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ABSTRACT

Anomaly detection methods under the ‘one-for-all’ paradigm aim to develop a
unified model capable of detecting anomalies across multiple classes. However,
these approaches typically require a large number of normal samples for model
training, which may not always be fulfilled in practice. Few-shot anomaly de-
tection methods can address scenarios with limited data but require a tailored
model for each class, following the ‘one-for-one’ paradigm. In this paper, we
first proposed a one-for-all few-shot anomaly detection method with the assis-
tance of vision-language models. Unlike previous CLIP-based methods that learn
fixed prompts for each class, our method learns a class-shared prompt genera-
tor to adaptively generate suitable prompts for each instance. The prompt gen-
erator is trained by aligning the prompts with the visual space and utilizing
guidance from general textual descriptions of normality and abnormality. In
addition, we further propose a method to address the problem of how to re-
trieve valid similar features from the visual memory bank under the one-for-all
paradigm. Extensive experimental results on MVTec and VisA demonstrate the
superiority of our method in few-shot anomaly detection task under the one-for-
all paradigm. Our code is available in https://github.com/Vanssssry/
One-For-All-Few-Shot-Anomaly-Detection.

1 INTRODUCTION

Visual anomaly detection aims to detect anomalies in images, which has widespread applications
across various fields like industrial damage inspection (Bergmann et al., 2019; Zou et al., 2022),
medical diagnosis (Zhang et al., 2020; Fang et al., 2024), etc.. Due to the countless forms and types
of potential anomalies in real-world applications, as well as the difficulties of collecting anomalies,
existing anomaly detection methods (Deng & Li, 2022; Tien et al., 2023; Roth et al., 2022; Liu
et al., 2023; Schlüter et al., 2022) mostly assume the only availability of normal samples during
training and then use them to train a normality model that can capture any samples that deviate from
the normality. Despite achieving high detection accuracy, these methods follow the ‘one-for-one’
paradigm, which requires a bespoke anomaly detection model to be trained for each class in the
dataset, which, obviously, is cumbersome to use and expensive to train. To increase the flexibility
and reduce the training complexity, some recent works have proposed to resort to the ‘one-for-all’
paradigm as proposed in UniAD in (You et al., 2022), DiAD in (He et al., 2024), and VPDM in (Li
et al., 2024c). Different from the ‘one-for-one’ paradigm, methods under the ‘one-for-all’ paradigm
only need to train a common model for all classes of data, and thus could significantly increase the
using flexibility and training efficiency.

However, all of the ‘one-for-one’ and ‘one-for-all’ methods above assume the availability of a large
amount of normal instances for model training. But for some application scenarios, this requirement
may not be easy to meet, e.g., at the initial phase of manufacturing a new product or in scenarios
with difficulties for instance collection. To deal with these scenarios, few-shot anomaly detectors
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have been proposed, such as RegAD in (Huang et al., 2022) and FastRecon in (Fang et al., 2023),
which use several available images to estimate the distribution of normal instances or use them to
build a coreset for instance reconstruction. But due to the scarcity of training data, the distribution
or coreset estimated by these methods is very inaccurate, causing their detection performance to
lag far behind their full-shot counterparts. Recently, inspired by advancements of vision-language
models (VLMs) (Radford et al., 2021; Zhou et al., 2022b), WinCLIP (Jeong et al., 2023) proposed
to manually craft a set of prompts that describe the general properties of various anomalies and then
use CLIP to assess the alignment between image patches and any of the anomaly prompts. Patches
with high anomaly alignment scores are considered anomalous. However, as CLIP struggles with
capturing local information, WinCLIP generates hundreds of image windows of different sizes and
employs CLIP’s visual encoder to extract their features, which obviously is computationally expen-
sive. Moreover, the diversity and complexity of anomalies make it impossible to have manually
crafted prompts cover or accurately describe all possible types of anomalies. To address the two is-
sues, the recent work PromptAD (Li et al., 2024b) employs the V-V attention mechanism (Li et al.,
2023b) to preserve local information in the output tokens of CLIP and then further proposes to learn
a set of vectors (prompts) from data automatically. Despite remarkable performance improvement
and significant complexity reduction, PromptAD, as well as WinCLIP, still fall within the ‘one-for-
one’ paradigm. That is, it requires to learn a separate prompt for every category of data, which could
incur a huge computation burden for training and cause inconvenience for practical utilization.

In this paper, we propose the first one-for-all few-shot anomaly detection method by harnessing the
zero/few-shot recognition ability of vision-language models CLIP (Radford et al., 2021) and BLIP-
Diffusion (Li et al., 2024a) via instance-induced prompt learning, naming our method instance-
induced prompt anomaly detection (IIPAD). Specifically, instead of learning a fixed prompt for
every category as in WinCLIP and PromptAD, we propose to learn a common prompt generator
for all categories. The prompt-generator is designed to assemble a common sequence of vectors
and a set of instance-specific tokens output from CLIP and Q-Former in BLIP-Diffusion (Li et al.,
2024a) via concatenation and addition. In this way, the prompt generator can generate an exclusive
prompt for every instance by taking its own characteristics into account, making the prompts better
at extracting instance-specific normal and abnormal details. Given the designed prompt generator,
the model is trained by seeking to align the prompt and visual embeddings corresponding to the
same state (normal vs abnormal). The cross-modal alignment is further conducted at the token
level to strengthen the model’s fine-grained understanding ability. In addition to the prompt-visual
alignment, we also introduce a set of general textual descriptions about normal and abnormal states,
which can be viewed as a kind of expert knowledge, and use them to guide the training process by
encouraging prompts to align with them. Furthermore, the memory bank is adopted within the one-
for-all paradigm by endowing it with category-aware capabilities. Extensive experimental results
on MVTec and VisA datasets demonstrate that our proposed one-for-all few-shot anomaly detection
method shows significantly better performance than baselines under the one-for-all setting, and can
achieve similar or even better performance than the SOTA one-for-one few-shot method.

2 RELATED WORK

Few-Shot Anomaly Detection Few-shot anomaly detection is designed for scenarios where only
a limited amount of normal data is available for training. TDG (Sheynin et al., 2021) proposed
to augment images in the support set through various transformations and leverage a hierarchi-
cal generative model to learn the multi-scale patch distribution. Instead of image augmentation,
RegAD (Huang et al., 2022) leverages an auxiliary dataset to learn the matching mechanism for
anomaly detection on target dataset. DifferNet (Rudolph et al., 2021) leverages a normalizing flow
to estimate the distribution of descriptive features extracted by a pre-trained model. FastRecon (Fang
et al., 2023) and GraphCore (Xie et al., 2023) build on PatchCore (Roth et al., 2022). FastRecon
learns a projection matrix to reconstruct features as normal, while GraphCore enlarges the normal
feature bank through data augmentation and trains a graph neural network to identify anomalies.
However, all these methods follow a “one-model-per-category” paradigm.

Leveraging VLMs for Zero-/Few-shot Anomaly Detection Since CLIP (Radford et al., 2021)
demonstrates remarkable performance in zero-shot and few-shot classification, it has gained sig-
nificant attention and is widely studied for its potential application in anomaly detection. Win-
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Figure 1: The framework of IIPAD. The Q-Former is leveraged to extract object tokens for prompt
and category-aware memory bank construction. The prompt generator is trained using contrastive
learning, guided by both visual and textual modalities, to produce instance-specific prompts for
anomaly detection. The ViT used to extract patch features is transformed with V-V attention.

CLIP (Jeong et al., 2023) leverages manual text prompts to detect anomalies across predefined win-
dows. AnoVL (Deng et al., 2023) uses an adapter to integrate text prompts with visual patches ex-
tracted through a V-V attention-based visual encoder. Getting rid of abundant manual text prompts,
PromptAD (Li et al., 2024b) proposes to learn normal and anomalous prompts via semantic con-
catenation. But these methods still follow the one-for-one paradigm, learning tailored prompts for
each class. AnomalyCLIP (Zhou et al., 2024) utilizes an auxiliary dataset from another domain to
learn object-agnostic text prompts that capture generic normality and abnormality across categories,
while AdaCLIP (Cao et al., 2024) uses the auxiliary dataset to learn hybrid prompts. InCTRL (Zhu
& Pang, 2024) proposes leveraging a few normal images as prompts to conduct residual learning,
which captures general abnormality for anomaly detection. However, AnomalyCLIP and AdaCLIP
require thousands of normal and anomalous images with pixel-level annotations, while InCTRL
struggles with the anomaly localization task.

3 METHODS

In the task of few-shot anomaly detection, it is assumed the availability of a training dataset,
Xtrain = {x1,x2, . . . ,xN}, consisting of a small number of normal images from multiple classes.
Each class contains at most K examples, where K typically ranges from 1 to 4. In this paper, our
goal is to leverage the small dataset Xtrain to learn a set of prompts to help detect and localize
anomalies across various categories. To this end, we first develop a class-shared prompt genera-
tor, which can generate an instance-specific prompt for every instance. Then, we train the prompt
generator by encouraging the alignment between the prompt and visual space as well as exploit-
ing the guidance from general textual descriptions on normality and abnormality. Furthermore, a
category-aware memory bank is further introduced to incorporate the test-time knowledge to detect
anomalies. The framework of our method is shown in Figure 1.

