
We restate the theoretical statements and the algorithms here for completeness and convenience.

A Proofs for Minimum Block Greedy Based Algorithm

Given a normalized monotone submodular function f : 2V ! R�0, where V is the ground set
with |V | = n elements, and a positive integer m denoting the number of blocks in the partition, the
Submodular Robust partition is defined as:

max
⇡2⇧(V,m)

min
A2⇡

f(A), (1)

Where ⇧(V,m) is the set of all possible partitions on set V into m blocks, and ⇡ is one partition. The
objective aims to find the partition such that the minimum-valued block in the partition is maximized.
Denote the optimal partition to Eq. (1) as ⇡⇤ = {O1, O2, . . . , Om}.
Lemma 2 (Unconstrained Min-Block Streaming[29]). For a ground set V and its elements
(v1, v2, . . . , vn) coming in an arbitrary streaming order, the output solution of Alg. 1 has
minj2[m] f(Aj) �

1
m
minj2[m] f(Oj).

Corollary 1 (Unconstrained Min-Block Greedy[29]). The output solution of Alg. 2 has
minj2[m] f(Aj) �

1
m
minj2[m] f(Oj) since the order of adding elements in Min-Block Greedy

is one possible order of the ground set elements.

Lemma 3 (Tightness of Corollary 1). 8✏ > 0, 9 a submodular function f such that the output
solution of Alg 2 minj=1:m f(Aj) =

1
m
minj=1:m f(Oj) + ✏.

Proof. We construct a set cover function as the tight example for Corollary 1. We illustrate the set
cover function graphically in Fig. 3.

……

………

Shaded area
>

C1 C2 Cm

Figure 3: A graphical illustration of the tight example. The circles are the areas to cover for the set cover
function and the green inner circles and the red triangles are elements in the ground set (the outer yellow circles
are not elements). The inner circles (green) largely overlap with the outer circles (yellow). The red triangles
mostly overlap with the inner circle, with little gains on the ring between the two circles. We can change the
size of the red triangles so that Min-Block Greedy prefers a redundant element (the shaded area comparison
on the top of the figure). Also note that the red triangles may overlap on the inner circle part (they may not
retain the shapes as triangles), so overall they cover m� 1 times the area of each circle.

Suppose we have m circles of area to cover in the set cover function. Say we order the circles by
their area, say C1 < C2 < . . . < Cm. Let Cj+1 = Cj + ✏j+1 for some ✏j+1 > 0. For every circle
j, we have an element vj 2 V , which covers an inner circle, which almost covers the entire circle.
W.l.o.g, suppose f(v1) = 1 and let Cj = f(vj) + �j .

14

For each circle Cj , we construct nj elements, which largely overlap with the inner circle covered
by vj and gives little gain on the ring between the inner circle and the outer circle Cj . Call these nj

elements Vj . Let f(Vj |vj) = ✏
0
j
, f(v) < f(vj)8v 2 Vj , and f(Vj) > f(vj).

Now let’s focus on the first two circles C1 and C2, and assume m = 2 for the partition problem. It is
easy to extend to general m case by recursively applying the following arguments on C2 and C3.

Suppose we run the min-block greedy, after the first two steps, one block contains v1 and the other
contains v2. At step 3, v1 is the min-block. By setting the suitable values for n1 and n2 (say
n2 >> n1), we can make f(v|v1) > f(v0|v1)8v 2 V1, v

0
2 V2. Therefore, we will still select an

element from V1 even though such element overlaps largely with the inner circle v1. We can force
the min-block greedy algorithm to select all elements from V1 before the min-block changes to the
block containing v2, and f(V1 [v1) > f(v2). After that, the algorithm can only add elements from
V2 to the block containing v2, which gives only ✏

0
2 gains. As we can make the values of ✏j , ✏0j and �j

arbitrarily small, the solution is arbitrarily close to 1. On the contrary, the optimal partition should
add elements in V1 to v2 and elements in V2 to v1, and the solution has value arbitrarily close to 2.

To extend to general m partitions, we may treat the current V2 as V1, and construct V3 in the same
way we construct V2 based on V1. In the first m steps of the min-block greedy, the algorithm is forced
to evenly distribute vj , j = 1, 2, . . . ,m into every block. After that, the algorithm adds all elements
in Vj to the block containing vj before the min-block changes and the block containing vj will not
become the min-block again. In the end, every block only covers (almost) one circle. Suppose for
Vj , we may make the elements to cover the inner circle multiple times, i.e., 9⇡ 2 ⇧(Vj ,m)s.t.8A 2

⇡, f(A) � f(vj). Then for the optimal solution, every block can cover (almost) all the circles, and
therefore the approximation ratio can be arbitrarily close to 1/m.

The constrained submodular robust partition problem:

max
⇡2⇧(V,m,C)

min
A2⇡

f(A), (4)

Where ⇧(V,m, C) is the set of all possible partitions on set V into m blocks such that for every
partition ⇡ 2 ⇧(V,m, C), every block A 2 ⇡ should satisfy the constraint A 2 C. Denote the optimal
partition to Eq. (4) as ⇡⇤

C
= {O

C
1 , O

C
2 , . . . , O

C
m
}.

