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Here we show detailed derivations together with a further analysis of CCE and CKD (Sec. A). We
describe more details for experimental settings and hyperparamters, and present a pseudo code of
our approach (Sec. B). We also provide more discussions on design choices and a feature replay
scheme (Sec. C), and show more quantitative and qualitative results (Sec. D).

A Derivations together with an analysis of CCE and CKD

Proposition 1. For c ∈ Ct
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Since γ(p) is always larger than zero, we can derive the following inequality:
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= 1 + γ(p) > 1. (ii)
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A.1 CCE

We first reformulate the CCE loss (Eq. (5) in the main paper) as follows:

LCCE(p) =

{
− log ptc∗(p), p ∈ Rt

new

− log ptcce(p), p /∈ Rt
new

=



−ztc∗(p) + log

 ∑
k∈Ct

all

ez
t
k(p)

, p ∈ Rt
new

− log

 ∑
i∈Ct

prev

ez
t
i (p)

+ log

 ∑
k∈Ct

all

ez
t
k(p)

, p /∈ Rt
new

.

(iii)

Then, the gradient of CCE w.r.t ztc is computed as follows:
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Figure A: The negative effect of CCE on ISS.

We can see that the gradients of Eq. (iv) are the same
as those of Table 1 in the main paper. The last row
of Table 1 suggests that logit values for all previous
categories always increase by qtc − ptc in the unlabeled
regions. We visualize in Fig. A heatmaps of qtc − ptc
for c ∈ {background, chair, person}. For visualiza-
tion, MiB [2] is trained with samples for a tv cate-
gory after learning 20 categories (e.g., background,
chair, and person) on PASCAL VOC [7]. We can
see that CCE raises logit values for chair and person
categories, even though corresponding ground-truth
labels are likely to be the background category. This
in turn lessens the discriminability of the model for
the previous categories.
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A.2 CKD

The CKD loss (Eq. (6) in the main paper) can be reformulated as follows:
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We can see that ptc − pt−1c and (ptckd − p
t−1
bg )

pt
c

pt
ckd

in Eq. (vi) are the same as the gradients of CKD in
the main paper (See Eqs. (7) and (8)).

To further compare KD and CKD, we first assume that a previous model outputs confident predictions.
Namely, probabilities of the previous model show one clear peak as follows:

pt−1ŷ (p) ≈ 1, (vii)

where ŷ = argmaxk∈Ct
prev

pt−1k (p). We empirically show that this assumption is valid in Fig. B. We
then simplify KD and CKD terms (See Eqs. (4) and (6) in the main paper) as follows:

LKD(p) ≈ −pt−1ŷ (p) log qtŷ(p) and LCKD(p) ≈
{
−pt−1bg (p) log ptckd(p), ŷ ∈ {bg}
−pt−1ŷ (p) log ptŷ(p), ŷ ∈ Ct
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.

(viii)

We compute gradients of each term w.r.t ztŷ for ŷ ∈ Ct
prev\{bg} as follows:
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∂ztŷ(p)
≈ qtŷ(p)− pt−1ŷ (p) = αkd(p) and
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≈ ptŷ(p)− pt−1ŷ (p) = αckd(p). (ix)

Table A: Comparison of gradients of KD
and CKD w.r.t ztŷ for ŷ ∈ Ct

prev\{bg}.
case ¬

0 ≥ αkd > αckd
(pt−1ŷ ≥ qtŷ > ptŷ)

case ­
αkd > 0 ≥ αckd

(qtŷ > pt−1ŷ ≥ ptŷ)
case ®

αkd > αckd ≥ 0
(qtŷ > ptŷ ≥ p

t−1
ŷ )

Table A summarizes the comparison between KD and
CKD into three cases. In the case of ¬, a current
model produces the probability ptŷ lower than the target
one pt−1ŷ . Thus, ztŷ should increase in order that ptŷ fol-
lows pt−1ŷ . Although both KD and CKD raise ztŷ, we can
see that CKD raises ztŷ more strongly than its counter-
part (|αkd| < |αckd|). This suggests that CKD helps the
current model to produce ptŷ similar to pt−1ŷ more quickly.
In the case of ­, the current model outputs ptŷ lower than pt−1ŷ , indicating that ztŷ needs to increase.
However, note that the probability qtŷ computed without considering logit values of new categories
is larger than the target one pt−1ŷ (i.e., αkd > 0). Hence, KD rather reduces ztŷ, which results in
reducing ptŷ. On the other hand, CKD raises ztŷ in order that ptŷ reaches pt−1ŷ . In the case of ®,
the current model already produces the probability ptŷ larger than the target one pt−1ŷ . In this case,
it is unnecessary to reduce the logit value ztŷ, since reducing ztŷ could make the probability ptŷ
lower than the target one pt−1ŷ . KD however reduces ztŷ more strongly than CKD (|αkd| > |αckd|).
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Figure B: Ratio curves of each case in labeled
regions (left) and unlabeled ones (right) dur-
ing training. We also plot the average target
probability pt−1ŷ (red curves) during training.

