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The supplementary material consists of this document, which contains the proofs of the theoretical
results in Section 3 of the paper and additional experimental results on low-dose CT reconstruction,
image inpainting (on MNIST) and denoising (on STL-10). The purpose of these last two exper-
iments is to demonstrate that the proposed UAR framework is applicable to inverse problems in
general and is not restricted to CT reconstruction. The data (in numpy format) used in the experi-
ments, our Python codes (which use the PyTorch library for network training), and the instructions
for running them are available at https://github.com/Subhadip-1/unrolling_meets_data_
driven_regularization.

We recall the dominated convergence theorem below, which is used as one of the main tools in our
proofs. For the sake of completeness, we also recall the definition of narrow convergence of measures.

Dominated convergence theorem: Consider a sequence of measurable functions {fn}n∈N defined
on a measure space (Ω,F , µ) such that fn → f pointwise for a measurable function f defined on

(Ω,F , µ). Suppose that for any x ∈ Ω, |fn(x)| ≤ g(x), where
∫

Ω

|g|dµ <∞. Then, it holds that

lim
n→∞

∫
Ω

|fn − f | dµ = 0

and consequently, lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ.

Narrow convergence of measures: Consider a sequence of measures {µn}n∈N defined on a mea-
surable space (Ω,F). Given a measure µ defined on (Ω,F) we say that µn narrowly converges to µ
if

lim
n→+∞

∫
ϕdµn =

∫
ϕdµ

for every ϕ ∈ Cb(Ω), where we denote by Cb(Ω) the set of bounded continuous functions on Ω.

A Proofs of the theoretical results

In this section, we prove the theoretical results stated in Section 3. First, we recall the setting and the
main definitions. For the set of assumptions used in this section, we refer to Assumptions A1 – A4
stated in Section 3. The objective of the adversarial optimization is defined as

inf
φ

sup
R∈L1

J1

(
Gφ,R|λ, πyδ

)
:= Eπ

yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
+ λ

(
Eπ

yδ

[
R(Gφ(yδ))

]
− Eπx [R(x)]

)
.

(1)
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In Section 3, we claimed that the problem (1) is well-posed and is equivalent to

inf
φ
J2

(
Gφ|λ, πyδ

)
:= Eπ

yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
+ λW1(πx, (Gφ)#πyδ) . (2)

This shows the connection between the training objective and the Wasserstein-1 distance between
the ground-truth distribution and the distribution of the reconstruction. Here, we prove the theorems
stated in Section 3 regarding well-posedness (Theorem 1), stability to noise (Theorem 2), and
dependence on the parameter λ (Proposition 1, Theorem 3, and Theorem 4) for (1) and (2). Moreover,
we further discuss the relation between (2) and the variational problem used as a refinement and
prove Proposition 2.

A.1 Well-posedness of the adversarial loss: Proofs of Theorem 1 and Theorem 2

A.1.1 Proof of Theorem 1

We start by proving the existence of an optimal solution for (2). Let Gφn be a minimizing sequence
for (2), namely a sequence of reconstruction operators such that

lim
n→+∞

J2

(
Gφn |λ, πyδ

)
= inf

φ
J2

(
Gφ|λ, πyδ

)
. (3)

As φn ∈ K and K is compact and finite dimensional (see Assumption A2), there exists φ∗ ∈ K
such that, up to sub-sequences, φn → φ∗ and consequently Gφn → Gφ∗ pointwise (see Assumption
A3). We now show that Gφ∗ is a minimum for (2). Thanks to the continuity of A, we know that∥∥yδ −AGφn(yδ)

∥∥2

2
→
∥∥yδ −AGφ∗(yδ)∥∥2

2
pointwise. Moreover, using Assumptions A1 and A4,

the bound

∥∥yδ −AGφn(yδ)
∥∥2

2
≤ sup

yδ∈supp(π
yδ

)

2‖yδ‖22 + 2‖A‖2op

(
sup
φ∈K
‖Gφ‖∞

)2

<∞

holds for every yδ ∈ supp(πyδ), where we denote by ‖A‖op the operator norm of A. Therefore, by
applying the dominated convergence theorem, we obtain that

lim
n→+∞

Eπ
yδ

∥∥yδ −AGφn(yδ)
∥∥2

2
= Eπ

yδ

∥∥yδ −AGφ∗(yδ)∥∥2

2
. (4)