Theorem 1 (Constrained Min-block Greedy). Given a constraint C, if the greedy solution S
g

to problem maxS2C f(S) using Alg. 4 has a bound of ↵, i.e., f(Sg) � ↵maxS2C f(S), then the
solution of Alg. 3 has minj2[m] f(Aj) �

↵

↵m+1 minj2[m] f(O
C
j
). Assuming GreedyStep(·) takes

O(1) oracle calls, the time complexity of of Alg. 4 is O(n2).

Proof. W.l.o.g., we assume that the block of index 1 for a partition corresponds to the minimum-
valued block, e.g., f(OC

1) = OPT
C . For Min-Block Greedy algorithm, we always add an element

feasible to the constraint C to the block with the minimum evaluation. Let the minimum block in
our final solution be A1. Due to the final singleton comparison step (line 9-11 in Alg. 3), there are
several different scenarios for A1:

1. It is never the case that we cannot add any elements to a block due to the constraint (line 5
always true). This is the simplest case as we can directly reduce it to a stream of elements
with the same ordering as we add them into different blocks, and Lemma. 2 applies. We
therefore can get an 1/m approximation ratio, which is better than the one given in the
theorem for any ↵  1.

2. A1 is the first block that we cannot find any feasible elements to add. The singleton
comparison step may increase the function value of A1. however, by assumption it’s still the
minimum block after the algorithm completes.

3. There are other blocks that we cannot find any feasible elements to add before A1. This
could only happen if the other blocks get their values increased by the singleton comparison
step. As if the singleton comparison step does not swap the block with the largest singleton,
the block, which is not A1 in this case, is the minimum block for that step and remains
minimum for the following steps of the algorithm.

15

For scenarios 2 and 3, the general idea of the proof is the same, where we separate the ground set V
into two parts V 0 and R

0 (V = V
0
[R

0), and bound f(A1) by comparing to a block in the optimal
solution O

C
j

through f(OC
j
\V

0) and f(OC
j
\R

0). However, for 2 and 3, we will use slightly different
V

0 and R
0.

First, for scenario 2), let’s suppose at step t
0, the current minimum block is A1, and we find no

feasible elements to add. Let all the elements allocated so far (before the singleton comparison step
for A1) as V 0, and the remaining unallocated elements as R0. V = V

0
[R

0. Denote the elements
in A1 before the singleton comparison step as A0

1, as the singleton step always improves the block
value, we have f(A1) � f(A0

1).

If we run the min-block robust partition greedy algorithm on V
0 only, we will get the same partial

partition as we run on V for t0 steps. Therefore, suppose we create a stream that orders the elements
in V

0 in the same order that those elements get allocated by the min-block robust partition greedy
algorithm, then by Lemma. 2, we have:

f(A1) � f(A0
1) �

1

m
OPT (V 0), (7)

Where we denote OPT (V 0) = max⇡2⇧(V 0,m) minA2⇡ f(A) as the optimal solution for the uncon-
strained robust submodular partition on the ground set V 0.

Let OC
j

be some block in the optimal constrained partition on ground set V . since O
C
j

can be the
non-minimal block in the optimal solution, we have:

f(OC
j
) � OPT

C
. (8)

There exists a j 2 {1, . . . ,m} such that

f(A1) �
1

m
OPT (V 0) (9)

�
1

m
f(OC

j
\ V

0), (10)

as otherwise 8j 2 {1, . . . ,m}, O
C
j
\ V

0 forms a solution for the partition problem on the reduced
ground set V 0, and gives a solution value better than OPT (V 0), which violates the optimality of
OPT (V 0).

Now we separate the constrained optimal solution on ground set V into 2 parts: OC
j
\V

0 and O
C
j
\R

0.

Assumption 1. Suppose

f(OC
j
\R

0) � f(OC
j
\ V

0), (11)

Then because of submodularity, f(OC
j
\R

0) + f(OC
j
\ V

0) � f(OC
j
) (recall V = V

0
[R

0)and we
have

f(OC
j
\R

0) �
1

2
f(OC

j
). (12)

Consider the set R0
[A

0
1, let

Ô 2 argmax
S✓R0[A0

1,S2C
f(S), (13)

I.e., Ô is the optimal solution to the constraint submodular max on the reduced ground set R0
[A

0
1.

After the singleton comparison step on A
0
1, we get A1, which is the greedy solution of Alg. 3 on

the reduced ground set R0
[A

0
1 and constraint C. Therefore, based on the ↵-bound assumption in

Theorem 1, we have:

f(A1) � ↵f(Ô) (14)

� ↵f(OC
j
\R

0) (15)

�
↵

2
f(OC

j
) (16)

�
↵

2
f(OC

1). (17)

16

Eq. (15) comes from the optimality of Ô and Eq. (16) comes from Assumption 1.

Assumption 2. Otherwise, we have

f(OC
j
\ V

0) > f(OC
j
\R

0) (18)

�
1

2
f(OC

j
). (19)

We therefore have:

f(A1) �
1

m
f(OC

j
\ V

0) (20)

>
1

2m
f(OC

j
) (21)

�
1

2m
f(OC

1) (22)

Note that one of Assumption 1 and Assumption 2 is always true, since f(OC
j
\R

0)+f(OC
j
\V

0) �

f(OC
j
) because of submodularity. Previously, we use equal weights of 1

2 for both assumptions. We
can balance the weights as long as the weights sum to one, and we get:

if f(OC
j
\R

0) � 1
↵m+1f(O

C
j
), we have

f(A1) � ↵f(Ô) (23)

� ↵f(OC
j
\R

0) (24)

�
↵

↵m+ 1
f(OC

j
) (25)

�
↵

↵m+ 1
f(OC

1); (26)

if f(OC
j
\ V

0) > ↵m

↵m+1f(O
C
j
), we have

f(A1) >
1

m
f(OC

j
\ V

0) (27)

>
1

m

↵m

↵m+ 1
f(OC

j
\ V) (28)

>
↵

↵m+ 1
f(OC

1). (29)

Thus, we get a ↵

↵m+1 bound.