We plot in Fig. B the ratio of each case during train-
ing. To this end, we extract feature maps from a
mini-batch and compute the number of features be-
longing to each case. We denote by N1, N2, and N3

the number of features in each case, respectively.
Then, the ratio of each case is defined as follows:

ratioi =
Ni

N
, i ∈ {1, 2, 3}, (x)

where N indicates the total number of features,
i.e., N = N1 + N2 + N3. We compute the ra-
tio of each case at every iteration during training. For visualization, we train MiB [2] on 20-1(1)
of PASCAL VOC [7]. We have the following observations: (1) We can see that the average target
probability pt−1ŷ (red curves) is roughly one during training, validating the assumption in Eq. (vii).
We can also see that the third case is negligible for both labeled and unlabeled regions; (2) The
first case is the most dominant in the labeled regions (See Fig. B left), which is natural in that the
current model is likely to output low probabilities ptŷ for previous categories in those regions2. Since
CKD raises ztŷ more strongly than KD in the case of ¬, we can interpret that it encourages the
current model to imitate the previous one more strongly in the labeled regions. This suggests that

2Note that the labeled regions contain new categories only.
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Table B: Hyperparameter settings. EP: the number of epochs.

Datasets Scenarios t
Step 1 Step 3

λALI λKD EP λALI λMEM EP

ADE20K [15]

100-50(1) 2 1 1 60 0 0.5 1

50-100(2) 2 1 20 60 0 0.1 1
3 1 20 60 0 0.5 1

100-50(5)

2 1 1 60 5 2 1
3 1 1 60 5 1 1
4 1 1 60 2 1 1
5 1 1 60 0 0.1 1
6 1 1 60 0 0.5 1

PASCAL VOC [7]

20-1(1) 2 1 1 5 1 1 1

16-5(1) 2 2 1 10 1 10 1

16-5(5)

2 3 1 10 3 1 1
3 5 10 5 5 20 1
4 2 1 5 2 1 1
5 3 10 5 3 2 1
6 2 1 5 1 1 1

CKD acts as a strong regularizer for the current model in those regions; (3) The first two cases are
prevalent in the unlabeled regions (See Fig. B right). Note that predictions of the previous model
are likely to be correct in unlabeled regions3. In this context, it is important for the current model to
accurately and quickly imitate such predictions (i.e., pt−1ŷ ) in those regions in order to preserve the
knowledge for previous categories. Considering that CKD helps the current model to produce the
target probability pt−1ŷ more quickly and accurately than KD in the cases of ¬ and ­, respectively,
CKD is more favorable in the unlabeled regions. Note that KD rather prevents the current model
from producing the target probability in the case of ­. These empirical studies once again explain
the reason why CKD outperforms KD.

B More details

Training rotation matrices. Here we provide a detailed description for training rotation matrices.
We first define a strictly upper triangular matrix Uc of size D × D for a category c ∈ Ct

prev as
follows:

Uc =


0 u1,2 u1,3 . . . u1,D
0 0 u2,3 . . . u2,D
...

. . .
...

0 0 0 . . . uD−1,D
0 0 0 . . . 0

 , (xi)

where we denote by ui,j the element in the i-th row and j-th column. Note that the number of
non-zero elements for the matrix Uc is 0.5(D2 −D). Then, the skew-symmetric matrix Sc can be
defined using the corresponding upper triangular matrix Uc as follows:

Sc = Uc −U>c . (xii)

The skew-symmetric matrix is used to define the rotation matrix Rc as in Eq. (11) of the main paper.
We train the rotation matrices with the objective function in Eq. (15) (See Sec. 3.3 in the main paper).
To be specific, the elements of triangular matrices are trained with random initialization. Thus, the
number of parameters for each rotation matrix is 0.5(D2 −D) only.