Notice now that for every ϕ ∈ Cb(Rk).∣∣∣∣∫ ϕ(x) d[(Gφn)#πyδ ]− ϕ(x) d[(Gφ∗)#πyδ ]

∣∣∣∣ ≤ ∫ |ϕ(Gφn(yδ))− ϕ(Gφ∗(yδ))|dπyδ → 0

as n→ +∞, using, again, the dominated convergence theorem together with Assumption A1. Thus,
the probability measures (Gφn)#πyδ converge narrowly to (Gφ∗)#πyδ as n→ +∞. Moreover, using
again dominated convergence, together with the bound supφ∈K ‖Gφ‖∞ <∞ (see Assumption A4),
we also have∣∣∣∣∫ ‖x‖2 d(Gφn)#πyδ − ‖x‖2 d(Gφ∗)#πyδ

∣∣∣∣ ≤ ∫ |‖Gφn(yδ)‖2 − ‖Gφ∗(yδ)‖2|dπyδ → 0 (5)

as n → +∞. Thus, using [4, Theorem 5.11], we infer that limn→+∞W1(πx, (Gφn)#πyδ) =
W1(πx, (Gφ∗)#πyδ). Finally using such convergence, together with (4) and (3), we conclude that

J2

(
Gφ∗ |λ, πyδ

)
= Eπ

yδ

∥∥yδ −AGφ∗(yδ)∥∥2

2
+ λW1(πx, (Gφ∗)#πyδ)

= lim
n→+∞

Eπ
yδ

∥∥yδ −AGφn(yδ)
∥∥2

2
+ λW1(πx, (Gφn)#πyδ)

= lim
n→+∞

J2

(
Gφn |λ, πyδ

)
= inf

φ
J2

(
Gφ|λ, πyδ

)
,

thus showing that Gφ∗ is a minimum for (2).
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We now show that (1) and (2) are equivalent. Using the Kantorovich-Rubinstein duality [4, Theorem
1.39] and bound supφ∈K ‖Gφ‖∞ <∞ (Assumption A4), we have that for every φ ∈ K, there exists
Rφ ∈ L1 such that

Rφ ∈ arg max
R∈L1

(
Eπ

yδ

[
R(Gφ(yδ))

]
− Eπx [R(x)]

)
, and (6)

Eπ
yδ

[
Rφ(Gφ(yδ))

]
− Eπx

[
Rφ(x)

]
= W1(πx, (Gφ)#πyδ). (7)

Therefore, denoting by Gφ∗ the minimum for (2), it holds that

inf
φ

sup
R∈L1

J1

(
Gφ,R|λ, πyδ

)
= inf

φ
Eπ

yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
+ λ sup

R∈L1

(
Eπ

yδ

[
R(Gφ(yδ))

]
− Eπx [R(x)]

)
= inf

φ
Eπ

yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
+ λ

(
Eπ

yδ

[
Rφ(Gφ(yδ))

]
− Eπx

[
Rφ(x)

])
= inf

φ
Eπ

yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
+ λW1(πx, (Gφ)#πyδ)

= Eπ
yδ

∥∥yδ −AGφ∗(yδ)∥∥2

2
+ λ

(
Eπ

yδ

[
R∗(Gφ∗(yδ))

]
− Eπx [R∗(x)]

)
,

whereR∗ is any 1-Lipschitz function such that

R∗ ∈ arg max
R∈L1

(
Eπ

yδ

[
R(Gφ∗(yδ))

]
− Eπx [R(x)]

)
.

In particular, (11) in Theorem 1 holds and the pair (Gφ∗ ,R∗) is optimal for (1). Viceversa, if
(Gφ∗ ,R∗) is optimal for (1), then for every φ̂ ∈ K we have

J2

(
Gφ∗ |λ, πyδ

)
= sup
R∈L1

J1

(
Gφ∗ ,R|λ, πyδ

)
= inf

φ
sup
R∈L1

J1

(
Gφ,R|λ, πyδ

)
≤ sup
R∈L1

J1

(
Gφ̂,R|λ, πyδ

)
= J2

(
Gφ̂|λ, πyδ

)
where we used the optimality of (Gφ∗ ,R∗) together with (6) and (7), showing that Gφ∗ is a minimizer
for (2).