For scenario 3, we only need to change V
0 and R

0 and the same argument follows. Recall that in
such a scenario, there are some other blocks that have no feasible elements to add before A1, and
they get their values increased through the singleton comparison step. There are also two different
cases here. Firstly, it does not happen that there are no feasible elements to add to A1 until the end of
the algorithm. In such a case, similar to the scenario 1, we can order the elements as a stream and
applies Lemma. 2 to get the 1/m approximation ratio. Note that the blocks that get to the singleton
comparison step all get their values increased for scenario 3, and we can just add the singleton a

⇤

(line 9) to that block in the streaming case. To be more precise, for Alg. 3 when block j (j 6= 1) is the
current minimum block, and has no feasible elements to add, we denote its elements as A0

j
, and the

singleton comparison step gives an element a⇤ with f({a⇤}) � f(A0
j
). In the streaming ordering,

we use the same ordering as we add element in Alg. 3, and at the singleton comparison step for block
j, we have the next element in the stream be a

⇤, and we add that element to block j since block j is
the current minimum block. By monotonicity, we have f(A0

j
[{a

⇤
}) � f({a⇤}) � f(A1). In other

words, those blocks never become the minimum block again, and no elements get added to them after
their singleton comparison step. Therefore, we have a streaming ordering of the elements that will
make the minimum block equal to A1 and Lemma. 2 applies.

Next, we discuss for the case where it happens that there are no feasible elements to add to A1. When
that happens, we set all the allocated elements as V 0 and the remaining elements as R0 before the
singleton comparison step. Note for those blocks that get to the singleton comparison step before A1,
we will also include the singletons in V

0 Recall those singletons have larger gains and get swapped

17

with the elements in those blocks for this scenario. As stated above, those blocks with the singleton
comparison step never become the minimum block again, so they don’t interfere with the remaining
blocks/elements. For such V

0 and R
0, the exact argument in scenario 2 can be made, i.e., we can

treat A0
1 as a min-block streaming solution on V

0 (Eq. 20) and A1 as a greedy solution on A
0
1 [R

0

(Eq. 15).

Corollary 2 (Cardinality Constrained Min-block Greedy). For C as a cardinality constraint, the
output of Alg 3 has minj=1:m f(Aj) �

1
m+ 1

1�e�1
minj=1:m f(OC

j
).

Corollary 3 (Matroid Constrained Min-block Greedy). For C as an intersection of p matroids
constraint, the output of Alg 3 has minj=1:m f(Aj) �

1
m+p+1 minj=1:m f(OC

j
).

Corollary 4 (Knapsack Constrained Min-block Greedy). For C as a knapsack constraint, the
output of Alg 3 has minj=1:m f(Aj) �

1
m+ 2

1�1/e
minj=1:m f(OC

j
).

B Proofs for Round-Robin Greedy Based Algorithms

The matroid constrained submodular robust partition problem is

max
⇡2⇧(V,m,M)

min
A2⇡

f(A). (30)

Before we get into the proofs for the algorithm bounds, we will state the following lemma, which is a
general property about robust submodular partitioning.
Lemma 5 (Removal of one element and one block). For any v 2 V , we have:

max
⇡2⇧(V \v,m�1,M)

min
A2⇡

f(A) � max
⇡2⇧(V,m,M)

min
A2⇡

f(A). (31)

I.e., if we remove one element and one block from the problem, the optimal solution gets no worse.

Proof. Denote the optimal solution on V and m by O1, O2, . . . , Om with f(O1)  f(O2)  . . . 

f(Om).

Suppose v 2 Oj for some j, then the blocks other than Oj forms a solution for problem defined
on V \ v and m� 1, and we can add elements in Oj \ v to other blocks (if the constraints permit).
In the worst case, even if we cannot add any elements of Oj \ v to other blocks, we still have
max⇡2⇧(V,m,M) minA2⇡ f(A) � minj02[m],j0 6=j f(Oj0) � f(O1).

Suppose 8j 2 [m], v /2 Oj , then we only remove one block, and we can add the elements in that
block to any other block so the solution value gets improved.

For Round-Robin Greedy based algorithms, we first guess the optimal solution value and then assign
singletons to blocks which satisfies the bound based on the guessed optimal value. After that, we run
the algorithm on the restricted problem with those blocks and elements removed. By applying the
previous lemma (recursively if multiple elements and blocks removed), we know that the optimal
solution on the restricted instance is no worse than the optimal solution on the original problem.
Therefore, it suffices to analyze the solution on the restricted instance.
Lemma 4 (Cardinality Constrained Round-Robin). For the problem in Eq. (4), with C as a
cardinality constraint k, Alg. 5 gives a solution minj2[m] f(Aj) �

(1�e
�1)2

3 minj2[m] f(O
k

j
).