3.1 INSTANCE-SPECIFIC PROMPT GENERATOR

To avoid manually crafting the prompts, inspired by CoOp (Zhou et al., 2022b), existing prompt-
based anomaly detection methods like AnomalyCLIP and PromptAD can be described as introduc-
ing a set of learnable vectors for each category of data and then learning them separately. The
prompts for the c-th category in these methods can be generally described

Sn
c = [Pc1][Pc2] . . . [PcT ][CLSc], Sa

c = [Nc1][Nc2] . . . [NcT ][CLSc], (1)
where Sn

c and Sa
c denote the normal and abnormal prompts for the c-th category; [Pci] and [Nci]

denote the i-th token and T is the total length; and [CLSc] represents the tokens of c-th class name.
Obviously, this prompt design makes the method fall into the ‘one-for-one’ paradigm, which could
cause significant computation burden for training and incur inconvenience for practical use.
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To adapt these methods to the ‘one-for-all’ paradigm, a very simple way is to make the tokens
[Pci] and [Nci] not reliant on the class c, leading to the prompts Sn

c = [P1][P2] . . . [PT ][CLSc] and
Sa
c = [N1][N2] . . . [NT ][CLSc]. Now, since the tokens [Pi] and [Ni] are shared among all instances,

the only difference of prompts comes from the class name token [CLSc]. However, the class name
can only describe instances coarsely, resulting in these prompts not being expressive enough to
capture the subtle difference between normal and abnormal instances. With the development of
VLMs, an image can be described by several tokens that are extracted from VLMs (Gal et al.,
2023; Li et al., 2023a; 2024a). Since the Q-Former in BLIP-Diffusion (Li et al., 2024a) is trained
together with CLIP to output a set of tokens that not only describe the image content but also can be
interpreted by the CLIP textual encoder, we here propose to use it to extract a set of object tokens
Zi ∈ RM×d for the image xi. However, we note that directly using the object tokens Zi to replace
the class name [CLS] does not work very well, which is probably due to the fact that VLMs are
not trained to capture the subtle difference between normality and abnormality of images. Thus,
we propose to first use two MLPs, fn

c and fa
c : RM×d → Rm×d (m < M ), to transform Zi

into two distinct tokens On
i and Oa

i ∈ Rm×d that are responsible for describing the normality and
abnormality of images, respectively. Then, we use On

i and Oa
i to design the normal and abnormal

prompts as
Sn
i = [P1][P2] . . . [PT ][O

n
i1] . . . [O

n
im], Sa

i = [N1][N2] . . . [NT ][O
a
i1] . . . [O

a
im]. (2)

Since the prefixes [Pi] and [Ni] are still shared among all instances, these prompts are still restrictive
in capturing the subtle normality and abnormality in different images. To address this issue, inspired
by CoCoOp (Zhou et al., 2022a), we further propose to inject instance-specific visual information
into the tokens [Pi] and [Ni]. Specifically, for instance xi, we first propose a way to extract instance-
specific visual normal and abnormal tokens Cn

i ∈ RT×d and Ca
i ∈ RT×d from the output tokens of

CLIP and Q-Former. Then, inspired by CoCoOp (Zhou et al., 2022a), we add the visual normal and
abnormal tokens into the prompts [Pi] and [Ni], leading to the final form

Sn
i = [P1 +Cn

i1][P2 +Cn
i2] . . . [PT +Cn

iT ][O
n
i1] . . . [O

n
im],

Sa
i = [N1 +Ca

i1][N2 +Ca
i2] . . . [NT +Ca

iT ][O
a
i1] . . . [O

a
im],

(3)

where Cn
it denotes the t-th token of Cn

i . Here, the learnable prefixes [Pi] and [Ni] are responsible to
capture general descriptions of normality and abnormality, while Cn

i and Ca
i aim to provide normal

and anomalous details tailored for a specific image. In this way, instance-specific prompts can be
generated to detect anomalies, rather than relying on a prompt shared across all instances.

To obtain Cn
i and Ca

i , we propose to simultaneously make use of the class token extracted from
CLIP’s visual encoder Ev(·) and the category tokens Zi from Q-Former. The class token Ev(xi) is
not only projected into the textual token space via an MLP fp : Rd → RT×d as done in CoCoOp,
but is also leveraged as a query in cross-attention to retrieve information from category tokens Zi as
Cn

i =fp(Ev(xi))+fn(CA(Ev(xi),Z
n
i ,Z

n
i )), Ca

i =fp(Ev(xi))+fa(CA(Ev(xi),Z
a
i ,Z

a
i )), (4)

where CA(·) denotes the cross-attention operation, while fn, fa : Rd → RT×d denote two MLPs;
and Zn

i and Za
i are obtained from Zi via two linear projection. Utilizing the two sources of visual

information encourages Cn
i and Ca

i to capture both global visual information from the class token
and fine-grained details from the category tokens.

By passing the prompts Sn
i and Sa

i into the CLIP textual encoder ET (·), we obtain
eni ,pi1,pi2, . . . ,piT ′ = ET (S

n
i ), eai ,ni1,ni2, . . . ,niT ′ = ET (S

a
i ), (5)

where T ′ = T +m is the length of input sequence; eni and eai ∈ Rd denote the prompt embeddings
of Sn

i and Sn
i , respectively; pij and nij denote token embeddings of j-th token in Sn

i and Sn
i ;

3.2 MULTI-MODAL PROMPT TRAINING

To enable the prompt generator to produce tailored normal and anomalous prompts for the corre-
sponding input image, we propose guiding the prompt learning in both visual and textual modalities.

3.2.1 VISUAL GUIDANCE

Since we can only access a few normal samples, we apply contrastive learning to pull the normal
prompt embedding closer to normal visual features, while pushing the anomalous prompt embed-
ding away. This approach is consistent with the goal of CLIP-based methods to detect anomalies.
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During training, considering the trade-off between utilizing multi-level semantic information and
computational cost, we select the outputs from certain intermediate layers of the CLIP visual en-
coder, with the set of indices of selected layers denoted as J . Then, we use the selected features to
construct the set Fi = {Fij |j ∈ J }, where Fij ∈ RH×W×d means the output of j-th layer of image
xi. Notably, the visual encoder, which is used to extract internal normal features, is modified with
V-V attention mechanism to enhance its capability to preserve local information (Li et al., 2024b;
Zhou et al., 2024).

Semantic-Level Alignment For each training image xi, the corresponding normal prompt embed-
ding eni is pulled closer to the normal patch features in Fi, while the anomalous one eai is pushed
away from them. Formally, the semantic-level alignment loss is defined as

Ln
s =

1

|J |
∑
j∈J

(
1

H ×W

H∑
h=1

W∑
w=1

− log
exp(< Fij,hw, e

n
i >)

exp(< Fij,hw, eni >) + exp(< Fij,hw, eai >)

)
, (6)

where < ·, · > denotes cosine similarity while Fij,hw denotes the feature of (h,w)-th patch of image
xi at the j-th layer. By minimizing this loss, the semantics of normal prompts become more aligned
with the normal patches, while the semantics of the anomalous prompts diverge from them.

Token-Level Alignment Solely aligning the embedding of the entire prompt with patch features
may weaken the prompt’s ability to capture details, which, however, is crucial for the success of
fine-grained anomaly detection tasks. Inspired by the observation that multiple image patches often
correspond to a single word in the caption (Bica et al., 2024), we propose to encourage the alignment
between a group of patches and the embedding of one prompt token. This approach encourages
prompts to capture detailed, highly relevant local information provided by the V-V attention in CLIP.
Specifically, we first compute the similarity matrix Mij ∈ RT ′×R between normal prompt token
embeddings and patch embeddings from the j-th layer of CLIP visual encoder for image xi, where
T ′ equals to T +m and R equals to H ×W . The element Mij,tk of Mij represents the similarity
between prompt token embedding pi,t and patch feature vij,k. To obtain the token-level alignment
weight, we then normalize the elements of Mij to the range [0, 1] by min-max normalization across
patch dimension as M̂ij,tk =

Mij,tk−minr Mij,tr

maxr Mij,tr−minr Mij,tr
. Then we sparsify the normalized matrix to

reduce irrelevant patches and encourage each prompt token embedding to be aligned with several
patch features by setting M̃ij,tk = M̂ij,tk if M̂ij,tk ≥ σ or 0 otherwise, where σ denotes the sparsity

threshold. The token-level alignment weight is finally obtained as Wij,tk =
M̃ij,tk∑R

r=1 M̃ij,tr
. With

the token-level alignment weight Wij , we can obtain the representation of patch features that are
most relevant to a prompt token as ṽij,t =

∑R
r=1 Wij,trvij,r. That is, the embedding ṽij,t can be

understood as the embedding of collective visual patches that are relevant to the j-th token. Thus,
we propose to pull closer the prompt token embedding pi,t and the collective visual embedding ṽij,t

by minimizing the following loss

Ln
f =

1

|J |
∑
j∈J

− 1

T ′

T ′∑
t=1

(
log

exp(<pi,t, ṽij,t>)∑T ′

k=1 exp(<pi,t, ṽij,k>)
+log

exp(< ṽij,t,pi,t>)∑T ′

k=1 exp(< ṽij,t,pi,k>)

) . (7)

Synthetic Visual Guidance for Anomalous Prompt Due to the lack of anomalous samples, we
can only push the anomalous prompt embedding away from normal patch features. However, since
anomalies are often visually similar to normal images, blindly pushing the anomalous prompt away
can result in the prompt losing meaningful semantic information, rendering it ineffective for anomaly
detection. SimpleNet (Liu et al., 2023) proposed to add noise to normal features. Since Gaussian
noise is too mild and does not provide any meaningful information to guide the anomalous prompt,
we propose to further distort the feature Fij from j-th layer with feature from the j′-th layer, where
j′ is the index immediately before j in J , that is,