A.1.2 Proof of Theorem 2

Let δn be a sequence converging to δ as n→ +∞ and

φn ∈ arg inf
φ

J2

(
Gφ|λ, πyδn

)
. (8)

Recall that πyδn converges in total variation to πyδ . We denote this convergence by

lim
n→+∞

‖πyδn − πyδ‖M = 0. (9)

Using the fact that φn ∈ K and K is compact and finite dimensional, we know that there exists
φ∗ ∈ K such that φn → φ∗, up to sub-sequences. In particular, by Assumption A3, Gφn → Gφ∗ , up
to sub-sequences. We need to prove that

φ∗ ∈ arg min
φ

J2

(
Gφ|λ, πyδ

)
. (10)

First, notice that as πyδn → πyδ in total variation, it holds that for every bounded, measurable
function f , ∫

f dπyδn →
∫
f dπyδ . (11)

Therefore, using the fact that Gφ is bounded for every φ ∈ K (Assumption A4), A is linear, and the
supports of πyδn and πyδ are uniformly contained in a common compact set (Assumption A1), it holds
for every Gφ that

lim
n→+∞

∫
‖yδ −AGφ(yδ)‖22 dπyδn =

∫
‖yδ −AGφ(yδ)‖22 dπyδ . (12)

3



Moreover, thanks to the dominated convergence theorem, together with the pointwise convergence
Gφn → Gφ∗ and the uniform bound supn ‖Gφn‖∞ <∞ (Assumption A4), we have

lim
n→+∞

∫
‖yδ −AGφn(yδ)‖22 dπyδ =

∫
‖yδ −AGφ∗(yδ)‖22 dπyδ . (13)

Therefore

lim sup
n→+∞

∣∣∣∣∫ ‖yδ −AGφn(yδ)‖22 dπyδn −
∫
‖yδ −AGφ∗(yδ)‖22 dπyδ

∣∣∣∣
= lim sup

n→+∞

∣∣∣∣∫ ‖yδ −AGφn(yδ)‖22 d(πyδn − πyδ + πyδ)−
∫
‖yδ −AGφ∗(yδ)‖22 dπyδ

∣∣∣∣
≤ lim sup

n→+∞

∣∣∣∣∫ ‖y −AGφn(yδ)‖22 dπyδ −
∫
‖y −AGφ∗(yδ)‖22 dπyδ

∣∣∣∣
+

∣∣∣∣∫ ‖yδ −AGφn(yδ)‖22 d(πyδ − πyδn )

∣∣∣∣
= lim sup

n→+∞

∣∣∣∣∫ ‖yδ −AGφn(yδ)‖22 d(πyδ − πyδn )

∣∣∣∣ (14)

≤ lim sup
n→+∞

∫
2‖yδ‖22 + 2(‖A‖op sup

n
‖Gφn‖∞)2 d‖πyδ − πyδn ‖ (15)

≤
[

sup
yδ∈K

2‖yδ‖22 + 2‖A‖2op

(
sup
φ∈K
‖Gφ‖∞

)2]
lim sup
n→+∞

‖πyδ − πyδn ‖M = 0, (16)

where in (14) we use (13) and in (15)–(16) we use (9) together with the fact that Gφn are uniformly
bounded (Assumption A4), A is linear and the supports of πyδn and πyδ are uniformly contained in a
common compact set K (Assumption A1).