Proof. By solving max⇡2⇧(V 0,m0,k)

P
S2⇡

f(S) in Line 10 of Alg. 5 (Theorem III.3 in [7]), we
know that

X

j2[m]0

f(A0
j
) � (1� e

�1) max
⇡2⇧(V 0,m0,k)

X

S2⇡

f(S). (32)

18

Algorithm 5: Cardinality Round-Robin Greedy
input : f , V , m, cardinality constraint k, discounting factor for guessing optimal �

1 Let ⌧ be the solution value of Alg. 3;
2 Let high = dlog1+�(m+ 2)e, low = 0;
3 Create a sequence of guessed values: (⌧, (1 + �)⌧, (1 + �)2⌧, . . . , (1 + �)high⌧);
4 Create an empty solution (; for each block in the partition) for each guessed value

⇡0,⇡1, . . . ,⇡high ;
5 while high � low do
6 Let idx = b(high + low)/2c; Let A1 = A2 = . . . = Am = ;;
7 Let V 0 = {v|v 2 V, f(v)  (1�e

�1)2

3 (1 + �)idx ⌧}; Let G = V \ V
0;

8 Assign G to Am�|G|+1, Am�|G|+2, . . . , Am with one element per block;
9 Let m0 = m� |G|;

10 Let A0
1, A

0
2, . . . , A

0
m0 be the solution to max⇡2⇧(V 0,m0,k)

P
S2⇡

f(S) using continuous
greedy and swap rounding; Let V 00 = [j2[m]0A

0
j
;

11 Let {A1, A2, . . . , Am0} = RR(f, V 00
,m

0
,M

u

k
, [m0]);

12 if f(Aj) �
(1�e

�1)2

3 (1 + �)idx ⌧ 8j 2 [m0] then
13 Let ⇡idx = {A1, A2, . . . , Am}; Let low = idx + 1;
14 else
15 Let high = idx � 1;
16 return best of ⇡0,⇡1, . . . ,⇡high ;

Recall that we denote the optimal solution value in the cardinality constraint case by OPT
Mu

k , where
k is the cardinality. We assume we know the optimal solution value OPT

Mu
k for this proof. For the

algorithm, the OPT
Mu

k value is guessed within a factor of 1
1+�

. Therefore, to be more precise, we
have an additional factor of 1

1+�
in the bound, which can be made arbitrarily small by setting � small.

For the limited ground set V 00, running unconstrained round-robin ensures every block to have
at most k elements and therefore the cardinality constraint is satisfied. Suppose we run the
continuous greedy algorithm on the limited ground set V 00 with the submodular welfare objec-
tive (max⇡2⇧(V 00,m0)

P
S2⇡

f(S)), we get a fractional solution x1 = x2 = . . . = xm0 =
(1
m0 ,

1
m0 , . . . ,

1
m0) (we do not really need to run the algorithm, but we will compare our solution to

the fractional solution). Denote the multilinear extension of f by F and F (x) = ER⇠x f(R) (we
can think it as the expected value of f where every element is sampled independently based on
probabilities defined in vector x). Consider any block Aj in the solution of Alg 5 for j 2 [m0] (for
j /2 [m0], those blocks are the singleton assignment blocks and they satisfy the bound by construction),
we have:

(1� e
�1)2

3
OPT

Mu
k + 2f(Aj) � F (xj) (33)

�
1� e

�1

m0 max
⇡2⇧(V 00,m0)

X

S2⇡

f(S) (34)

�
1� e

�1

m0 max
⇡2⇧(V 00,m0,k)

X

S2⇡

f(S) (35)

�
(1� e

�1)2

m0 max
⇡2⇧(V 0,m0,k)

X

S2⇡

f(S) (36)

� (1� e
�1)2 max

⇡2⇧(V 0,m0,k)
min
S2⇡

f(S). (37)

� (1� e
�1)2OPT

Mu
k . (38)

Rearrange and we get:

f(Aj) �
(1� e

�1)2

3
OPT

Mu
k . (39)

19

Eq. (33) comes from the Lemma.3 of [3], in which case we can bound every block in the round-
robin solution to the fractional solution of the continuous greedy algorithm on the multilinear
extension of f . Note for Lemma.3 of [3], they study the unconstrained case and show that
�

3OPT
Mu

k + 2f(Aj) � F (xj) with � = 1 � e
�1. � comes from the singleton assignment

step, which assigns blocks with singletons whose values are larger than �

3OPT
Mu

k . A slightly
more general statement can be made for any 0  �  1 with the same proof as Lemma.3 of [3].
In our case, we pick � = (1 � e

�1)2. Eq. (34) follows from the property of the continuous
greedy solution. The continuous greedy gives a (1 � e

�1) approximation to the submodular wel-
fare problem, and the fractional solution xj for each block is the same. Therefore, every block’s
evaluation in expectation is at least (1�e

�1)
m0 of the submodular welfare optimal solution. Eq. (35)

follows that the unconstrained solution is no worse than the constrained solution. Eq. (36) uses
Eq. (32): A

0
1, . . . , A

0
m

is one possible solution to max⇡2⇧(V 00,m0,Mu
k)

P
S2⇡

f(S), and we knowP
j
f(A0

j
)  max⇡2⇧(V 00,m0,k)

P
S2⇡

f(S) because of the max operator. Therefore, we have
max⇡2⇧(V 00,m0,k)

P
S2⇡

f(S) �
P

j
f(A0

j
) � (1 � e

�1)max⇡2⇧(V 0,m0,k)

P
S2⇡

f(S). Eq. (37)
follows that the sum over blocks of the max-min solution is no larger than the optimal welfare solution.
Eq. (38) uses Lemma. 5: the optimal max-min solution on V

0 and m
0 is no worse than the optimal

max-min solution on V and m.

