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Abstract
The FedProx algorithm is a simple yet powerful distributed proximal point opti-
mization method widely used for federated learning (FL) over heterogeneous data.
Despite its popularity and remarkable success witnessed in practice, the theoretical
understanding of FedProx is largely underinvestigated: the appealing convergence
behavior of FedProx is so far characterized under certain non-standard and unre-
alistic dissimilarity assumptions of local functions, and the results are limited to
smooth optimization problems. In order to remedy these deficiencies, we develop
a novel local dissimilarity invariant convergence theory for FedProx and its mini-
batch stochastic extension through the lens of algorithmic stability. As a result, we
contribute to derive several new and deeper insights into FedProx for non-convex
federated optimization including: 1) convergence guarantees invariant to certain
stringent local dissimilarity conditions; 2) convergence guarantees for non-smooth
FL problems; and 3) linear speedup with respect to size of minibatch and number
of sampled devices. Our theory for the first time reveals that local dissimilarity and
smoothness are not must-have for FedProx to get favorable complexity bounds.

1 Introduction

Federated Learning (FL) has recently emerged as a promising paradigm for communication-efficient
distributed learning on remote devices, such as smartphones, internet of things, or agents (Konečnỳ
et al., 2016; Yang et al., 2019). The goal of FL is to collaboratively train a shared model that works
favorably for all the local data but without requiring the learners to transmit raw data across the
network. The principle of optimizing a global model while keeping data localized can be beneficial
for both computational efficiency and data privacy (Bhowmick et al., 2018). While resembling
the classic distributed learning regimes, there are two most distinct features associated with FL: 1)
large statistical heterogeneity of local data mainly due to the non-iid manner of data generalization
and collection across the devices (Hard et al., 2020); and 2) partial participation of devices in the
network mainly due to the massive number of devices. These fundamental challenges make FL highly
demanding to tackle, both in terms of optimization algorithm design and in terms of theoretical
understanding of convergence behavior (Li et al., 2020a).

FL is most conventionally formulated as the following problem of global population risk minimization
averaged over a set of M devices:

min
w∈Rp

R̄(w) :=
1

M

M∑
m=1

{
R(m)(w) := EZ(m)∼D(m) [`(m)(w;Z(m))]

}
, (1)

where R(m) is the local population risk on device m, `(m) : Rp × Z(m) 7→ R+ is a non-negative
loss function whose value `(m)(w;Z(m)) measures the loss over a random data point Z(m) ∈ Z(m)

with parameter w, D(m) represents an underlying random data distribution over Z(m). Since the data
distribution is typically unknown, the following empirical risk minimization (ERM) version of (1) is
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often considered alternatively:

min
w∈Rp

R̄erm(w) :=
1

M

M∑
m=1

{
R(m)

erm (w) :=
1

Nm

Nm∑
i=1

`(m)(w; z
(m)
i )

}
, (2)

where R(m)
erm is the local empirical risk over the training sample D(m) = {z(m)

i }Nmi=1 on device m. The
sample size Nm may vary significantly across devices, which can be regarded as another source of
data heterogeneity. Federated optimization algorithms for solving (1) or (2) have attracted significant
research interest from both academia and industry, with a rich body of efficient solutions developed
that can flexibly adapt to the communication-computation tradeoffs and data/system heterogeneity.
Several popularly used FL algorithms for this setting include FedAvg (McMahan et al., 2017),
FedProx (Li et al., 2020b), SCAFFOLD (Karimireddy et al., 2020), and FedPD (Zhang et al., 2020), to
name a few. A consensus among these methods on communication-efficient implementation is trying
to extensively update the local models (e.g., with plenty epochs of local optimization) over subsets
of devices so as to quickly find an optimal global model using a minimal number of inter-device
communication rounds for model aggregation.

In this paper, we revisit the FedProx algorithm which is one of the most prominent frameworks for
heterogeneous federated optimization. Reasons for the interests of FedProx include implementation
simplicity, low communication cost, promise in dealing with data heterogeneity and tolerance to
partial participation of devices (Li et al., 2020b). We analyze its convergence behavior, expose
problems, and propose alternatives more suitable for scaling up and generalization. We contribute
to derive several new and deeper theoretical insights into the algorithm from a novel perspective of
algorithmic stability and generalization theory.