Consider now a test function ϕ ∈ Cb(Rk). Notice that

lim sup
n→+∞

∣∣∣∣∫ ϕ(Gφn(yδ)) dπyδn −
∫
ϕ(Gφ∗(yδ)) dπyδ

∣∣∣∣
≤ lim sup

n→+∞

∣∣∣∣∫ ϕ(Gφn(yδ)) d(πyδn − πyδ)
∣∣∣∣+

∣∣∣∣∫ ϕ(Gφn(yδ)) dπyδ −
∫
ϕ(Gφ∗(yδ)) dπyδ

∣∣∣∣
≤ lim sup

n→+∞

∫
|ϕ(Gφn(yδ))|d|πyδn − πyδ |+

∣∣∣∣∫ ϕ(Gφn(y)) dπyδ −
∫
ϕ(Gφ∗(yδ)) dπyδ

∣∣∣∣
≤ lim sup

n→+∞
‖ϕ‖∞‖πyδn − πyδ‖M +

∣∣∣∣∫ ϕ(Gφn(yδ)) dπyδ −
∫
ϕ(Gφ∗(yδ)) dπyδ

∣∣∣∣
= 0,

where we use again (9) together with the pointwise convergence Gφn → Gφ∗ and the com-
pactness of the support of πyδ . Such estimate prove that (Gφn)#πyδn converges narrowly to
(Gφ∗)#πyδ . Moreover, adapting the previous to test function ϕ(x) = ‖x‖2 and using addition-
ally that supn ‖Gφn‖∞ <∞ (see Assumption A4) we infer

lim
n→+∞

∣∣∣∣∫ ‖x‖2 d[(Gφn)#πyδn ]− ‖x‖2 d[(Gφ∗)#πyδ ]

∣∣∣∣ = 0

which, thanks to [4, Theorem 5.11] and together with the narrow convergence (Gφn)#πyδn →
(Gφ∗)#πyδ implies

lim
n→+∞

W1(πx, (Gφn)#πyδn ) = W1(πx, (Gφ∗)#πyδ) (17)

and similarly

lim
n→+∞

W1(πx, (Gφ)#πyδn ) = W1(πx, (Gφ)#πyδ) for all φ ∈ K. (18)

We are finally in position to prove (10). Let φ ∈ K a competitor for the variational problem in (10).
Then thanks to the optimality of φn

J2

(
Gφn |λ, πyδn

)
≤ J2

(
Gφ|λ, πyδn

)
4



for every n. Passing to the limit in the previous inequality using (17), (18), (12) and (16) we obtain

J2

(
Gφ∗ |λ, πyδ

)
≤ J2

(
Gφ|λ, πyδ

)
(19)

as we wanted to prove.

A.2 Effect of λ on the end-to-end reconstruction. Proofs of Proposition 1, Theorem 3 and
Theorem 4

Here we prove Proposition 1, Theorem 3 and Theorem 4. We remind the reader the definition of the
function spaces

ΦL :=
{
φ : Eπ

yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
= 0
}

and ΦW :=
{
φ : (Gφ)#πyδ = πx

}
that we assume to be non-empty.

A.2.1 Proof of Proposition 1

Let Gφ∗ be a minimizer for (2). Then for every φ ∈ ΦL we easily estimate

Eπ
yδ

∥∥yδ −AGφ∗(yδ)∥∥2

2

≤ Eπ
yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
+ λW1(πx, (Gφ)#πyδ)− λW1(πx, (Gφ∗)#πyδ)

≤ λW1(πx, (Gφ)#πyδ),

leading to the first estimate in Proposition 1. Moreover, for every φ ∈ ΦW we obtain the second
estimate in Proposition 1, that is

λW1(πx, (Gφ∗)#πyδ)

≤ Eπ
yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
+ λW1(πx, (Gφ)#πyδ)− Eπ

yδ

∥∥yδ −AG(yδ)
∥∥2

2

≤ Eπ
yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
,

where we used that for every φ ∈ ΦW, W1(πx, (Gφ)#πyδ) = 0.