As stated above, �

3OPT + 2f(Aj) � F (xj) is true for any 0  �  1. It may seem that making
� smaller can improve the bound. However, we only bound the m

0 blocks but not the singleton
blocks. Because of the singleton assignment step, every singleton has a value larger than �

3 , and the
final bound over all m blocks will be the minimal of the bound on the m

0 blocks and the singleton
blocks. Setting � small worsens the bound on the singleton blocks. To balance the two bounds,
� = (1� e

�1)2 is picked so that the bounds on the m
0 blocks and the singleton blocks meet.

Finally, we discuss about the binary search process. Let’s consider a special problem instance,
which does not have any singleton values larger than (1�1/e)2

3 times the optimal solution value of
the problem instance. Then we can directly run line 10 and 11 to get a solution with a (1�1/e)2

3
approximation ratio (no optimal solution value guessing and large singleton value removal). However,
we don’t know if that assumption is true for general problem instances.

Back to the general problem instances. Suppose the guessed optimal values form a sequence
(⌧1, ⌧2, . . . , ⌧l) where ⌧i+1 = (1 + �)⌧i. We are going to show that for any ⌧i  OPT

Mu
k as the

guessed optimal value that we plug into the binary search iterations (Alg. 5 line 7-15), line 12 of
Alg. 5 is always true. For simplicity, denote the optimal solution of the cardinality constrained robust
partitioning problem as OPT for the following. Let’s denote the found large singleton values and
the remaining sets (line 7 of Alg. 5) respectively by GOPT and V

0
OPT

for OPT , and Gi and V
0
i

for
⌧i. Since ⌧i  OPT , GOPT ✓ Gi as the threshold is smaller for ⌧i. Then by Lemma. 5, we know
that the optimal solution OPTi on V

0
i

(partitioned to m � |Gi| blocks) is no less than the optimal
solution OPT

0 on V
0
OPT

(partitioned to m� |GOPT | blocks). Also note that since we remove all
singleton values to form V

0
i

based on the threshold (1�e
�1)2

3 ⌧i, and ⌧i  OPT  OPT
0
 OPTi

(OPT  OPT
0 is also from Lemma. 5), we are guaranteed that there are no singleton elements with

f(v) � (1�e
�1)2

3 OPTi in V
0
i
. Therefore, as discussed for the special problem instance, line 10 and

11 on V
0
i

give a solution whose every block has a value of at least (1�e
�1)2

3 OPTi �
(1�e

�1)2

3 ⌧i, and
thus line 12 is guaranteed to be true for ⌧i.

Based on that, either of the following must hold: 1) for all ⌧i > OPT
M line 12 is false, and in

such a case, we can use binary search to find the largest ⌧i with line 12 true, and let’s call it ⌧i⇤ ; 2)
there exists some ⌧i > OPT

M such that line 12 is true. If we find such ⌧i, we find a solution with
f(Aj) �

(1�e
�1)2

3 ⌧i �
(1�e

�1)2

3 OPT
Mu

k . Otherwise if we don’t find it, we go to the first case and
will still find ⌧i⇤ . We can therefore conclude that binary search can be applied to search among the
guessed optimal solution values.

20

B.1 Proof for the Matroid Constraint Case

Lemma 6 (Continuous Greedy Solution). For the constrained welfare problem
max⇡2⇧(V,m,M)

P
A2⇡

f(A), the continuous greedy algorithm outputs a fractional solution
x1 = x2 = . . . = xm (xj 2 [0, 1]n), which is the same for every block in the partition andP

j2[m] F (xj) � (1� e
�1)max⇡2⇧(V,m,M)

P
A2⇡

f(A). F is the multilinear extension of f , i.e.,
F (x) = ER⇠x f(R) (we can think it as the expected value of f where every element is sampled inde-
pendently based on probabilities defined in vector x). Moreover, 8i 2 [n], j 2 {1, . . . ,m}, xj [i] 

1
m

and
P

i2V
xj [i]  rM(V).

Proof. Note that the continuous greedy can give a fractional solution with 1� e
�1 bound under any

solvable polytope constraint. It’s the rounding procedure that limits the constraint we can use to get a
set solution, e.g., with pipage rounding, we can use any matroid constraint.

In fact, we do not need to run the continuous greedy algorithm, and we only need to show the existence
of a solution. Suppose the solution to the maxy{w ·y, y 2 P} step of the continuous greedy algorithm
is given by some oracle. Given the direction y, we just evenly split the resulting vector y among the
m blocks, as we cannot distinguish between blocks. At the end of the algorithm, we will have the frac-
tional solution x1 = x2 = . . . = xm and

P
j2[m] F (xj) � (1� e

�1)max⇡2⇧(V,m,M)

P
A2⇡

f(A).

Since the fractional solution are guaranteed to be in the matroid polytope of M and M
p
m

, we have
8i 2 [n], j 2 {1, . . . ,m}, xj [i] 

1
m

and
P

i2V
xj [i]  rM(V).