Fa
ij = Normalize(Fij + Fij′ + ϵ), (8)

where Normalize(·) denotes the operation that normalizes Fa
ij to have a norm of 1, and ϵ ∼ N (0, 1)

denotes the Gaussian noise. By adding features from different layers, information at different scales
can be fused, resulting in synthetic visual features Fa

ij that include both low-level visual details and
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high-level semantic concepts, thereby introducing some inconsistencies or unnaturalness. Then, we
can perform the semantic-level and token-level alignment for the anomalous prompt:

La
s =

1

|J |
∑
j∈J

(
1

H ×W

H∑
h=1

W∑
w=1

− log
exp(< Fa

ij,hw, e
a
i >)

exp(< Fa
ij,hw, e

a
i >) + exp(< Fa

ij,hw, e
n
i >)

)
, (9)

La
f =

1

|J |
∑
j∈J

− 1

T ′

T ′∑
t=1

(
log

exp(<ni,t, ṽ
a
ij,t>)∑T ′

k=1 exp(<ni,t, ṽa
ij,k>)

+log
exp(< ṽa

ij,t,ni,t>)∑T ′

k=1 exp(< ṽa
ij,t,ni,k>)

) , (10)

where ni,t denotes the t-th anomalous prompt token embedding and ṽa
ij,t denotes the grouping patch

features corresponding to ni,t.

3.2.2 TEXTUAL GUIDANCE

In the visual guidance above, we can only access normal images and the abnormal visual data
are synthetic, which would introduce bias into the prompt learning process. To address this issue,
we propose to leverage the manually crafted prompts, which can be understood as a kind of expert
knowledge, to train the model. But we follow the one-for-all paradigm and only use general descrip-
tions for normality and abnormality, e.g., replacing any specific category name with the common
word ‘object’. In particular, we generate normal manually-crafted prompts T n from a template list
that describes general normality, such as “A photo of a perfect object, A photo of a flawless object”,
etc. While the anomalous manual prompts T a are generated from the anomaly labels of the datasets
as done in PromptAD, e.g., “A photo of the object with color stain”. Completed manually-crafted
prompts T n and T a refer to Appdenix A.2. After generating a set of general normality and abnor-
mality descriptions, instead of directly using them for anomaly detection, which lacks specificity and
adaptability across different categories, we use them to guide the prompt learning. Consistent with
the visual guidance of prompts, contrastive learning is also applied to align the learnable prompts
with manual prompts by minimizing the loss

Lt=Etn

[
−log

exp(<en,tn>)

exp(<en,tn>)+exp(<ea,tn>)

]
+Eta

[
−log

exp(<ea,ta>)

exp(<ea,ta>)+exp(<en,ta>)

]
,

(11)

where tn, ta denote embeddings of normal manual prompts and anomalous manual prompts, re-
spectively. With the guidance of manual prompts, the learned prompts are endowed with the ability
to identify general normality and real abnormality via the use of expert knowledge.

The overall objective of prompt learning is a weighted sum of visual guidance and textual guidance:

L = (Ln
s + La

s) + β(Ln
f + La

f ) + αLt (12)

where α and β are hyperparameters.

3.3 CATEGORY-AWARE MEMORY BANK

Due to the rich normality information embedded in the features extracted by CLIP’s visual encoder,
the memory bank has been introduced in previous works (Jeong et al., 2023; Li et al., 2024b) to
enhance anomaly detection. However, under the one-for-all paradigm, the memory bank contains
visual features from different classes and anomalous patch features may resemble and have high sim-
ilarity with normal features from totally different categories, leading to undesired feature matching.
This is called a mismatch problem and impairs the effectiveness of the memory bank in distinguish-
ing between normal and anomalous features. To overcome this challenge, a category-aware visual
memory bank is proposed. Instead of naively storing the image patch tokens output by the j-th
layer of the CLIP visual encoder, we make full of category tokens Z extracted from the Q-Former.
Specifically, we store the image patch tokens Fij of image xi and its corresponding Q-Former (i.e.,
category) tokens Zi. The category-aware visual memory bank can be represented as

Bv = {[Z1;F1j ], [Z2;F2j ], . . . , [ZN ;FNj ]} . (13)

In the testing phase, we first retrieve a group of elements from Bv using the similarity between the
category tokens Z’s of the test image and stored ones. We then evaluate the similarity between patch
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token features Fij of the test image and the ones that are retrieved at the first stage. In practice, the
intermediate features of two layers are selected as memory, denoted as Bv

j1
,Bv

j2
, where j1, j2 ∈ J .

Besides constructing a visual memory bank, we also build the category-aware prompt embedding
bank Bp which stores various prompt embeddings of training instances from Xtrain as

Bp = {[Z1; e
n
1 ; e

a
1 ], [Z2; e

n
2 ; e

a
2 ], . . . , [ZN ; enN ; eaN ]} . (14)

During testing, we retrieve the top-k prompts most similar to the test image, following a strategy
similar to that used in the category-aware visual memory bank.

3.4 ANOMALY DETECTION

Unlike prior works that rely solely on fixed prompts learned during the training phase (Zhou et al.,
2024; Li et al., 2024b), we can additionally leverage information from the test image by our prompt
generator. With the groups of prompt embeddings En and Ea retrieved from Bp as stated above, the
prompt embeddings ent and eat of the test image for detecting anomalies are then computed as

ēn =
1

2

(
1

K

∑
e∈En

e+ ent

)
, ēa =

1

2

(
1

K

∑
e∈Ea

e+ eat

)
, (15)

where ent and eat denote normal and anomalous fusion prompt embeddings of the test image, respec-
tively. Given the j-th layer patch tokens F·j ∈ RH×W×d of test image with · representing the test
image, the (h,w)-th element of prompt-guided anomaly map Ap

j ∈ [0, 1]H×W is obtained as

Ap
j,hw =

exp(< F·j,hw, ē
a >)

exp(< F·j,hw, ēa >) + exp(< F·j,hw, ēn >)
. (16)

As there exist selected features from J , the final prompt-guided anomaly map is calculated as the
average of that in all |J | layers, that is, Āp = 1

|J |
∑

j∈J Ap
j . In addition, we also make use of the

category-aware visual memory bank. With the group of patch tokens V1,V2 retrieved from Bv
j1
,Bv

j2
,

the layer patch tokens F·j1 ,F·j2 of test image is compared with V1,V2 to obtain visual anomaly map
Av ∈ [0, 1]H×W as follows:

Av
hw = min

v∈V1

1

2
(1− < F·j1,hw,v >) + min

v∈V2

1

2
(1− < F·j2,hw,v >), (17)

where j1 and j2 denote the two layer indices that are used in construction of Bv
j1

and Bv
j2

, respec-
tively. The final pixel-level anomaly score map and image-level score are computed as

Apixel = Āp +Av, Aimage = max
h,w

Āp +max
h,w

Av, (18)

where the image-level score is sum of the maxima of the prompt-guided and visual anomaly maps.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING AND BASELINE

Dataset In this paper, we conduct extensive experiments on benchmarks MVTec (Bergmann et al.,
2019) and VisA (Zou et al., 2022). The MvTec dataset contains 10 object categories and 5 texture
categories while VisA dataset contains 12 different categories. Both benchmarks comprise high-
resolution images and various anomalous types.

Experiment Setup We conduct the comparison experiments between our method and the latest
methods under the setting that the training dataset contains all categories of the benchmark and
only K-shot normal image for each class. Additionally, the memory bank used across all methods,
as well as the prompts in CLIP-based methods, follow the one-for-all paradigm. This means that
the memory bank contains features from various categories, and the prompts are not initialized or
specifically tailored to each individual class. The experimental results reported in this section are
averaged across their respective sub-datasets.

Evaluation Referring to previous work, the performance of anomaly detection and localization is
evaluated using the Area Under the Receiver Operating Characteristic Curve (AUROC). Addition-
ally, the Area Under Precision Recall (AUPR) for anomaly detection and the Per-Region Overlap
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Table 1: Comparison of anomaly detection and localization performance on MVTec and VisA
datasets across different few-shot settings under the one-for-all paradigm. The best result is marked
in bold and the runner-up result is marked underlined.