A.2.2 Proof of Theorem 3

We are assuming λn → 0 and

φ′n ∈ arg inf
φ

J2

(
Gφ|λn, πyδ

)
. (20)

First, using the fact that φ′n ∈ K and K is compact and finite dimensional we know that there exists
φ∗1 ∈ K such that φ′n → φ∗1, up to sub-sequences. In particular, it also holds that Gφ′n → Gφ∗1 , up to
sub-sequences, by Assumption A3. It remains to prove that

φ∗1 ∈ arg min
φ∈ΦL

W1(πx, (Gφ)#πyδ). (21)

First notice that by Proposition 1 we can select φ ∈ ΦL such that

Eπ
yδ

∥∥yδ −AGφ′n(yδ)
∥∥2

2
≤ λnW(πx, (Gφ)#πyδ)

for every n. So, taking the limit for n → +∞ and using that λn → 0 together with (4) (where
again we used Assumptions A1 and A4, and the dominated convergence theorem) we obtain
Eπ

yδ

∥∥yδ −AGφ∗1 (yδ)
∥∥2

2
= 0. Now, let φ ∈ ΦL. Using (20) we have that for every n

λnW1(πx, (Gφ′n)#πyδ) ≤ λnW1(πx, (Gφ′n)#πyδ) + Eπ
yδ

∥∥yδ −AGφ′n(yδ)
∥∥2

2

≤ λnW1(πx, (Gφ)#πyδ). (22)

With similar arguments as in the proof of Theorem 1 we can prove that the probability mea-
sures (Gφ′n)#πyδ converge narrowly to (Gφ∗1 )#πyδ as n → +∞. Additionally using the bound
supφ∈K ‖Gφ‖∞ < ∞ (see Assumption A4) we can repeat the computation in (5) to prove that

5



limn→+∞W1(πx, (Gφ′n)#πyδ) = W1(πx, (Gφ∗1 )#πyδ) [4, Theorem 5.11]. So, passing to the limit
in (22) we conclude that

W1(πx, (Gφ∗1 )#πyδ) = lim
n→+∞

W1(πx, (Gφ′n)#πyδ) ≤W1(πx, (Gφ)#πyδ)

showing (21). We now prove the convergence lim
n→∞

1
λn

inf
φ
J2

(
Gφ|λn, πyδ

)
= W1(πx, (Gφ∗1 )#πyδ).

Notice that using that, as Eπ
yδ

∥∥yδ −AGφ∗1 (yδ)
∥∥2

2
= 0 and (20) we have

1

λn
J2

(
Gφ′n |λn, πyδ

)
≤W1(πx, (Gφ∗1 )#πyδ)

and trivially
1

λn
J2

(
Gφ′n |λn, πyδ

)
≥W1(πx, (Gφ′n)#πyδ).

So, passing to the limit in the previous estimates and using that limn→+∞W1(πx, (Gφ′n)#πyδ) =
W1(πx, (Gφ∗1 )#πyδ) we prove the desired convergence.

A.2.3 Proof of Theorem 4

We are assuming λn → +∞ and
φ′n ∈ arg inf

φ
J2

(
Gφ|λn, πyδ

)
. (23)

First, using the fact that φ′n ∈ K and K is compact and finite dimensional we know that there exists
φ∗2 ∈ K such that φ′n → φ∗2, up to sub-sequences. In particular, it also holds that Gφ′n → Gφ∗2 , up to
sub-sequences, by Assumption A3. It remains to prove that

φ∗2 ∈ arg min
φ∈ΦW

Eπ
yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
. (24)

First notice that by Proposition 1 we can select φ ∈ ΦW such that

W1(πx, (Gφ′n)#πyδ) ≤
Eπ

yδ

∥∥yδ −AGφ(yδ)
∥∥2

2

λn
(25)

for every n. With similar arguments as in the proof of Theorem 1, using Assumption A1 and
Assumption A4 together with [4, Theorem 5.11] there holds that limn→+∞W1(πx, (Gφ′n)#πyδ) =
W1(πx, (Gφ∗2 )#πyδ). So, taking the limit in (25) for n→ +∞ and using that λn → +∞ we obtain
W1(πx, (Gφ∗2 )#πyδ) = 0.