Lemma 7 (Matroid Constraint Round-robin with No Large Singletons). Suppose for all v 2 V ,
we have f(v)  1�e

�1

5 OPT
M, where OPT

M is the optimal solution value of the robust submodular
partition problem constrained by matroid M (in other words, all the singletons have relatively small
values for the given problem instance). Then, the round-robin iterations of Alg. 7 (line 10) gives a
solution minj2[m] f(Aj) �

1�e
�1

5 OPT
M.

Algorithm 7: Matroid Round-Robin Greedy
input : f , V , m, matroid constraint M, discounting factor for guessing optimal �

1 Let ⌧ be the solution value of Alg. 3;
2 Let high = dlog1+�(m+ 2)e, low = 0;
3 Create a sequence of guessed values: (⌧, (1 + �)⌧, (1 + �)2⌧, . . . , (1 + �)high⌧);
4 Create an empty solution (; for each block in the partition) for each guessed value

⇡0,⇡1, . . . ,⇡high ;
5 while high � low do
6 Let idx = b(high + low)/2c; Let A1 = A2 = . . . = Am = ;;
7 Let V 0 = {v|v 2 V, f(v)  1�e

�1

5 (1 + �)idx ⌧}; Let G = V \ V
0;

8 Assign G to Am�|G|+1, Am�|G|+2, . . . , Am with one element per block;
9 Let m0 = m� |G|;

10 Let {A1, A2, . . . , Am0} = RR(f, V 0
,m

0
,M, [m0]);

11 if f(Aj) �
(1�e

�1)
5 (1 + �)idx ⌧ 8j 2 [m0] then

12 Let ⇡idx = {A1, A2, . . . , Am}; Let low = idx + 1;
13 else
14 Let high = idx � 1;
15 return best of ⇡0,⇡1, . . . ,⇡high ;

Proof. Let’s focus on one block (any one in A1, . . . , Am0) and for simplicity, we will omit the block
index j for this proof if not further noticed. Denote OPT = minj2[m] f(O

M
j

) for this proof. Also,
we assume we know the optimal solution value OPT for this proof. Note that in the complete version
of Alg. 7, we need to remove large singleton values based on the guessed optimal value, but for this
lemma we make the assumption that in the given problem instance, there are no large singletons
present.

21

For the current block, we denote the final resulting set from Alg. 7 as A. For one round-robin iteration,
we go over all the feasible blocks sequentially, and to get A we need to run |A| = r round-robin
iterations. Note that for different blocks, the number of round-robin iterations might be different.

We then divide the restricted ground set V 0 by the round-robin iterations with respect to the current
block A. Before we add the first element to A, denote all the allocated elements by V

0. Then
we can think that for every round-robin iteration, we always start from the current block A. Let
V

0 = V
0
[V

1
[. . . [V

r be a partition of V 0 and V
t contains all the elements allocated during the

t’s round-robin iteration. Note V
r contains all the unallocated elements in the ground set after we

add the last element to A. Let V t1:t2 = [t2{t1,t1+1,...,t2}V
t. Accordingly, we partition the result A

by A
t = A \ V

t.

For the set V 0
\ A, we separate it into two parts Q

0
1 and Q

0
2, where Q

0
1 contain all the elements

checked in Alg. 7 that cannot be added to the current block due to the matroid constraint, and let
Q

0
2 = V

0
\A \Q

0
1, i.e., Q0

2 contain all the elements that can be added the current block. To be more
precise:

Q
0
1 = [t2{0,1,...,r} [v2V t\At,(A1:t[v)/2M v (40)

Let Q1 = Q
0
1 [A and Q2 = Q

0
2 [A.

Let F denote the multilinear extension of f , i.e., F (x) = ER⇠x f(R). By Lemma 5 and Lemma 6,
we know that

(1� e
�1)OPT  max

⇡2⇧(V 0,m0,M)
min
S2⇡

f(S) (41)


1

m0 max
⇡2⇧(V 0,m0,M)

X

S2⇡

f(S) (42)

 F (x) (43)
 (F (x \Q1) + F (x \Q2)). (44)

Note that x is the fractional solution to the continuous greedy algorithm on the welfare objective:
max⇡2⇧(V 0,m0,M)

P
S2⇡

f(S) (similar to one of the xj’s in Lemma 6 and we omit the block index
for this proof). Here we use x \ Q to represent setting all elements not in Q to be zero in the x

fractional solution. The first inequality follows from Lemma. 5. The second inequality follows that
the sum over blocks of the max-min solution is no better than the optimal solution of the welfare
problem. Since every element is sampled independently according to its probability in the fractional
solution x, together with submodularity (Q1 [Q2 = V

0) we get the last inequality above. Next, we
will bound the two terms F (x \Q1) and F (x \Q2) separately.

For the first term F (x \Q1), we know that r = rM(Q1), and Alg. 7 generates A in the same manor
as running greedy max on Q1 with matroid constraint M. To be more precise, suppose M = (V, I)
and we remove all the elements that are not in Q1 and get M0 = (V 0

\Q1, {I \Q18I 2 I}). Note
that M0 is also a matroid, and all sets that satisfy M

0 also satisfy M due to the down-monotone
property of matroids. Therefore, we have:

f(A) �
1

2
max
S2M0

f(S) (45)

�
1

2
F (x \Q1). (46)

Note that x is in the matroid polytope of M, and x\Q1 is in the matroid polytope of M0. By pipage
rounding, we know that we can get an integral solution X

0 from F (x \ Q1) so that the integral
solution still satisfies X 0

2 M
0 and f(X 0) � F (x \Q1). Since maxS2M0 f(S) � f(X 0), we get

the last inequality above.