Pseudo code of our approach. We summarize in Algorithm 1 an overall procedure of our approach
for incremental stages (t > 1). Note that a training process at a base stage (t = 1) is equivalent to
that of fully-supervised segmentation models.

3This is because unlabeled regions do not at least contain new categories and the previous model has been
trained to classify previous categories.
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Experimental details. Following the common practice, we have adopted DeepLab-V3 [4] with
ResNet-101 [8] pre-trained for ImageNet Classification [5]. In particular, SDR [13] and SSUL [3] use
ResNet-101 provided by PyTorch [14], while MiB [2] and PLOP [6] exploit a variant of ResNet-101
using in-place ABN [1] layers. Following SDR and SSUL, we have adopted ResNet-101 provided
by PyTorch. For all experiments, we implement our approach using PyTorch, and use two NVIDIA
TITAN RTX GPUs along with an Intel i5-9600K CPU. We train DeepLab-V3 and rotation matrices
with a batch size of 24, i.e., 12 samples for each GPU.

Hyperparameter settings. We empirically set the value of τ to 10 in order to ensure that correlation
scores are sharp enough. For the focal loss [11], we use the default hyperparameters without tuning
them. Following the common practice in [2, 3, 6, 12, 13], we perform a cross-validation to choose
other hyperparameters, e.g., λALI, λKD, and λMEM. We summarize in Table B hyperparameters for all
experiments. On ADE20K [15], we perform a grid search to set the hyperparameters: λALI ∈ {1, 2, 5}
and λKD ∈ {1, 10, 20} for the first step; λALI ∈ {0, 1, 2, 5} and λMEM ∈ {0.1, 0.5, 1, 2} for the
third step. In particular, the grid search for the first step is performed only once at the first incremental
stage (i.e., t = 2), since the search on ADE20K is computationally expensive. In the subsequent
stages, we use the same values of hyperparameters. We however perform a grid search at every
incremental stage for the third step. This is because we fine-tune a classifier only for a single
epoch, which is computationally acceptable. On PASCAL VOC [7], we have empirically found
that a hIoU score on the cross-validation set decreases during training, when ISS models are trained
with 30 epochs. A plausible reason is that the number of training samples on PASCAL VOC is
relatively small. For example, the number of training samples on 20-1(1) of PASCAL VOC is
548, while the number of training samples on 100-50(1) of ADE20K is 9, 390. We thus use a grid
search to set the hyperparameters for the first step with λALI ∈ {1, 2, 3, 5}, λKD ∈ {1, 10}, and the
number of epochs (EP) ∈ {5, 10}. Since the search cost is relatively mild on PASCAL VOC, we
perform the grid search at every incremental stage. For the third step, we also perform a grid search
with λALI ∈ {1, 2, 3, 5} and λMEM ∈ {1, 2, 10, 20}.

C More discussions

In this section, we first provide an analysis on ALI. Second, we extend the ablation studies in
Tables 5 and 6 of the main paper in order to validate our design choices. Finally, we vary the number
of memorized features to analyze its effect on performance, and empirically show that FAN [10]
performs poorly when adopted in ISS.
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Figure C: ‖w‖new and ‖w‖prev indicate the
norms of classifier weights averaged over
new and previous categories, respectively.
We plot the difference between ‖w‖new
and ‖w‖prev during training.

ALI. Our ALI can be interpreted as keeping a balance
between the maximum logit value and the weighted
average of logit values for previous categories adap-
tively (See Sec.3.2 in the main paper). We conjec-
ture that ALI helps a current model to obtain a more
balanced classifier in terms of the norms of classi-
fier weights. To empirically validate this, we show
in Fig. C the difference between norms of classifier
weights averaged over new and previous categories,
denoted by ‖w‖new and ‖w‖prev, respectively, during
training. For visualization, we train each method on 16-
5(1) of PASCAL VOC [7]. From this figure, we can see
that applying the CE term alone fails to minimize the
difference between ‖w‖new and ‖w‖prev during train-
ing. We can also see that both KD and CKD terms are
not sufficient to minimize the difference, when being
used with the CE term. On the other hand, using the
CCE term alone reduces the difference during training, once again verifying that CCE alleviates the
overfitting problem. Our approach also minimizes the difference consistently, achieving the lowest
difference. This further strengthens the effectiveness of ALI and explains the reason why ALIFE
outperforms MiB [2] in Tables 3 and 4 of the main paper.
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Table C: Comparison of IoU scores using different loss terms of our approach in the first step. Labeled,
Unlabeled, and All indicate that KD is applied for labeled, unlabeled, and all regions, respectively.
Numbers in bold are the best performance, while underlined ones are the second best.