Let now φ ∈ ΦW. Using (23) we have that for every n

Eπ
yδ

∥∥yδ −AGφ′n(yδ)
∥∥2

2
≤ Eπ

yδ

∥∥yδ −AGφ′n(yδ)
∥∥2

2
+ λnW1(πx, (Gφ′n)#πyδ)

≤ Eπ
yδ

∥∥yδ −AGφ(yδ)
∥∥2

2
. (26)

With similar arguments as in the proof of Theorem 1, using dominated convergence theorem together
with Assumption A1 and Assumption A4 it holds that

lim
n→+∞

Eπ
yδ

∥∥yδ −AGφ′n(yδ)
∥∥2

2
= Eπ

yδ

∥∥yδ −AGφ∗2 (yδ)
∥∥2

2
. (27)

So, passing to the limit in (26) we conclude that

Eπ
yδ

∥∥yδ −AGφ∗2 (yδ)
∥∥2

2
= lim
n→+∞

Eπ
yδ

∥∥yδ −AGφ′n(yδ)
∥∥2

2
≤ Eπ

yδ

∥∥yδ −AGφ(yδ)
∥∥2

2

showing (24).

We now show the convergence lim
n→∞

inf
φ
J2

(
Gφ|λn, πyδ

)
= Eπ

yδ

∥∥yδ −AGφ∗2 (yδ)
∥∥2

2
. Using that,

W1(πx, (Gφ∗2 )#πyδ) = 0, together with (23) we have

J2

(
Gφ′n |λn, πyδ

)
≤ Eπ

yδ

∥∥yδ −AGφ∗2 (yδ)
∥∥2

2

and trivially

J2

(
Gφ′n |λn, πyδ

)
≥ Eπ

yδ

∥∥yδ −AGφ′n(yδ)
∥∥2

2
.

So, passing to the limit in the previous estimate and using (27) we prove the desired convergence.
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Gφ∗(y)

πG∗
∇R∗ πx

Figure 1: A step of gradient descent applied to the initial point Gφ∗(y) moves the point in the direction
∇R∗(Gφ∗(y)) closer to the data distribution πx.

A.3 End-to-end reconstruction vis-à-vis the variational solution. Proof of Proposition 2 and
further discussion

A.3.1 Proof of Proposition 2

The first upper bound in Proposition 2 is a simple application of Markov inequality for probability
measures, which states that every non-negative random variable U satisfies P (U ≥ η) ≤ E[U ]

η , for
any η > 0.

For the second upper bound notice that using Theorem 1 we have∫
R∗(x) d[(Gφ∗)#πyδ ] =

∫
R∗(x) d[(Gφ∗)#πyδ ]−

∫
R∗(x) dπx = W1(πx, (Gφ∗)#πyδ),

(28)

where we also use the assumption R∗(x) = 0 for πx-almost every x. Therefore the second upper
bound in Proposition 2 follows from an application of Markov inequality, thanks to the assumed
positivity ofR∗.
We remark the assumption regarding the positivity ofR∗ is not restrictive, asR∗ + C is optimal for
every C ∈ R. However, it is not always true thatR∗(x) = 0 for πx-almost every x. As discussed in
Section 3, such assumption can be justified using a suitable weak manifold assumption for πx.

We conclude this section by further discussing the content of Theorem 5. As already noted, this
theorem ensures that a gradient-descent step performed on R∗ at x = Gφ∗(yδ) decreases the
Wasserstein distance with respect to the ground-truth distribution πx. Therefore, if the gradient-
descent step to solve the variational problem (8) is initialized with the reconstruction Gφ∗(yδ), the
next iterate gets pushed closer to the ground-truth distribution πx. If we additionally use the same
weak manifold assumption as in [2] it is possible to prove that an optimal regularizer R∗ is given
by the distance function from the ground-truth manifold (see [2]). In this case, if we additionally
assume that the projection from Gφ∗(yδ) to the manifold is unique, then the gradient ofR∗ in that
point is a unit vector from Gφ∗(yδ) to the unique projection point. Such consideration strengthens
even more our claim that an iterate of gradient descent initialized in Gφ∗(yδ) gets pushed closer to
the ground-truth distribution πx. A graphical representation of such effect is presented in Fig. 1.

B Additional numerical results

B.1 Some additional CT reconstruction examples

First, we provide a comparison of different algorithms on another test image from the Mayo-clinic low-
dose CT challenge dataset [3] (See Figure 2 below). The purpose of this example is to demonstrate
that the gain in performance achieved by UAR over the competing algorithms is consistent over
different test images, and is not just on average over all the test images.