Setup Method
MVTec VisA

Image-level Pixel-level Image-level Pixel-level
AUROC AUPR AUROC PRO AUROC AUPR AUROC PRO

0-shot WinCLIP 89.1 95.0 81.1 62.3 73.3 76.3 79.8 57.9
AnomalyCLIP 91.5 96.2 91.1 81.4 82.1 85.4 95.5 87.0

1-shot

SPADE 58.8 63.7 60.4 53.1 61.3 68.2 69.0 57.2
PatchCore 63.7 81.2 83.9 72.7 58.9 62.8 76.7 64.3
FastRecon 51.2 72.6 62.1 60.3 55.0 72.8 70.7 58.2
WinCLIP 92.8 96.5 92.4 83.5 83.1 85.1 94.6 80.9

PromptAD 86.3 93.4 91.8 83.6 80.8 83.2 96.3 82.2
InCTRL - - - - - - - -
IIPAD 94.2 97.2 96.4 89.8 85.4 87.5 96.9 87.3

2-shot

SPADE 68.4 84.2 61.2 54.7 66.8 72.0 71.3 59.6
PatchCore 72.4 86.2 89.6 74.2 60.2 64.3 82.4 68.1
FastRecon 51.7 74.9 62.4 59.9 58.2 74.6 79.6 63.5
WinCLIP 92.7 96.3 92.4 83.9 83.7 84.9 95.1 81.8

PromptAD 89.2 94.8 92.2 84.3 84.3 87.8 96.9 84.7
InCTRL 94.0 96.9 - - 85.8 87.7 - -
IIPAD 95.7 97.9 96.7 90.3 86.7 88.6 97.2 87.9

4-shot

SPADE 76.6 88.8 62.8 55.6 73.0 76.6 72.1 60.9
PatchCore 74.9 88.8 92.6 80.8 62.6 69.9 85.4 70.6
FastRecon 50.8 73.1 65.0 62.8 57.6 73.7 78.8 62.9
WinCLIP 94.0 96.9 92.9 84.4 84.1 86.1 95.2 82.1

PromptAD 90.6 96.5 92.4 84.6 85.7 88.8 97.2 84.7
InCTRL 94.5 97.2 - - 87.7 90.2 - -
IIPAD 96.1 98.1 97.0 91.2 88.3 89.6 97.4 88.3

(PRO) for anomaly localization are employed to provide a more comprehensive analysis of the
model’s performance.

Implementation details We build our model based on publicly available CLIP (Ilharco et al., 2021)
(ViT-L/14). The Q-Former used to extract category tokens is taken from BLIP-Diffusion (Li et al.,
2024a). All parameters of pre-trained models are frozen. The length of learnable prompt tokens is
set as 24. All experiments are conducted with a single NVIDIA RTX 3090 24GB GPU. For more
implementation details refer to Appendix A.1.

Baselines To demonstrate the superiority of our method, we select the lateset training-free or CLIP-
based anomaly detection methods as baselines: SPADE (Cohen & Hoshen, 2020), PatchCore (Roth
et al., 2022), FastRecon (Fang et al., 2023), WinCLIP (Jeong et al., 2023), PromptAD (Li et al.,
2024b), InCTRL (Zhu & Pang, 2024) and AnomalyCLIP (Zhou et al., 2024). Then, we further
compare with the full-shot one-for-all anomaly detection methods: UniAD (You et al., 2022), Om-
niAL (Zhao, 2023), HVQ-Trans (Lu et al., 2023) and DiAD (He et al., 2024). For more baselines
details refer to Appendix A.3.

4.2 EXPERIMENT RESULTS

Overall Performance The experiment results on MVTec and VisA datasets in different few-shot
setting are demonstrated in Table 1, where SPADE (Cohen & Hoshen, 2020), PatchCore (Roth et al.,
2022) are reformulated in the few-shot setting. To further demonstrate the competitiveness of our
method, as shown in Table 2, we also compare our method, which remains the one-for-all paradigm,
with baselines in the ‘one-for-one’ paradigm and the results of them are referred to their original
papers. As shown in Table 1- 2, the performance of zero-shot methods remains weak compared
to other baselines, even though they utilize auxiliary datasets or additional expert knowledge. This
indicates the importance of incorporating information from the target domain for effective anomaly
detection. Comparing Table 1 and Table 2, it is evident that the performance of all baselines signifi-
cantly drops when they are trained or adapted to the one-for-all paradigm. This indicates that these
few-shot anomaly detection methods struggle to effectively detect anomalies across different cate-
gories when using a unified model. In contrast, our method, which trains an instance-specific prompt
generator, significantly outperforms other baselines in both pixel-level and image-level anomaly de-
tection under the one-for-all paradigm. Notably, even in the ‘one-for-one’ paradigm, our method
surpasses all baselines at the pixel level and achieves the second-best performance at the image level

8



Published as a conference paper at ICLR 2025

Table 2: Comparison of anomaly detection and localization performance on MVTec and VisA across
different few-shot settings under the one-for-one paradigm. The results of baselines are taken from
the original paper. Our method remains the one-for-all paradigm. The best result is marked in bold
and the runner-up result is marked underlined.

Setup Method
MVTec VisA

Image-level Pixel-level Image-level Pixel-level
AUROC AUPR AUROC PRO AUROC AUPR AUROC PRO

0-shot WinCLIP 91.8 96.5 85.1 64.6 78.1 81.2 79.6 56.8

1-shot

SPADE 81.0 90.6 91.2 83.9 79.5 82.0 95.6 84.1
PatchCore 83.4 92.2 92.0 79.7 79.9 82.8 95.4 80.5
FastRecon - - - - - - - -
WinCLIP 93.1 96.5 95.2 87.1 83.8 85.1 96.4 85.1

PromptAD 94.6 97.1 95.9 87.9 86.9 88.4 96.7 85.1
IIPAD(One-for-All) 94.2 97.2 96.4 89.8 85.4 87.5 96.9 87.3

2-shot

SPADE 82.9 91.7 92.0 85.7 80.7 82.3 96.2 85.7
PatchCore 86.3 93.8 93.3 82.3 81.6 84.8 96.1 82.6
FastRecon 91.0 - 95.9 - - - - -
WinCLIP 94.4 97.0 96.0 88.4 84.6 85.8 96.8 86.2

PromptAD 95.7 97.9 96.2 88.5 88.3 90.0 97.1 85.8
IIPAD(One-for-All) 95.7 97.9 96.7 90.3 86.7 88.6 97.2 87.9

4-shot

SPADE 84.8 92.5 92.7 87.0 81.7 83.4 96.6 87.3
PatchCore 88.8 94.5 94.3 84.3 85.3 87.5 96.8 84.9
FastRecon 94.2 - 97.0 - - - - -
WinCLIP 95.2 97.3 96.2 89.0 87.3 88.8 97.2 87.6

PromptAD 96.6 98.5 96.5 90.5 89.1 90.8 97.4 86.2
IIPAD(One-for-All) 96.1 98.1 97.0 91.2 88.3 89.6 97.4 88.3
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Figure 2: Visualization result comparison of 1-shot anomaly detection on MVTec and VisA.
across various few-shot settings on the MVTec and VisA datasets, further demonstrating superiority
of our method. More comparative analysis of our method refer to Appendix A.4

Table 3: Comparison of anomaly detection and lo-
calization performance on MVTec and VisA with
full-shot one-for-all anomaly detection methods.

Method Setup MVTec VisA

AUROCI AUROCP AUROCI AUROCP

IIPAD
1-shot 94.2 96.4 85.4 96.9
2-shot 95.6 96.7 86.7 97.2
4-shot 96.1 97.0 88.3 97.4

UniAD

Full-shot

96.5 96.8 91.9 98.6
OmniAL 97.2 98.3 87.8 96.6

DiAD 97.2 96.8 86.8 96.0
HVQ-Trans 98.0 97.3 93.2 98.7

Comparison with One-For-All Full-Shot
Methods The results, presented in Table 3,
show that our method achieves performance
close to state-of-the-art full-shot one-for-all
anomaly detection approaches, despite using
only a few normal images. Remarkably, with
the 4-shot setting, our method outperforms
UniAD and DiAD at the pixel level on the
MVTec dataset and surpasses OmniAL and
DiAD at both image and pixel levels on the
VisA dataset. This demonstrates that our
method can effectively leverage limited data.

Visualization Results We conducted qualitative experiments on MVTec and VisA. The partial
visualization results are shown in Figure 2. It can be observed that our method provides more
distinguishing and precise anomaly maps compared to other methods. Notably, as shown in Figure
2, our method is more sensitive to anomaly compared to PromptAD while avoiding misclassification
of normal regions like WinCLIP does. Additionally, our method shows the efficiency of localizing
small anomalies like those occur in candles and capsules. For more qualitative results refer to A.7.
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4.3 ABLATION STUDY

Table 4: Prompt generator ablation on
MVTec and VisA under 1-shot setting.

M1 M2
MVTec VisA

AUROCI AUROCP AUROCI AUROCP

× × 90.6 95.8 83.7 96.2
✓ × 93.2 96.2 83.8 96.7
× ✓ 92.5 96.2 84.1 96.4
✓ ✓ 94.2 96.4 85.3 96.9

Prompt Generator Ablation To validate the effective-
ness of our prompt generator design, we conducted an
ablation study by removing M1 and M2 components of
generated prompts. M1 denotes the instance-specific vi-
sual tokens Cn,Ca, while M2 denotes the normal and
anomalous object tokens On, Oa appended at the end of
prompts. As demonstrated in Table 4, the performance
of our method declines when M2 is removed, indicat-
ing that detailed and projected category descriptions are
beneficial for anomaly detection. Additionally, the introduction of instance-specific component,
which incorporate richer image information to prompts, improves the prompt’s ability to detect and
localize anomalies. More ablation and detailed experiment results refer to Appendix A.5.

Table 5: Loss ablation on MVTec and
VisA under 1-shot setting.