Scenarios CE ALI
KD

mIoUbase mIoUnew mIoU hIoU
Labeled Unlabeled All

16-5(1)

X 16.45 6.94 14.19 9.74
X X 75.50 49.81 69.39 60.02
X X X 77.18 52.52 71.31 62.50
X X X 75.45 49.75 69.33 59.97
X X X 76.25 50.99 70.24 61.12

20-1(1)

X 64.63 1.11 61.61 2.19
X X 76.43 48.74 75.11 59.52
X X X 76.61 49.36 75.31 60.03
X X X 76.48 48.90 75.17 59.65
X X X 76.51 49.07 75.20 59.79

Table D: Comparison of IoU scores using different loss terms of our approach in the third step.
Labeled: CE or FL is applied only for labeled regions. All∗: To apply CE or FL for all regions, we
mark unlabeled regions as predictions of a previous model on-the-fly. Numbers in bold are the best
performance, while underlined ones are the second best.

Scenarios
CE FL

ALI MEM mIoUbase mIoUnew mIoU hIoU
Labeled All∗ Labeled All∗

16-5(1)

X 76.11 48.03 69.42 58.89
X 76.71 50.37 70.44 60.81

X 76.51 49.70 70.13 60.26
X 76.81 50.98 70.66 61.29
X X 77.24 54.90 71.92 64.17
X X 77.25 52.88 71.44 62.78
X X X 77.66 55.27 72.33 64.57

20-1(1)

X 76.40 38.33 74.59 50.97
X 76.46 46.20 75.02 57.59

X 76.38 43.27 74.80 55.22
X 76.42 46.63 75.01 57.91
X X 76.56 47.80 75.19 58.85
X X 76.72 52.23 75.55 62.15
X X X 76.72 52.29 75.56 62.19

More ablation studies. Here we show more ablation studies including an analysis on our design
choices. We report in Table C IoU scores using different loss terms of our approach in the first step.
Note that this table contains the results of Table 5 in the main paper. From both scenarios, we can see
that additionally using the KD term for labeled regions is beneficial to improving the performance.
Table D compares performance using different loss terms of our approach in the third step, while
including the results of Table 6 in the main paper. We can see in the first four rows of each scenario
that the pseudo labeling strategy improves the performance. In particular, using the FL term along
with the pseudo labeling strategy shows decent results. We can also see in the last three rows of each
scenario that both ALI and MEM terms bring substantial IoU gains.

Table E: Comparison of IoU scores varying
the preset number S on PASCAL VOC [7].
No Update: we exploit features extracted
from the previous stage to fine-tune a clas-
sifier at a current stage. That is, we do not
update the features in this case.

Scenarios Methods S mIoUbase mIoUnew mIoU hIoU

16-5(1)
ALIFE-M

100 77.68 55.22 72.33 64.54
500 77.68 55.22 72.33 64.54
1000 77.66 55.27 72.33 64.57

No Update 1000 72.90 55.16 68.67 62.79
FAN [10] 1000 76.79 52.26 70.95 62.19

20-1(1)

ALIFE-M
100 76.70 52.28 75.54 62.18
500 76.72 52.29 75.56 62.19
1000 76.72 52.29 75.56 62.19

No Update 1000 76.64 52.09 75.47 62.03
FAN [10] 1000 74.78 49.96 73.60 59.90

Discussion on a feature replay scheme. To analyze
the effects of the number of memorized features, we
vary the preset number S, and show in Table E perfor-
mance w.r.t S. From this table, we can see that our
approach to memorizing only 100 features for each pre-
vious category already shows decent results on both
scenarios. The fourth row of each scenario shows that
an approach to using features without updating them
degrades the performance. This is natural in that the
features extracted in the previous stage are not compat-
ible with a classifier at a current stage. We empirically
verify in the last row of each scenario that simply adopt-
ing FAN [10] in ISS shows sub-optimal performance.
For a fair comparison, we train FAN with using Eq. (7)
in the paper [10] with carefully tuning hyperparameters. After training, FAN updates saved features
to fine-tune a classifier as in Eq. (19) of the main paper.
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Table F: Comparison of IoU scores in the disjoint setting of PASCAL VOC [7]. We show standard
deviations in parentheses. All numbers for other methods are copied from SSUL [3]. Numbers in
bold are the best performance, while underlined ones are the second best.