B.2 Illustrative examples for inpainting and denoising

In this section, we consider two important imaging inverse problems: (i) image inpainting and (ii)
denoising; and show some representative examples demonstrating the performance of UAR for these
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tasks. The inpainting experiment is conducted on the MNIST dataset, where the measurement has a
square 8x8 block of missing pixels in the middle and is additionally corrupted by Gaussian noise
with variance equal to 0.2 (See Figure 3 below). UAR does a reasonable job of reconstructing the
underlying true digits. The UAR generator and regularizer are trained on 60000 training images and
then evaluated on the remaining 10000 test images for inpainting. The training batch-size is 128 and
the models are trained for 25 epochs. The regularization penalty is taken to be 0.2 for this experiment.
The generator is an unrolled proximal gradient network with 20 layers, which also goes on to show
that the UAR scheme is independent of the particular choice of the optimization algorithm that is
unrolled to construct the generator. The refinement was computed by running 50 iterations of the
variational problem starting from the end-to-end reconstruction as the initial estimate. We noted
that the refinement led to only minor improvements in the MSE. The average PSNR (dB) and SSIM
scores over the test images are as follows: (i) measurement: 12.21 dB, 0.42; (ii) UAR (end-to-end):
22.12 dB, SSIM 0.91; and (iii) UAR (refined): 22.17 dB, 0.91.

The denoising experiment on the STL-10 dataset is conducted on images corrupted by Gaussian noise
of standard deviation 0.1 (see Figure 4). For this experiment as well, we noted that the refinement
resulted in little to no further improvement on the initial end-to-end reconstruction. The average
PSNR (dB) and SSIM over the 800 test images are as follows: (i) noisy measurement: 19.99 dB,
0.91; (ii) UAR (end-to-end and refined) 25.23 dB, 0.97.

These experiments demonstrate that the proposed UAR framework is applicable to imaging inverse
problems in general, although the training and network hyper-parameters are to be carefully engi-
neered to extract the state-of-the-art performance from UAR for a specific inverse problem of interest.
In both inpainting and denoising experiments, we chose to unroll the proximal gradient-descent
algorithm (as opposed to PDHG [1] that was chosen for the CT experiments), which go on to show
that the UAR framework is not specific to the choice of the algorithm that one unfolds to construct
the generator. For both inpainting and denoising experiments, we found that the refinement step
did not yield noticeable improvement over the initial estimate obtained by the end-to-end generator.
This is due to the fact that both MNIST and STL-10 datasets are not too diverse/heterogeneous and
there are 60000 and 5000 training images, respectively, which is much higher than the number of
available training images in the Mayo-CT dataset that we used for the CT experiment. Consequently,
the end-to-end generator, which learns to minimize the expected variational loss over the distribution
of the measurement, already provides a reconstruction that is very close to the true minimizer of
the variational objective for a specific given measurement. This trend indicates that as the number
of training images increases, the improvement from the refinement step tends to diminish and one
already gets a reasonably good reconstruction by just using the end-to-end unrolled generator.
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(a) ground-truth (b) FBP: 21.59, 0.24 (c) TV: 29.16, 0.77

(d) U-net: 32.69, 0.87 (e) LPD: 34.05, 0.89 (f) ACR: 30.14, 0.83

(g) AR: 32.14, 0.84 (h) UAR (end-to-end): 32.80, 0.86 (i) UAR (refined): 33.15, 0.87

Figure 2: Another numerical example on the Mayo clinic data [3]. As we see, UAR (refined)
significantly outperforms AR and ACR, and achieves slightly better reconstruction quality than
U-net-based post-processing, which is a supervised approach. To see the reduction in reconstruction
time using UAR as compared to competing variational methods (such as TV, AR, and ACR), refer to
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Figure 3: Some representative examples of inpainting MNIST digits.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Our code is included in the supplemental material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] The dataset and the codes used in this work are available publicly.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] In Section 4, we mention that the data used in
this work are publicly available [3]. For the ease of running our scripts, we convert the
raw data to numpy format, which does not contain any sensitive information, and make
them available along with the supplementary material.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

10



Figure 4: Some representative examples of denoising on STL-10.
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