1.1 Review of FedProx

For solving FL problems in the presence of data heterogeneity, methods such as FedAvg based on
local stochastic gradient descent (SGD) can fail to converge in practice when the selected devices
perform too many local updates (Li et al., 2020b). To mitigate this issue, FedProx (Li et al., 2020b)
was recently proposed for solving the empirical FL problem (2) using the (inexact) proximal point
update for local optimization. The benefits of FedProx include: 1) it provides more stable local
updates by explicitly enforcing the local optimization in the vicinity of the global model to date; 2)
the method comes with convergence guarantees for both convex and non-convex functions, even
under partial participation and very dissimilar amounts of local updates (Li et al., 2020a). More
specifically, at each time instance t, FedProx uniformly randomly selects a subset It ⊆ [M ] of
devices and introduces for each device ξ ∈ It the following proximal point ERM sub-problem for
local update around the previous global model wt−1:

w
(ξ)
t ≈ arg min

w∈Rp

{
Q(ξ)

erm(w;wt−1) := R(ξ)
erm(w) +

1

2ηt
‖w − wt−1‖2

}
, (3)

where ηt > 0 is the learning rate that controls the impact of the proximal term. Then the global model
is updated by uniformly aggregating those local updates from It as

wt =
1

|It|
∑
ξ∈It

w
(ξ)
t .

In the extreme case of allowing ηt → +∞ in (3), FedProx reduces to the regime of FedAvg if using
SGD for local optimization. Since its inception, FedProx and its variants have received significant
interests in research (Pathak and Wainwright, 2020; Nguyen et al., 2020; Li et al., 2019) and become
an algorithm of choice in application areas such as automatous driving (Donevski et al., 2021) and
computer vision (He et al., 2021). Theoretically, FedProx comes with convergence guarantees
under the following bounded local gradient dissimilarity assumption that captures the statistical
heterogeneity of local objectives across the network:

Definition 1 ((B,H)-LGD). We say the local functions R(m) have (B,H)-local gradient dissimi-
larity (LGD) if the following holds for all w ∈ Rp:

1

M

M∑
m=1

‖∇R(m)(w)‖2 ≤ B2‖∇R̄(w)‖2 +H2.
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The above definition naturally extends to the local empirical risks {R(m)
erm }Mm=1. Specially in the

homogenous setting where R(m) ≡ R̄, ∀m ∈ [M ], we have B = 1 and H = 0. Under (B, 0)-LGD
and some regularization conditions on the modulus B, it was shown that FedProx for non-convex
problems requires T = O

(
1
ε

)
rounds of inter-device communication to reach an ε-stationary solution

in the sense of 1
T

∑T
t=1 ‖∇R̄erm(wt)‖2 ≤ ε (Li et al., 2020b). Similar guarantees have also been

established for a variant of FedProx with non-uniform model aggregation (Nguyen et al., 2020).

Open issues and motivation. In spite of the remarkable success achieved by FedProx and its variants,
there are still a number of important theoretical issues regarding the unrealistic assumptions, restrictive
problem regimes and expensive local oracle cost that remain open for exploration, as specified below.

• Local dissimilarity condition. The appealing convergence behavior of FedProx is so far charac-
terized under a key but non-standard (B, 0)-LGD condition (cf. Definition 1) with B > 0. Such a
condition is obviously unrealistic in practice: it essentially requires the local objectives share the
same stationary point as the global objective since ‖∇R̄erm(w)‖ = 0 implies ‖∇R(m)

erm (w)‖ = 0 for
all m ∈ [M ]. However, if the optima of R(m)

erm are exactly (or even approximately) the same, there
would be little point in distributing data across devices for federated learning. It is thus desirable to
understand the convergence behavior of FedProx for heterogeneous FL without imposing stringent
local dissimilarity conditions like (B, 0)-LGD.

• Non-smooth optimization. The existing convergence guarantees of FedProx are only available
for FL with smooth losses. More often than not, however, FL applications involve non-smooth
objectives due to the popularity of non-smooth losses (e.g., hinge loss and absolute loss) in machine
learning, and training deep neural networks with non-smooth activation like ReLU. Therefore, it is
desirable to understand the convergence behavior of FedProx in non-smooth problem regimes.