Scenarios Methods mIoUbase mIoUnew mIoU hIoU

16-5(1)

MiB [2] 71.80 43.30 64.70 54.02
PLOP [6] 71.00 42.82 64.29 53.42
SSUL [3] 76.44 45.60 69.10 57.12
ALIFE 70.66 44.03 64.32 54.25

(0.64) (0.69) (0.42) (0.45)

20-1(1)

MiB [2] 69.60 25.60 67.40 37.43
PLOP [6] 75.37 38.89 73.64 51.31
SSUL [3] 77.38 22.43 74.76 34.78
ALIFE 76.31 50.94 75.11 61.08

(0.28) (2.14) (0.35) (1.61)

Discussion on the incremental gains from memorizing images or features on ADE20K. We
have observed that the gains from memorizing images or features in Table 3 of the main paper are
relatively lower than those in Table 4. We speculate a plausible reason for this issue as follows. It
is obvious that ADE20K [15] is more challenging than PASCAL VOC [7]. In particular, ADE20K
contains 35 stuff categories, while PASCAL VOC has a single background category. Since 1) the
background category always belongs to base categories, and 2) most unlabeled pixels on PASCAL
VOC belong to the background category during incremental stages, the unlabeled pixels are less
likely to contain future categories even in the overlapped setting. By contrast, on ADE20K, the
single background category is split into multiple stuff categories that could possibly belong to
future categories. SSUL-M [3] memorizes previously seen images, which contain unlabeled regions,
together with ground-truth labels. Since pixels of stuff categories occupy about 60% of all the pixels
on ADE20K (See Sec. 4 in [15]), the unlabeled regions could increase when the stuff categories
belong to future ones. This might be problematic in that the number of labeled pixels decreases
accordingly, lessening the effectiveness of the memoized images. In our case, the feature alignment
scheme computes the correlation score between f t−1(p) and mc(s) (See Eq. (12) in the main paper).
If the label of position belongs to future categories, it might result in erroneous correlations, reducing
the quality of feature alignment.

D More results

Disjoint setting. In the disjoint setting, we assume that (1) all categories even including future ones
are known in advance and (2) training samples of a current dataset do not contain any categories
that would be seen in the future. We report in Table F results of our approach in the disjoint setting
of PASCAL VOC [7]. From this table, we can see that ALIFE shows better results than MiB [2]
and PLOP [6] in terms of hIoU scores on both 16-5(1) and 20-1(1) cases. In particular, ALIFE
outperforms SSUL [3], which exploits an off-the-shelf saliency detector [9], by a large margin in
terms of hIoU scores on 20-1(1). This once again demonstrates the effectiveness of our ALI. Note
that the disjoint setting is quite different from an overlapped setting in the main paper, where training
samples of the current dataset can contain any categories. As pointed out in previous works [2, 3, 6],
the overlapped setting is more practical and challenging.

Qualitative results. We show in Figs. D and E qualitative results on PASCAL VOC [7]. We show
in the last row of each figure failure cases. From the third and fourth columns of Fig. D, we can see
that MiB [2] and PLOP [6] struggle to preserve the discriminability for previous categories, e.g., cow,
table, and chair. In particular, both methods misclassify cow and chair categories as sheep and sofa,
respectively, due to the overfitting problem. ALIFE and ALIFE-M alleviate this problem, showing
better segmentation results. We can also see from the last two columns of Fig. D that replaying
features gives better results than ALIFE. For example, the fourth row shows that ALIFE-M produces
accurate predcitions on the regions for the cow category, where results of ALIFE are incorrect.
Figure E also shows a qualitative comparison of ours with MiB and PLOP. Again, the results of MiB
and PLOP show that both methods are prone to overfitting to new categories (e.g., a tv category in
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Input image. Ground truth. MiB [2]. PLOP [6]. ALIFE. ALIFE-M.

Figure D: Visual comparison of ours and other methods [2, 6] on 16-5(1) for the PASCAL VOC [7]
validation set. Each method is trained to recognize 5 novel categories (i.e. potted plant, sheep, sofa,
train, and tv) after learning 16 categories. The last row shows a failure case. Best viewed in color.

this case). We can see that ALIFE already shows decent results and ALIFE-M further improves the
quality of segmentation results.

References
[1] Samuel Rota Bulo, Lorenzo Porzi, and Peter Kontschieder. In-place activated batchnorm for

memory-optimized training of dnns. In CVPR, 2018.