Ls Lt Lf
MVTec VisA

AUROCI AUROCP AUROCI AUROCP

✓ × × 91.1 95.8 81.5 95.9
✓ × ✓ 92.3 96.0 81.8 96.2
✓ ✓ × 91.4 96.2 82.6 96.4
× ✓ ✓ 92.6 95.6 83.1 96.2
✓ ✓ ✓ 94.2 96.4 85.4 96.9

Loss Ablation To study the effectiveness of each guid-
ance used in our method, we conducted a loss ablation
study by sequentially removing different loss compo-
nents to assess their individual contributions. As il-
lustrated in the Table 5, where Ls, Lt and Lf refer to
the semantic alignment loss, textual guidance loss and
token-level alignment loss respectively, both image-
level and pixel-level performances of our method con-
sistently degrade as we remove these loss components.
A significant performance drop can be observed when
the semantic-level alignment is removed. This is because semantic-level alignment serves as the pri-
mary objective for training the prompt generator, aligning with the detection behavior during testing.
The token-level alignment loss encourages the prompt tokens to focus on specific patches, enhanc-
ing the anomaly localization capability of the generated prompts. Moreover, the improvement in
performance brought by text guidance is significant. This indicates that expert knowledge, even
when represented in text form rather than as specific anomaly maps, is very helpful for anomaly
detection. These losses cooperatively guide the prompt generator to produce prompts that capture
the normality and abnormality of images.

Table 6: Visual memory bank ablation on
MVTec and VisA under 1-shot setting.

OVB CAVB MVTec VisA
AUROCI AUROCP AUROCI AUROCP

× × 91.7 89.5 82.3 93.6
✓ × 93.1 95.9 84.5 96.7
× ✓ 94.2 96.4 85.4 96.9

Category-Aware Memory Bank To study the effec-
tiveness of our category-aware memory bank design,
we conducted an ablation study by either removing or
degenerating the category-aware memory bank. The
results are presented in Table 6, where OVB denotes
using the original visual bank without utilizing the Q-
Former tokens Zi and CAVB denotes using the pro-
posed category-aware visual bank. The first row shows
the performance of the prompt generator in isolation from visual memory bank. A significant perfor-
mance drop occurs when the visual memory bank is removed, indicating that the visual memory bank
plays a critical role in our proposed one-for-all anomaly detection method. Notably, the category-
aware visual memory bank outperforms the original version, indicating that it can accurately re-
trieve the corresponding sub-bank based on Q-Former token similarity, effectively addressing the
mismatch issues present in the original visual memory bank.

5 CONCLUSION

In this paper, we propose a novel few-shot anomaly detection method that enables to detect anoma-
lies across different categories with a unified model. We design a class-shared prompt generator,
which can adaptively generate instance-specific prompts for detecting anomalies across different
classes. Then, the prompt generator is trained by aligning the prompt with both visual and textual
feature guidance. Furthermore, we address the mismatch issue in the memory bank to adopt it in
one-for-all paradigm. The incorporation of test-time knowledge further enhances the adaptability
and flexibility of the prompts. Extensive experimental results on MVTec and VisA demonstrate the
superiority of our method in the few-normal-shot setting within the one-for-all paradigm.
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A APPENDIX

A.1 IMPLEMENT DETAILS

Training Details We build our model based on publicly available CLIP (VIT-L-14). The Q-
Former used to extract category tokens is taken from BLIP-Diffusion, which is already align to
CLIP’s text encoder. The parameters of CLIP and Q-Former are all frozen during training. The
length of learnable prompt T is set as 24. The length of compressed category tokens m is 4. The
projection networks used to incorporate visual information are two-layer neural network. The weight
factors α, β that balance loss are both fixed as 8. To provide adequate visual details, we select patch
visual embeddings Fij from the 6-th, 12-th, 18-th, and 24-th layers of the visual encoder to guide
prompt learning. The visual encoder is reformed into V-V attention mechanism. Patch features from
the 6-th and 18-th layers of the original visual encoder are selected as memory bank. The threshold
for sparsify the normalized matrix is set as 1

256 . We use the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 0.001 to update model parameters. The epoch is 20 for all experiments, which
are performed in PyTorch with a single NVIDIA RTX 3090 24GB GPU.

A.2 MANUAL PROMPTS DETAILS

We introduce manual text prompt as expert knowledge to guide learnable prompts in capturing
normality and abnormality. The manual normal and anomalous prompts are given as follows:

• Normal manual prompts: {‘a image of the normal object’, ‘a image
of the flawless object’, ‘a image of the perfect object’,
‘a image of the unblemished object’, ‘a image of the object
without flaw’, ‘a image of the object without defect’, ‘a
image of the object without damage’ }

• Anomalous manual prompts (MVTec): { ‘a image of the damaged object’,
‘a image of the abnormal object’, ‘a image of the imperfect
object’, ‘a image of the blemished object’, ‘a image of the
object with flaw’, ‘a image of the object with defect’, ‘a
image of the object with damage’, ‘a image of the object
with large breakage’, ‘a image of the object with small
breakage’, ‘a image of the object with contamination’, ‘a
image of the object with defect’, ‘a image of the object
with anomaly’, ‘a image of the object with hole’, ‘a image
of the object with color stain’, ‘a image of the object with
metal contamination’, ‘a image of the object with thread
residue’, ‘a image of the object with thread’, ‘a image of
the object with cut’, ‘a image of the object with crack’, ‘a
image of the object with cut’, ‘a image of the object with
hole’, ‘a image of the object with print’, ‘a image of the
object with color stain’, ‘a image of the object with cut’,
‘a image of the object with fold’, ‘a image of the object
with glue’, ‘a image of the object with poke’, ‘a image
of the object with bent wire’, ‘a image of the object with
missing part’, ‘a image of the object with missing wire’, ‘a
image of the object with cut’, ‘a image of the object with
poke’, ‘a image of the object with crack’, ‘a image of the
object with faulty imprint’, ‘a image of the object with
poke’, ‘a image of the object with scratch’, ‘a image of the
object squeezed with compression’, ‘a image of the object
with breakage’, ‘a image of the object with thread residue’,
‘a image of the object with thread’, ‘a image of the object
with metal contamination’ }

• Anomalous manual prompts (VisA): { ‘a image of the damaged object’,
‘a image of the abnormal object’, ‘a image of the imperfect
object’, ‘a image of the blemished object’, ‘a image of the
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object with flaw’, ‘a image of the object with defect’, ‘a
image of the object with damage’, ‘a image of the object
with melded wax’, ‘a image of the object with foreign
particals’, ‘a image of the object with extra wax’, ‘a
image of the object with chunk of wax missing’, ‘a image of
the object with weird candle wick’, ‘a image of the object
with damaged corner of packaging’, ‘a image of the object
with different colour spot’, ‘a image of the object with
scratch’, ‘a image of the object with discolor’, ‘a image
of the object with misshape’, ‘a image of the object with
leak’, ‘a image of the object with bubble’, ‘a image of the
object with breakage’, ‘a image of the object with small
scratches’, ‘a image of the object with burnt’, ‘a image of
the object with stuck together’, ‘a image of the object with
spot’, ‘a image of the object with corner missing’, ‘a image
of the object with scratches’, ‘a image of the object with
chunk of gum missing’, ‘a image of the object with colour
spot’, ‘a image of the object with cracks’, ‘a image of
the object with color spot’, ‘a image of the object with
fryum stuck together’, ‘a image of the object with small
chip around edge’, ‘a image of the object with bent’, ‘a
image of the object with missing’, ‘a image of the object
with melt’, ‘a image of the object with extra’, ‘a image of
the object with wrong place’, ‘a image of the object with
damage’, ‘a image of the object with dirt’ }

A.3 BASELINES DETAILS

We compare our method against a wide range of baselines to demonstrate its superiority. The im-
plementation details of the baselines are provided below:

• SPADE (Cohen & Hoshen, 2020). SPADE uses correspondences based on a multi-
resolution feature pyramid, which is inspired by KNN and training-free. SPADE is suitable
for detecting anomalies in few-normal-shot setting.

• PatchCore (Roth et al., 2022). PatchCore is also a training-free anomaly detection method
which is proposed to construct coreset of normal feature. PatchCore has demonstrate the
ability that handle few-shot anomaly detection anomaly detection.

• FastRecon (Fang et al., 2023). FastRecon is proposed to improve the performance of Patch-
Core in few-shot settings. This method learns a transform matrix from a few normal sam-
ples to reconstruct feature as normal. FastRecon is reproduced from open source code. All
parameters are kept the same as in their paper.

• WinCLIP (Jeong et al., 2023). WinCLIP is pioneering work that adopts CLIP in anomaly
detection. It utilize manual text prompts to detect anomalies across predefined multi-scale
windows. Simultaneously, the multi-scale memory bank is constructed for feature matching
in few-shot setting. WinCLIP is reproduced from open source code. All parameters are kept
the same as in their paper.

• AnomalyCLIP (Zhou et al., 2024). AnomalyCLIP is the first work to take category in-
formation into consideration. AnomalyCLIP is proposed to learn the category-agnostic
prompts to capture general normality and abnormality by leveraging auxiliary dataset.
AnomalyCLIP is reproduced from its official open source code. All parameters are kept
the same as in their paper.

• PromptAD (Li et al., 2024b). PromptAD is a SOTA few-shot anomaly detection method.
They proposed semantic concatenation to reverse prompt’s semantic and directly optimize
a set of learnable context vectors. PromptAD is reproduced from its official open source
code. All parameters are kept the same as in their paper.
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• InCTRL (Li et al., 2024b). InCTRL is a SOTA few-shot anomaly detection method. They
propose to learn the ability to compare on an auxiliary dataset through in-context residual
learning to detect anomalies. The performance of InCTRL is referred to its original paper.