• Local oracle complexity. Unlike the (stochastic) first-order oracles such as SGD used by FedAvg,
the proximal point oracle (3) for local update is by itself a full-batch ERM problem which tends to
be expensive to solve even approximately per-iteration. Plus, due to the potentially imbalanced
data distribution over devices, the computational overload of the proximal point oracle could vary
significantly across the network. Therefore, it is important to investigate whether using minibatch
stochastic approximation to the proximal point oracle (3) can provably improve the computational
efficiency of FedProx.

Last but not least, existing convergence analysis of FedProx mainly focuses on the empirical FL
problem (2). The optimality in terms of the population FL problem (1) is not yet clear for FedProx.
The primary goal of this work is to remedy these theoretical issues simultaneously, so as to lay a
more solid theoretical foundation for the popularly applied FedProx algorithm.

1.2 Our Contributions

In this paper, we make progress towards understanding the convergence behavior of FedProx for
non-convex heterogenous FL under weaker yet more realistic conditions. The main results are a set
of local dissimilarity invariant bounds for smooth or non-smooth problems.

Main results for the vanilla FedProx. As a starting point to address the restrictiveness of local
dissimilarity assumption, we provide a novel convergence analysis for the vanilla FedProx algorithm
invariant to the (B, 0)-LGD condition. For smooth and non-convex optimization problems, our result
in Theorem 1 shows that the rate of convergence to a stationary point is upper bounded by

1

T

T−1∑
t=0

E
[∥∥∇R̄erm(wt)

∥∥2
]
. max

{
1

T 2/3
,

1√
TI

}
, (4)

where I is the number devices randomly selected for local update at each iteration. If all the devices
participate in the local updates for every round, i.e. It = [M ], the rate of convergence can be improved
to O( 1

T 2/3 ). For T < I3, the rate in (4) is dominated by O( 1
T 2/3 ) which gives the communication

complexity 1
ε3/2

to achieve an ε-stationary solution. On the other hand when T ≥ I3, the rate is
dominated by O( 1√

TI
) which gives the communication complexity 1

Iε2 . Compared to the already
known O( 1

ε ) complexity bound of FedProx under the unrealistic (B, 0)-LGD condition (Li et al.,
2020b), our rate in (4) is slower but it holds without needing to impose stringent regularity conditions
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on the dissimilarity of local functions, and it reveals the benefit of device minibatch sampling for
accelerating convergence. Further for non-smooth and weakly convex problems, we establish in
Theorem 2 the following rate of convergence regarding proper ρ-Moreau-envelopes of R̄erm:

1

T

T−1∑
t=0

E
[∥∥∇R̄erm,ρ(wt)

∥∥2
]
.

1√
T
, (5)

The bound is not dependent on the number of selected devices in each round. In the case of I = O(1),
the bounds in (4) and (5) are comparable, which indicates that smoothness is not must-have for
FedProx to get sharper convergence bound especially with low participation ratio. On the other end
when I = O(M), the bound (5) for non-smooth problems is slower than the bound (4) for smooth
functions in large-scale networks.

Main results for minibatch stochastic FedProx. Then as the chief contribution of the present work,
we propose a minibatch stochastic extension of FedProx along with its population optimization
performance analysis from a novel perspective of algorithmic stability theory. Inspired by the recent
success of minibatch stochastic proximal point methods (MSPP) (Li et al., 2014; Wang et al., 2017;
Asi et al., 2020; Deng and Gao, 2021), we propose to implement FedProx using MSPP as the local
update oracle. The resulting method, which is referred to as FedMSPP, is expected to attain improved
trade-off between computation, communication and memory efficiency for large-scale FL. In the case
of imbalanced data distribution, minibatching is also beneficial for making the local computation more
balanced across the devices. Based on some extended uniform stability arguments for gradients, we
show in Theorem 3 the following rate of convergence for FedMSPP in terms of population optimality,
which is also invariant to the (B, 0)-LGD condition:

1

T

T−1∑
t=0

E
[∥∥∇R̄(wt)

∥∥2
]
. max

{
1

T 2/3
,

1√
TbI

}
, (6)

where b is the minibatch size of local update. For empirical FL, identical bound holds under sampling
according to empirical distribution. For T < (bI)3, the rate in (6) is dominated by O( 1

T 2/3 ) which
gives the communication complexity 1

ε3/2
, and it matches that of the vanilla FedProx. For sufficiently

large T ≥ (bI)3, the rate is dominated by O( 1√
TbI

) which gives the communication complexity 1
bIε2 .