22

For the second term F (x \ Q2), we will bound it using the greedy step. Denote y = x \ Q2,
y
t = y \ V

t, and ES(y) = ER⇠y f(R|S), we have:

F (y) = ER⇠y f(R) (47)

= ER⇠y0 f(R) + ER1⇠y0,R2⇠y1:r f(R2
|R

1) (48)

 F (y0) + F (y1:r) (49)

 F (y0) + f(A1) + EA1(y1:r) (50)

= F (y0) + f(A1) + EA1(y1) + ER1⇠y1,R2⇠y2:r f(R2
|R

1
[A

1) (51)

 F (y0) + f(A1) + EA1(y1) + EA1(y2:r) (52)

 F (y0) + f(A1) + EA1(y1) + f(A2|A1) + EA2(y2:r) (53)

Continue to unwrap EA2(y2:r) in the same way, finally we get:

F (y)  F (y0) +
⇥
f(A1) + f(A2

|A
1) + f(A3

|A
2) + . . .+ f(Ar

|A
r�1)

⇤

+
⇥
EA1(y1) + EA2(y2) + . . .+ EAr (yr)

⇤
(54)

= F (y0) + f(A) +
⇥
EA1(y1) + EA2(y2) + . . .+ EAr (yr)

⇤
(55)

We then need to bound F (y0) and
⇥
EA1(y1) + EA2(y2) + . . .+ EAr (yr)

⇤
. Note that by assumption,

we do not have any singleton gains larger than 1�e
�1

5 , and we have:

F (y0) 
1� e

�1

5
OPT (56)

Since we select items greedily at every round-robin step, and y only has non-zero values for elements
that are in Q2, we have:

EAt(yt+1) = ER⇠yt+1 f(R|A
t) (57)



X

v2yt+1

y
t+1(v)f(v|At) (58)



X

v2yt+1

1

m0 f(v|A
t) (59)

 f(At
|A

t�1) (60)

Note that for the last round-robin iteration V
r, it may seem that there can be more than m

0 elements,
but it’s not possible: since there are no new elements added to the current blocks, V r

\Q2 contains
at most m0 elements as otherwise we will find new feasible elements and add to block A.

Then we sum over all t and get:
⇥
EA1(y1) + EA2(y2) + . . .+ EAr (yr)

⇤
 f(A). (61)

Therefore, we have:

(1� e
�1)OPT  (F (x \Q1) + F (x \Q2)) (62)

 2f(A) + F (y) (63)

 2f(A) + 2f(A) +
1� e

�1

5
OPT (64)

f(A) �
1� e

�1

5
OPT. (65)

Next, we will discuss why binary search can be used in the guessing of the optimal value (as opposed
to the case of linear search where we try all possible guessed optimal values). We make almost
the same argument as the cardinality constraint case. We restate the argument and proof here for
completeness.

23

Lemma 8 (Binary Search). For Alg. 7, let the potential guessed optimal values form a sequence
(⌧1, ⌧2, . . . , ⌧l) where ⌧i+1 = (1 + �)⌧i. Then for any ⌧i  OPT

M as the guessed optimal value
that we plug into the binary search iterations (Alg. 7 line 7-14), line 14 of Alg. 7 is always true.

Proof. For simplicity, denote the optimal solution of the matroid constrained robust partitioning
problem as OPT for this proof. Let’s denote the found large singleton values and the remaining sets
(line 7 of Alg. 7) respectively by GOPT and V

0
OPT

for OPT , and Gi and V
0
i

for ⌧i. Since ⌧i  OPT ,
GOPT ✓ Gi as the threshold is smaller for ⌧i. Then by Lemma. 5, we know that the optimal solution
OPTi on V

0
i

(partitioned to m� |Gi| blocks) is no less than the optimal solution OPT
0 on V

0
OPT

(partitioned to m � |GOPT | blocks). Also note that since we remove all singleton values to form
V

0
i

based on the threshold 1�e
�1

5 ⌧i, and ⌧i  OPT  OPT
0
 OPTi (OPT  OPT

0 is also from
Lemma. 5), we are guaranteed that there are no singleton elements with f(v) � 1�e

�1

5 OPTi in V
0
i

.
Therefore, based on Lemma. 7, our round robin iterations on V

0
i

give a solution whose every block
has a value of at least 1�e

�1

5 OPTi �
1�e

�1

5 ⌧i, and thus line 11 is guaranteed to be true for ⌧i.

Based on Lemma. 8, either of the following must hold: 1) for all ⌧i > OPT
M line 11 is false, and in

such a case, we can use binary search to find the largest ⌧i with line 11 true, and let’s call it ⌧i⇤ ; 2)
there exists some ⌧i > OPT

M such that line 11 is true. If we find such ⌧i, we find a solution with
f(Aj) �

1�e
�1

5 ⌧i �
1�e

�1

5 OPT
M. Otherwise if we don’t find it, we go to the first case and will

still find ⌧i⇤ .

Finally, the approximation guarantee of Alg.7 follows by combining the previous lemmas.

Theorem 2 (Matroid Constrained Round-Robin). For the problem in Eq. (4), with C as any
matroid constraint M, Alg 7 gives a solution minj2[m] f(Aj) �

(1�e
�1)

5 minj2[m] f(O
M
j

). The
time complexity of of Alg. 7 is O(n2(log logm+ log 1

�
)).