A.4 COMPARISON ANALYSIS

Our method have superiority in the scenarios which requires the anomaly detection methods follow
the one-for-all paradigm. For example, we may only access to the raw dataset without category
information of it in practice. In this scenario, we can not know the exact category the image belong
to, which prohibit WinCLIP and PromptAD to construct different prompt for different category.
Our method, on the other hand, follows the one-for-all paradigm and extracts category informa-
tion directly from the image using Q-Former, thus avoiding the limitations faced by WinCLIP and
PromptAD. The superiority of our method in such scenario can be demonstrate by the comparison
with other baselines in one-for-all paradigm as shown in Table 1.

A.5 ADDITIONAL RESULTS AND ABLATIONS

A.5.1 SYNTHETIC VISUAL FEATURES

To further investigate the impact of synthetic visual guidance, we conducted an ablation study on
the synthetic visual feature. As shown in the Table 7, the performance of our method with synthetic
visual feature outperforms the version without them. This can be attributed to the synthetic visual
feature acting as an anchor with informative context for anomalous prompts to pull closer, rather
than blindly pushing away from normal features.

A.5.2 NEURAL NETWORKS IN PROMPT GENERATOR

We further investigate the impact of modules in instance-specific prompt generator. As shown in
the Table 8, every module in the prompt generator has a positive influence. The Projection Network
projects the token from the Q-Former and the class token from the VIT into representations that
are more suitable for the anomaly detection task. The Cross-Attention module demonstrates an
improvement in anomaly localization, indicating that the interaction between the Q-Former and VIT
enhances the fine-grained description of prompts.

A.5.3 GAUSSIAN NOISE IN SYNTHETIC VISUAL FEATURES

To verify whether the Gaussian noise added in synthetic visual features is required or not, we conduct
the ablation study and the experiment result is shown in Table 9. As we can observe, a significant
performance drop occurs when removing the Gaussian noise in synthetic visual feature. This can
be attributed to the role of Gaussian noise in smoothing the synthetic visual feature and pushing it
into low-density areas. Consequently, the Gaussian noise is required and plays an important role in
synthetic visual feature.

A.5.4 INTRODUCE MANUAL PROMPT ABLATION

We further investigate the impact of manual prompts in guiding prompt learning by conducting an
ablation study comparing the performance of prompts guided by specific manual text descriptions
(e.g., T a) versus those guided by more general manual text descriptions. The results, shown in
Table 10, reveal that prompts guided by specific manual text descriptions outperform those guided
by general descriptions. This is because specific manual text guidance incorporates knowledge of
real anomalies, thereby enhancing the prompts’ ability to effectively detect anomalies.

A.5.5 MULTI-LAYER PATCH FEATURE ABLATION

In the visual guidance phase, we use a selected feature set Fi. In particular, patch visual embeddings
Fij from the 6-th, 12-th, 18-th, and 24-th layers of the visual encoder are selected to guide prompt
learning. We conduct the ablation experiment to study the performance of prompt guided by multi-
layer features and guided by last layer output. The ablation result is presented in Table 11. It can
be observed that prompts guided by multi-layer visual features outperform prompts guided by last
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Table 7: Synthetic visual features ablation.

Synthetic MVTec MVTec VisA VisA
Visual Features AUROCI AUROCP AUROCI AUROCP

✓ 93.6 95.9 84.3 96.5
× 94.2 96.4 85.4 96.9

Table 8: Neural networks in prompt generator ablation.

Projection Network Cross Projection Network MVTec MVTec VisA VisA
Relevant to Cn and Ca Attention Relevant to On and Oa AUROCI AUROCP AUROCI AUROCP

× × ✓ 93.7 95.9 84.4 96.3
× × ✓ 93.7 96.1 84.6 96.5
✓ × ✓ 94.1 96.1 84.8 96.6
× ✓ ✓ 93.8 96.2 84.4 96.7
✓ ✓ ✓ 94.2 96.4 85.4 96.9

layer output. This indicates that multi-layer visual features contain richer visual information range
from low-level details to high level semantic, which can better guide prompts in capturing normality
and abnormality.

A.6 HYPER-PARAMETER ANALYSIS

We conduct hyper-parameter analysis experiments on α, β, and T, where α and β represent the
weights of the text guidance loss and fine-grained visual guidance loss, respectively, and T is the
number of learnable prompt tokens. The experimental results are shown in Table 12. From Ta-
ble 12a, α has significant influence to our method. Setting α too small results in the prompts cap-
turing insufficient expert knowledge, while setting it too large leads to a loss of visual information.
Our method is not sensitive to β as shown in Table 12b. For the number of learnable prompt tokens,
we find it too few tokens fail to capture the normality and abnormality while too many tokens cause
semantic redundancy, so we set T as 24 to achieve the best performance as shown in Table 12c.

A.6.1 CLASS-WISE RESULTS

In this section, we report the detailed subset-wise result of our method. The results of MVTec are
presented in Table 13- 16. The results of VisA are presented in Table 17- 20.

A.7 MORE VISUALIZATION RESULTS

A.7.1 VISUALIZATION OF ANOMALY LOCALIZATION

Additional qualitative results, which are tested on MVTec and VisA and obtained from our method
in 1-shot setting, is shown in Figure 4. From Figure 4, we can observed that our method can detect
and locate both large anomaly area and small scratch or dot on the surface. Moreover, our method
is very restrained in locating anomalies to avoid identifying normal areas as anomalies.

A.7.2 FAILURE CASES STUDY

In this section, we analysis the failure cares of anomaly localization in MVTec and VisA dataset. In
the ”Capsules” case, bubbles within the capsules are annotated as anomalies. However, the presence
of an uncommon shadow in the image led our method to mistakenly identify this area, resulting in
mislocalization. In logical anomaly cases such as the misplacement of a transistor or the sticking
of two cashews, as well as in the ”Pill” case, the anomalous areas exhibit patterns similar to nor-
mal ones. Since we can only access to normal sample and the anomalous labels do not specifically
describe these abnormalities, our method struggles to learn the distinguishing features of the anoma-
lies from the text prompts based on such labels, leading to the failure in accurately locating these
anomalous areas. The “Zipper” case in MVTec and the “PCB1” case in VisA, may be caused by the
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Table 9: Gaussian noise in synthetic visual features ablation.

Gaussian MVTec MVTec VisA VisA
Noise AUROCI AUROCP AUROCI AUROCP

× 92.5 95.4 83.1 96.4
✓ 94.2 96.4 85.4 96.9

Table 10: Manual prompt design ablation.

Generic Designed MVTec MVTec VisA VisA
Prompt Prompt AUROCI AUROCP AUROCI AUROCP

✓ × 93.9 96.1 85.1 96.4
× ✓ 94.2 96.4 85.4 96.9

Q-Former’s failure to effectively capture and describe the foreground object, leading to an inability
to detect small anomalies present on the object.

Original GT Heatmap Original GT Heatmap

Pill
(color)

Transistor
(misplace)

Zipper
(broken teeth)

Capsules
(bubble)

Cashew
(stuck)

PCB1
(bent wire)

Figure 3: Failure case on MVTec-AD and VisA. The left figure demonstrate the sample from MVTec
while the right figure demonstrate the sample from VisA.
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Table 11: Layer selection of visual guidance ablation.

Last Layer Multi-layer MVTec MVTec VisA VisA
AUROCI AUROCP AUROCI AUROCP

✓ × 92.3 96.2 85.3 96.7
× ✓ 94.2 96.4 85.4 96.9

Table 12: Hyper-parameter analysis result.

(a) Analysis of α.

α
Mvtec VisA

Image Pixel Image Pixel

1 92.1 96.0 79.9 96.1
4 93.5 96.3 82.4 96.4
8 94.2 96.4 85.4 96.9

12 91.4 96.2 84.5 96.8

(b) Analysis of β.

β
Mvtec VisA

Image Pixel Image Pixel

1 93.1 96.3 84.1 96.7
4 93.7 96.3 84.3 96.6
8 94.2 96.4 85.4 96.9
12 93.8 96.4 84.7 96.8

(c) Analysis of token number.

T Mvtec VisA
Image Pixel Image Pixel

8 93.6 95.9 83.8 96.8
16 93.9 95.9 83.9 96.7
24 94.2 96.4 85.4 96.9
32 93.8 96.0 84.2 96.7

Table 13: Comparison of pixel-level anomaly detection in terms of subset-wise AUROC on MVTec.

