ŵ1, ŵ2) = argmin
w1,w2

1

2
(y − w1σ(w2x))

2 ≡ argmin
w1,w2

1

2

(
y − w1

1 + e−w2x

)2

:= E(w1, w2)

where σ is the Sigmoid activation function. The norm of the gradient has the following expression in this
case:

∥∇E∥2 =

∣∣∣∣ ∂E∂w1

∣∣∣∣2 + ∣∣∣∣ ∂E∂w2

∣∣∣∣2 =

(
1

(1 + e−w2x)2
+

w2
1x

2e−2w2x

(1 + e−w2x)4

)(
y − w1

1 + e−w2x

)2

.

Figure 3: Trajectories for (GD) and (GD+M) for various β but
with the same effective learning rate h

(1−β) . With increasing β,
the trajectory becomes closer to the gradient flow of the implicit
regularizer (solid back line), hence supporting our theory. The
background color denotes the magnitude ∥∇E∥22

The dashed black curve plots global
minima given by the equation w2 =

− log(
w1
y −1)

x . Unlike the linear case,
(where the IGR was proportional to the
norm of the weights w1 and w2), here the
IGR ∥∇E∥2 has a more complicated level
set (Figure 3. So, to help understand the
effect of IGR-M, we plot two reference
curves, one is the dark blue curve that
represents the gradient flow for the orig-
inal loss function, given as

x′(t) = −∇E(x(t)).

where x = [w1, w2]
T . The other is the

solid black curve that shows the gradient
flow for implicit regularizer ∥∇E∥2 given
as:

x′(t) = −∇∥∇E(x(t))∥22.

A method with a stronger IGR would
have a trajectory closer to the solid black
curve. So, we plot the trajectories of
(GD) (β = 0) and (GD+M) with β =
0.5, 0.8, and 0.9, with the same initialization (w1 = 6, w2 = 2). The effective learning-rate is kept the same
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for all the trajectories which equals the learning rate for GD, i.e., h
1−β = 0.01. We see how the trajectory

for (GD+M) is closer to the gradient flow for implicit regularizer (the solid black curve) than that of (GD).
More explicitly, we observe that all the trajectories converge to the curve of global minima. However, with a
larger β, the trajectory becomes closer to the gradient flow minimizing ∥∇E∥2 (the solid black curve). This
observation agrees with our theorem which states the modified loss is a weighted combination of the original
loss E and implicit regularizer ∥∇E∥2, and larger β leads to a larger weight for the regularizer ∥∇E∥2, hence
making it closer to the solid black curve.

9 Future directions
IGR, although a great tool for examining generalization, relies on low-order Taylor approximations that
works well under small learning rates. In addition, the current analysis is based on fixed values of β while
letting h → 0. In practice, to better guide the choice of hyper-parameters, a bound that is asymptotic in
both h and β (h → 0, β → 1) might be more helpful. We leave it as future work.
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