Proof. Firstly, based on the previous arguments about the binary search, we can find a ⌧i with
⌧i � ⌧i⇤ , where ⌧i⇤ is the largest ⌧j with ⌧j  OPT

M and line 11 of Alg. 7 true. By setting �

small, ⌧i⇤ can be arbitrarily close to OPT
M. Next, based on Lemma. 7, after removing the large

singleton values, the solution on the remaining elements have the min block value at least 1�e
�1

5 ⌧i,
and the removed large singletons are all larger than 1�e

�1

5 ⌧i by construction. We therefore get the
approximation ratio.

C Synthetic Experiment

We compare Alg. 3, Alg. 7 (10 optimal value guesses) and the random assignment baseline on
randomly generated synthetic facility location functions. Every entry in the facility location similarity
matrix is uniformly sampled from [0, 1]. We report our results with different parameters in Figure 4.

24

Figure 4: Synthetic data results on randomly generated facility location function similarity matrices. The
x�label is n�m� c� p. Results averaged over 30 runs.

Particularly, we have four parameters for every problem instance: n the ground set size, m the
number of partitions, and the partition matroid constraint parameters c and p. For the partition

25

matroid constraint, we divide the groundset into blocks of size p and for every such block, it is
constrained that we can pick at most c elements. For all variants of the settings, we observe that
Alg. 3 and Alg. 7 significantly outperform the random baseline. Alg. 3 consistently outperforms
Alg. 7 but the margin is not very large.

D Experiment Details

The features used in the experiments are generated through an autoencoder. The network architecture
is described in Table 1. The network is trained using ReLU non-linearity and batch normalization.
ADAM [15] is utilized as the optimization method with an initial learning rate of 5e-3, a weight
decay of 5e-4 and a minibatch size of 100. The network is trained in PyTorch using the procedure
described in [20]. Features are extracted as the output of the autoencoder’s bottleneck (following the
residual block and non-linearity).

The training of the ResNet-9 (Myrtle-AI, https://github.com/davidcpage/cifar10-fast)
network utilizes an ADAM optimizer with an initial learning rate of 1e� 3. The network is trained
for 90 epochs. For CPU jobs, we use a single core Intel Xeon 2.10GHz CPU, and for GPU jobs we
use a Nvidia RTX 2080Ti GPU.

Table 1: Neural network structure of the autoencoder

Group Block Type
(kernel sz, stride, channels) # Blocks

conv1 [3⇥ 3], 2, 64 1

conv1 (residual)


3⇥ 3
3⇥ 3

�
, 1, 64 2

conv2 [3⇥ 3], 2, 16 1

conv2 (residual)


3⇥ 3
3⇥ 3

�
, 1, 16 2

conv3 [3⇥ 3], 2, 8 1

conv3 (residual)


3⇥ 3
3⇥ 3

�
, 1, 8 2

conv4 [3⇥ 3], 1, 4 1

conv4 (residual)


3⇥ 3
3⇥ 3

�
, 1, 4 1

deconv4 (residual)


3⇥ 3
3⇥ 3

�
, 1, 4 1

deconv3 [3⇥ 3], 1, 8 1

deconv3 (residual)


3⇥ 3
3⇥ 3

�
, 1, 8 2

deconv2 [3⇥ 3], 2, 16 1

deconv2 (residual)


3⇥ 3
3⇥ 3

�
, 2, 16 2

deconv1 [3⇥ 3], 2, 64 1

deconv1 (residual)


3⇥ 3
3⇥ 3

�
, 2, 64 2

deconv0 [3⇥ 3], 2, 3 1

We also test the case for various cardinality constraints on CIFAR-10 datatset, and report the results
in Figure 5. The running times (in seconds) for Figure 5 and Figure 1 is given in Table 2 and Table 3
respectively under various constraint parameters. For the round-robin algorithm, we pick � = 0.1.
The computing platform uses a single core of Intel Xeon(R) CPU 2.10GHz.

26

https://github.com/davidcpage/cifar10-fast

����
��	
�����
���������

Figure 5: Cardinality constrained results. We select a total of 2000 samples and the number of blocks varies
according to the constraint, e.g., when the constraint k = 200, m = 2000/200 = 10.

Table 2: Wall Clock Running Time for Figure 5

Constraint Param 200 125 100 80 50 40
Min-Block Greedy 60.7 60.4 60.0 57.9 57.0 57.1

Round-Robin Greedy 240.2 233.5 243.7 244.6 240.0 242.1

Table 3: Wall Clock Running Time for Figure 1

Constraint Param 40 25 20 10 8 5
Min-Block Greedy 63.4 62.3 62.2 60.0 59.5 59.9

Round-Robin Greedy 184.2 180.3 182.1 242.4 244.0 240.0

27

	Introduction
	Related Work
	Preliminaries and Formulation
	Discussions about the Optimality in barman2017approximation,ghodsi2018fair and the Heterogeneous Case

	Min-Block Greedy Based Algorithms
	Round-Robin Greedy Based Algorithms
	Experiments
	Conclusions
	Neurips 2021 Paper Checklist
	Proofs for Minimum Block Greedy Based Algorithm
	Proofs for Round-Robin Greedy Based Algorithms
	Proof for the Matroid Constraint Case

	Synthetic Experiment
	Experiment Details