MVTec 1-shot 2-shot 4-shot
SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours

Bottle 66.9 95.1 94.5 90.4 98.4 67.3 95.5 95.9 90.4 98.6 67.5 95.2 96.9 90.4 98.6
Cable 57.2 74.6 76.8 78.9 94.9 58.1 76.4 80.7 78.9 95.3 60.2 77.1 83.7 78.9 96.4

Capsule 61.7 95.6 94.6 95.8 97.2 62.5 94.7 94.8 95.8 97.5 63.8 96.3 97.7 95.8 97.2
Carpet 63.1 99.1 99.1 98.8 99.5 62.3 99.1 99.2 98.8 99.5 61.8 99.1 99.2 98.8 99.5
Grid 64.7 95.1 96.8 97.3 96.6 66.9 96.3 96.0 97.3 96.3 67.6 96.0 96.8 97.3 98.1

Hazelnut 56.0 98.6 96.9 97.1 98.4 58.1 98.7 98.0 97.1 98.7 60.3 98.7 98.1 97.1 98.8
Leather 65.1 99.3 99.3 98.6 99.4 63.7 99.3 99.4 98.6 99.3 65.4 99.4 99.4 98.6 99.5

Metal nut 64.9 77.9 94.2 74.4 94.4 65.1 76.1 94.8 74.4 95.4 65.8 79.5 93.2 74.4 94.8
Pill 83.9 93.9 92.3 92.0 96.6 83.4 94.1 94.3 92.0 97.0 83.5 94.4 95.3 92.0 96.9

Screw 51.0 96.7 95.7 97.5 96.0 52.7 97.0 96.2 97.5 96.5 52.9 96.5 97.2 97.5 96.9
Tile 65.1 92.2 94.3 94.6 96.9 64.6 92.6 95.5 94.6 97.1 66.7 92.2 95.9 94.6 97.3

Transistor 58.5 85.1 75.5 71.0 86.6 58.9 95.3 84.4 71.0 88.4 59.1 84.4 87.5 71.0 89.6
Toothbrush 55.9 95.1 99.0 91.9 97.4 57.2 84.5 99.2 91.9 97.4 57.3 96.8 99.2 91.9 97.9

Wood 51.0 94.7 95.8 96.5 97.0 52.3 94.7 95.3 96.5 97.3 55.6 94.6 95.6 96.5 97.4
Zipper 41.0 92.9 97.6 91.4 96.0 42.4 92.4 97.3 91.4 96.7 46.7 92.9 96.9 91.4 96.7

Mean 60.4 92.4 91.8 91.1 96.4 61.2 92.4 92.2 91.1 96.7 62.8 92.9 92.9 91.1 97.0

Table 14: Comparison of pixel-level anomaly detection in terms of subset-wise PRO on MVTec.

MVTec 1-shot 2-shot 4-shot
SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours

Bottle 58.9 84.5 89.1 80.9 94.9 60.6 85.8 91.6 80.9 95.2 61.5 84.8 93.4 80.9 95.5
Cable 30.7 55.9 70.4 64.4 86.7 34.6 62.1 71.2 64.4 89.5 35.3 61.5 75.8 64.4 91.2

Capsule 51.4 89.0 81.2 87.2 91.3 52.3 84.2 82.0 87.2 92.6 51.7 88.9 90.7 87.2 88.9
Carpet 56.3 96.4 96.8 90.1 98.1 55.8 96.1 96.9 90.1 98.0 57.9 96 96.6 90.1 97.7
Grid 59.7 85.3 91.9 75.6 88.4 60.9 88.1 89.2 75.6 87.7 62.1 86.8 91.9 75.6 91.3

Hazelnut 47.6 92.5 90.9 92.4 93.8 55.6 93.1 93.6 92.4 94.6 54.4 92.4 93.3 92.4 95.8
Leather 61.2 98.2 98.3 92.2 98.7 60.7 98.3 98.8 92.2 98.5 61.9 98.2 97.8 92.2 98.6

Metal nut 54.6 77.0 90.1 71.0 91.8 57.8 75.6 90.7 71.0 92.3 59.9 79.5 89.8 71.0 93.4
Pill 68.5 88.9 90.1 58.1 94.8 66.1 89.6 93.3 58.1 94.1 65.3 89.9 94.6 58.1 95.6

Screw 49.8 87.0 83.9 88.0 85.3 50.9 88.1 84.5 88.0 85.8 51.2 86.6 89.1 88.0 87.5
Tile 55.1 78.7 89.8 87.6 90.4 54.7 79.7 90.7 87.6 90.7 54.6 78.2 91.4 87.6 91.2

Toothbrush 53.7 86.5 93.4 88.5 82.4 57.2 85.6 93.1 88.5 82.9 59.1 88.5 92.3 88.5 84.4
Transistor 41.9 63.5 59.4 58.1 67.4 43.5 62.8 66.0 58.1 68.6 45.3 62.6 69.4 58.1 71.2

Wood 56.7 86.9 92.8 91.2 94.2 58.7 87.8 93.4 91.2 94.6 59.5 88.3 93.1 91.2 94.7
Zipper 50.2 81.9 92.5 65.3 88.3 51.7 81.8 91.7 65.3 89.6 54.2 83 91.2 65.3 90.8

Mean 53.1 83.5 83.6 81.4 89.8 54.7 83.9 84.3 81.4 90.3 55.6 84.4 84.7 81.4 91.2

Table 15: Comparison of image-level anomaly detection in terms of subset-wise AUROC on MVTec.

MVTec 1-shot 2-shot 4-shot
SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours

Bottle 81.6 98.9 98.6 89.3 99.7 94.3 99.2 100.0 89.3 99.8 88.0 99.2 99.0 89.3 99.1
Cable 34.8 78.0 83.6 69.8 92.8 34.9 83.9 87.2 69.8 92.1 35.7 82.3 88.7 69.8 95.4

Capsule 46.5 75.5 64.2 89.9 80.5 65.8 65.5 65.3 89.9 91.8 87.4 80.1 93.4 89.9 94.5
Carpet 72.3 99.9 100 100.0 100.0 87.0 99.9 100.0 100.0 100.0 92.5 99.9 100.0 100.0 100.0
Grid 91.0 99.6 98.8 97.0 97.0 94.4 99.2 97.4 97.0 97.0 97.2 99.5 100.0 97.0 96.0

Hazelnut 49.0 94.9 98.4 97.2 98.0 85.3 95.2 99.8 97.2 98.5 92.9 94.7 99.0 97.2 98.5
Leather 61.1 100.0 100.0 99.8 100.0 66.2 100.0 100.0 99.8 100.0 74.7 100.0 100.0 99.8 100.0

Metal nut 62.2 98.0 97.6 93.6 99.4 70.0 97.8 96.2 93.6 99.7 75.5 98.9 100.0 93.6 99.9
Pill 51.8 88.9 87.9 81.8 96.6 60.7 91.8 89.1 81.8 96.0 74.7 91.1 90.4 81.8 96.6

Screw 42.4 85.1 74.0 81.1 76.8 48.4 82.7 81.2 81.1 81.5 54.8 84.4 84.2 81.1 82.1
Tile 53.7 100.0 99.8 100.0 99.7 55.8 100.0 99.3 100.0 99.5 69.8 100.0 99.2 100.0 99.9

Toothbrush 44.0 94.2 94.4 84.7 91.9 44.6 93.9 100.0 84.7 92.5 49.0 98.1 98.8 84.7 92.5
Transistor 55.0 85.5 73.7 92.8 91.4 55.8 85.4 87.2 92.8 90.4 85.6 85.6 94.4 92.8 91.2

Wood 68.8 98.7 98.6 96.8 99.4 74.3 98.9 98.9 96.8 99.2 79.4 98.9 99.2 96.8 99.6
Zipper 67.3 94.9 95.3 98.5 89.4 88.7 97.2 93.5 98.5 95.5 92.3 97.0 95.8 98.5 96.0

Mean 58.8 92.8 86.3 91.5 94.2 68.4 92.7 89.2 91.5 95.6 76.6 94 90.6 91.5 96.1
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Table 16: Comparison of image-level anomaly detection in terms of subset-wise AUPR on MVTec.

MVTec 1-shot 2-shot 4-shot
SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours

Bottle 94.0 99.7 99.6 97.0 99.9 98.1 99.8 100.0 97.0 100.0 96.0 99.8 99.7 97.0 99.7
Cable 65.8 87.1 91.2 100.0 96.1 65.8 90.6 92.8 100.0 95.8 65.2 90.0 93.6 100.0 97.5

Capsule 76.1 93.9 85.7 97.9 95.4 86.8 88.3 85.5 97.9 98.3 95.8 94.8 98.5 97.9 98.9
Carpet 87.2 100.0 100.0 100.0 100.0 95.0 100.0 100.0 100.0 100.0 97.4 100.0 100.0 100.0 100.0
Grid 97.1 99.9 99.5 99.1 99.0 98.3 99.7 99.1 99.1 99.0 99.2 99.8 100.0 99.1 98.6

Hazelnut 80.9 97.4 99.1 98.6 99.2 94.4 97.5 99.9 98.6 99.4 97.7 97.2 99.4 98.6 99.4
Leather 74.4 100.0 100.0 99.9 100.0 76.7 100.0 100.0 99.9 100.0 83.7 100.0 100.0 99.9 100.0

Metal nut 89.7 99.6 99.3 98.5 99.9 91.9 99.5 98.3 98.5 99.9 93.7 99.8 100.0 98.5 100.0
Pill 61.5 97.6 96.8 95.4 99.4 71.4 98.3 97.1 95.4 99.3 84.5 98.2 97.7 95.4 99.4

Screw 83.2 95.1 91.19 92.5 87.0 85.0 93.3 93.5 92.5 92.6 86.6 94.0 93.7 92.5 92.0
Tile 88.1 100.0 99.9 100.0 99.9 88.4 100.0 99.7 100.0 99.8 92.4 100.0 99.6 100.0 99.9

Toothbrush 72.2 97.7 97.7 93.7 97.3 70.6 97.6 100.0 93.7 97.5 72.9 99.3 99.5 93.7 97.5
Transistor 81.1 80.8 62.2 90.6 89.8 73.2 81.0 77.2 90.6 88.3 93.5 82.6 92.2 90.6 89.2

Wood 64.5 99.6 99.5 99.2 99.8 70.4 99.7 99.6 99.2 99.8 75.6 99.7 99.7 99.2 99.9
Zipper 89.3 98.6 98.8 99.6 95.6 96.9 99.2 98.2 99.6 98.7 98.0 99.2 98.9 99.6 98.8

Mean 80.3 96.5 93.4 96.2 97.2 84.2 96.3 94.8 96.2 97.9 88.8 97.0 96.5 96.2 98.1

Table 17: Comparison of pixel-level anomaly detection in terms of subset-wise AUROC on VisA.