[2] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo, Elisa Ricci, and Barbara Caputo.
Modeling the background for incremental learning in semantic segmentation. In CVPR, 2020.

[3] Sungmin Cha, YoungJoon Yoo, Taesup Moon, et al. SSUL: Semantic segmentation with
unknown label for exemplar-based class-incremental learning. NeurIPS, 2021.

[4] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv, 2017.

9



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input image. Ground truth. MiB [2]. PLOP [6]. ALIFE. ALIFE-M.

Figure E: Visual comparison of ours and other methods [2, 6] on 20-1(1) for the PASCAL VOC [7]
validation set. Each method is trained to recognize a tv category after learning 20 categories. The last
row shows a failure case. Best viewed in color.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, 2009.

[6] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord. PLOP: Learning without
forgetting for continual semantic segmentation. In CVPR, 2021.

[7] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The PASCAL visual object classes (VOC) challenge. IJCV, 88(2):303–338, 2010.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[9] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji, Zhuowen Tu, and Philip HS Torr. Deeply
supervised salient object detection with short connections. In CVPR, 2017.

[10] Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. Memory-efficient
incremental learning through feature adaptation. In ECCV, 2020.

10



[11] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In ICCV, 2017.

[12] Andrea Maracani, Umberto Michieli, Marco Toldo, and Pietro Zanuttigh. RECALL: Replay-
based continual learning in semantic segmentation. In ICCV, 2021.

[13] Umberto Michieli and Pietro Zanuttigh. Continual semantic segmentation via repulsion-
attraction of sparse and disentangled latent representations. In CVPR, 2021.

[14] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NeurIPS Workshop, 2017.

[15] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Scene parsing through ADE20K dataset. In CVPR, 2017.

11



Algorithm 1 Pseudo code of incremental semantic segmentation with ALIFE.
1: // We omit a training process at a base stage (t = 1)
2: for t ∈ {2, . . . , T} do
3: // Step 1
4: {φt, wt} ← {φt−1, wt−1} // Initialize a current model
5: ep← 0
6: repeat
7: Sample a mini-batch B ∼ Dt // B indicates a mini-batch
8: Update network weights of the current model {φt, wt} ← SGD(B, {φt, wt}, LS1) // LS1 in Eq. (10)
9: ep← ep + 1

10: until ep=EP // EP indicates the number of training epochs
11:
12: // Step 2
13: // Extract features which are used to replay in subsequent stages
14: Freeze {φt, wt}
15: for c ∈ Ctnew do
16: T tc ← [] // T tc indicates a set of features for the category c
17: s← 0
18: repeat
19: (x, y) ∼ Dt

20: Extract a feature map f t ← φt(x)
21: Average features for the category c mc ← 1

|Rc|
∑

p∈Rc
f t(p)

22: T tc ← [T tc ; mc]
23: s← s+ 1
24: until s = S // S indicates the preset number
25: end for
26:
27: // Train rotation matrices
28: Freeze {φt, wt}
29: ep← 0
30: R← {Rc | c ∈ Ctprev} // Initialize a set of rotation matrices randomly (See Eqs. (xi) and (xii))
31: repeat
32: Sample a mini-batch B ∼ Dt

33: Update parameters of the rotation matrices R← SGD(B,R, LS2) // LS2 in Eq. (15)
34: ep← ep + 1
35: until ep=10
36:
37: // Step 3
38: // Update saved features which are extracted in the previous stage
39: Freeze R
40: for c ∈ Ctprev do
41: // M t−1

c indicates a set of memorized features for the category c in the previous stage
42: Rotate features M̂ t−1

c ← RcM
t−1
c

43: end for
44:
45: // Fine-tune a classifier
46: Freeze φt

47: M̂t−1 ← {M̂ t−1
c | c ∈ Ctprev}

48: ep← 0
49: repeat
50: Sample a mini-batch B ∼ Dt

51: Update classifier weights of the current model wt ← SGD({B,M̂t−1}, wt, LS3) // LS3 in Eq. (19)
52: ep← ep + 1
53: until ep=1
54:
55: // Concatenate rotated features M̂ t−1

c and extracted features T tc
56: for c ∈ Ctall do
57: if c ∈ Ctprev then
58: M t

c ← M̂ t−1
c

59: end if
60: if c ∈ Ctnew then
61: M t

c ← T tc
62: end if
63: end for
64: end for
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