VisA 1-shot 2-shot 4-shot
SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours

candle 48.1 93.8 97.1 98.8 98.5 52.2 94.7 97.7 98.8 98.5 53.1 95 97.7 98.8 98.6
capsules 52.7 93.2 96.7 95.0 97.1 56.3 93.0 97.2 95.0 97.3 56.7 93.2 97.4 95.0 97.9
cashew 79.7 94.6 97.9 93.8 97.6 81.9 95.3 97.8 93.8 97.1 83.3 94.7 97.9 93.8 97.5

chewinggum 77.3 98.9 99.2 99.3 99.6 78.1 98.9 99.0 99.3 99.5 78.4 98.9 99.1 99.3 99.5
fryum 80.8 95.1 95.6 94.6 96.2 83.3 95.6 95.8 94.6 96.1 84.1 95.4 96.0 94.6 95.8

macaroni1 71.7 95.6 97.6 98.3 97.5 71.1 96.7 98.8 98.3 97.6 71.5 97 98.6 98.3 97.8
macaroni2 59.7 94 95.6 97.6 96.6 62.8 94.4 96.1 97.6 96.9 63.6 93.8 98.1 97.6 96.9

pcb1 61.5 94.1 96.9 94.1 98.5 65.7 94.6 98.1 94.1 98.5 65.3 94.7 98.8 94.1 98.7
pcb2 62.6 92.4 94.0 92.4 94.6 64.4 93.1 95.1 92.4 96.8 66.4 93.3 95.6 92.4 96.6
pcb3 63.9 91.6 95.3 88.4 93 67.1 92.4 95.5 88.4 93.7 70.1 93.2 96.4 88.4 94
pcb4 78.7 94.2 95.7 95.7 95.2 80.4 94.9 96.8 95.7 96.6 80.2 95.6 96.9 95.7 97.2

pipe fryum 91.2 97.9 98.6 98.2 98.3 92.3 97.8 98.8 98.2 98.5 92.4 97.8 98.9 98.2 98.5

Mean 69.0 94.6 96.3 95.5 96.9 71.3 95.1 96.9 95.5 97.2 72.1 95.2 97.2 95.5 97.4

Table 18: Comparison of pixel-level anomaly detection in terms of subset-wise PRO on VisA.

VisA 1-shot 2-shot 4-shot
SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours

candle 65.6 89.6 92.3 96.2 95.0 65.4 90.2 92.3 96.2 95.3 65.7 90.5 92.6 96.2 95.4
capsules 51.2 62.1 82.7 78.5 83.6 52.9 61.8 82.1 78.5 83.9 53.0 61.9 77.0 78.5 85.2
cashew 59.8 87.6 89.9 91.6 92.9 62.3 86.7 88.1 91.6 93.0 63.2 86.7 88.3 91.6 92.8

chewinggum 65.9 82.7 84.9 91.2 92.5 68.7 83.0 84.1 91.2 93.4 68.9 82.7 83.2 91.2 93.7
fryum 56.5 87.5 81.9 86.8 87.7 54.9 87.8 80.8 86.8 88.1 59.9 88.7 81.9 86.8 89.2

macaroni1 65.3 85.6 88.6 89.8 89.3 68.1 89.8 90.8 89.8 90.1 67.4 90.1 93.5 89.8 89.9
macaroni2 61.8 81.0 83.7 84.2 86.6 64.6 81.0 85.2 84.2 86.3 65.8 79.8 91.2 84.2 87.1

pcb1 43.2 68.8 87.9 81.7 84.3 47.5 70.2 86.5 81.7 85.1 53.1 70.5 87.1 81.7 85.6
pcb2 46.1 73.6 73.4 78.9 77.3 48.0 74.0 76.8 78.9 77.8 51.9 74.1 77.9 78.9 77.4
pcb3 48.7 76.7 79.0 77.1 76.8 52.2 79.4 79.5 77.1 78.7 51.1 80.3 83.6 77.1 78.1
pcb4 49.9 79.9 76.7 91.3 83.7 54.1 82.4 83.7 91.3 84.3 54.7 83.8 82.0 91.3 87.3

pipe fryum 72.6 95.7 96.2 96.8 97.2 75.9 95.7 96.9 96.8 97.1 76.3 95.8 96.7 96.8 97.1

Mean 57.2 80.9 82.2 87.0 87.3 59.6 81.8 85.2 87.0 87.9 60.9 82.1 84.7 87.0 88.3

Table 19: Comparison of image-level anomaly detection in terms of subset-wise AUROC on VisA.

VisA 1-shot 2-shot 4-shot
SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours

candle 37.3 96.3 91.8 79.3 91.9 57.2 96.4 92.0 79.3 95.5 60.0 96.9 92.9 79.3 95.9
capsules 51.8 79.3 83.2 81.5 88.9 56.6 81.6 78.7 81.5 90.3 60.1 83 81.7 81.5 90.5
cashew 64.0 93.9 88.9 76.3 85.6 65.1 92.6 89.6 76.3 86.7 80.2 92.6 88.0 76.3 91.2

chewinggum 67.5 97.9 97.3 97.4 97.7 74.5 98.1 97.1 97.4 97.8 86.6 98.4 98.1 97.4 98
fryum 72.2 92.8 88.0 93.0 89.9 73.9 90.1 85.7 93.0 92.7 83.8 91.6 90.6 93.0 93.3

macaroni1 65.1 81.9 87.3 87.2 85.1 59.9 86.4 87.4 87.2 84.7 59.2 86.9 89.1 87.2 88.4
macaroni2 56.0 78.1 60.8 73.4 75.5 50.8 76.8 74.9 73.4 76.1 57.2 79 80.5 73.4 78.1

pcb1 73.4 83.8 83.0 85.4 83.5 78.2 85.5 82.9 85.4 86.5 84.1 86 86.1 85.4 85.2
pcb2 71.7 58.4 77.9 62.2 72.6 79.4 56.8 84.4 62.2 75.2 87.2 59.4 81.1 62.2 75.5
pcb3 58.5 64.9 79.9 62.7 71.8 63.7 67.7 71.7 62.7 70.7 74.5 65.6 87.1 62.7 74.7
pcb4 76.6 72.1 96.5 93.9 82.9 89.6 73.6 96.0 93.9 84.4 86.9 70.7 85.3 93.9 88.7

pipe fryum 41.7 98.2 98.9 92.4 99.8 53.1 98.5 99.6 92.4 99.9 56.6 98.4 99.3 92.4 99.8

Mean 61.3 83.1 80.8 82.1 85.4 66.8 83.7 84.3 82.1 86.7 73.0 84.1 85.7 82.1 88.3

Table 20: Comparison of image-level anomaly detection in terms of subset-wise AUPR on VisA.

VisA 1-shot 2-shot 4-shot
SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours SPADE WinCLIP PromptAD AnomalyCLIP Ours

candle 41.3 96.7 90.7 81.1 94.1 54.6 96.9 91.7 81.1 95.3 57.7 97.3 92.8 81.1 95.5
capsules 65.6 87.0 90.0 88.7 94.7 68.8 89.1 86.7 88.7 94.9 71.9 90 89.0 88.7 96.0
cashew 79.4 97.4 95.0 89.4 95.7 80.2 96.7 95.1 89.4 95.2 88.2 96.8 94.7 89.4 96.0

chewinggum 83.6 99.1 98.9 98.9 99.1 87.2 99.2 98.8 98.9 99.2 93.0 99.3 99.2 98.9 99.3
fryum 86.1 96.9 94.6 96.8 96.3 86.9 95.4 93.9 96.8 96.8 91.8 96.1 95.9 96.8 97.3

macaroni1 63.5 82.8 89.7 86.0 89.3 56.1 87.2 89.0 86.0 90.7 55.5 87.4 91.1 86.0 91.2
macaroni2 54.1 80.1 61.5 72.1 79.3 51.7 79.0 78.2 72.1 80.2 52.0 81.9 81.2 72.1 80.6

pcb1 73.2 83.7 77.3 87.0 77.4 77.7 84.1 79.0 87.0 78.5 84.6 85.6 81.2 87.0 78.6
pcb2 71.6 58.6 79.3 64.3 70.2 78.4 54.6 85.5 64.3 73.6 88.5 61.3 80.8 64.3 73.9
pcb3 58.6 66.2 81.6 70.0 73.2 62.1 67.3 73.5 70.0 74.3 75.1 64.6 88.0 70.0 74.6
pcb4 77.5 73.8 96.1 94.4 80.9 88.0 70.2 94.8 94.4 81.7 85.7 73.5 83.6 94.4 84.5

pipe fryum 64.2 99.2 99.6 96.3 99.9 72.0 99.3 99.7 96.3 100 75.6 99.3 99.7 96.3 99.9

Mean 68.2 85.1 83.2 85.4 87.5 72.0 84.9 87.8 85.4 88.6 76.6 86.1 88.8 85.4 89.6
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Figure 4: Additional qualitative results from our method (1-shot), tested on MVTec and VisA.
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