This shows that local minibatching and device sampling are both beneficial for linearly speeding
up communication. Further, when applied to non-smooth problems, we show in Theorem 4 that
FedMSPP converges at the following rate with respect to proper ρ-Moreau-envelopes of R̄:

1

T

T−1∑
t=0

E
[∥∥∇R̄ρ(wt)∥∥2

]
.

1√
T
,

which is comparable to that of (6) when b = O(1) and I = O(1), but without witnessing the effect
of linear speedup with respect to b and I .

Comparison with prior results. In Table 1, we summarize our communication complexity bounds
for FedProx (FedMSPP) and compare them with several related heterogeneous FL algorithms in terms
of the conditions on local dissimilarity, applicability to non-smooth problems and tolerance to partial
participation. A few observations are in order. First, regarding the local dissimilarity condition, all of
our O( 1

ε2 ) bounds are not dependent on the (B,H)-LGD type conditions, and they are comparable
to those of SCAFFOLD and FCO (for convex problems) which are also invariant to local dissimilarity
conditions. Second, with regard to the applicability to non-smooth optimization, our convergence
guarantees in Theorem 2 and Theorem 4 are established for non-smooth and weakly convex functions.
While FCO is the only one in the other considered algorithms that can be applied to non-smooth
problems, it is customized for federated convex composite optimization with potentially non-smooth
regularizers (Yuan et al., 2021). Third, in terms of tolerance to partial participation, all of our results
are robust to device sampling, and the O( 1

bIε2 ) bound in Theorem 3 for FedMSPP is comparable to
the best known results under partial participation as achieved by FedAvg and SCAFFOLD. If assuming
that all the devices participate in local update for each communication round and using momentum
acceleration techniques, substantially fasterO( 1

ε ) bounds are possible for STEM and FedPD, while the
O( 1

ε3/2
) bounds can be achieved by FedAvg (Khanduri et al., 2021). To summarize the comparison,

our (B,H)-LGD invariant convergence bounds for FedProx (FedMSPP) are comparable to the best-
known rates in the identical setting, while covering the generic non-smooth and non-convex cases
which to our knowledge has not been provably possible for other FL algorithms.
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Method Work Commun. Complex. LD Condition NS PP
FedProx (Li et al., 2020b) O

(
1
ε

)
(B, 0)-LGD 7 3

Theorem 1 (ours) O
(

1
Iε2 + 1

ε3/2

)
– 7 3

Theorem 2 (ours) O
(

1
ε2

)
– 3 3

FedMSPP Theorem 3 (ours) O
(

1
bIε2 + 1

ε3/2

)
– 7 3

Theorem 4 (ours) O
(

1
ε2

)
– 3 3

FedAvg (Karimireddy et al., 2020) O
(

1
bIε2 + 1

ε3/2
+ 1

ε

)
(B,H)-LGD 7 3

(Yu et al., 2019) O
(

1
bMε2 + Mb

ε

)
(0, H)-LGD 7 7

(Khanduri et al., 2021) O
(

1
ε3/2

)
– 7 7

SCAFFOLD (Karimireddy et al., 2020) O
(

1
bIε2 + (M/I)2/3

ε

)
– 7 3

FedPD (Zhang et al., 2020) O
(

1
ε

)
– 7 7

STEM (Khanduri et al., 2021) O
(

1
ε

)
– 7 7

FCO (Yuan et al., 2021) O
(

1
bMε2 + 1

ε

)
(convex composite) – 3 7

Table 1: Comparison of heterogeneous FL algorithms in terms of communication complexity bounds
for reaching an ε-stationary solution, local dissimilarity (LD) condition, applicability to non-smooth
(NS) functions and tolerance to partial participation (PP). Except for FCO, all the results listed are for
non-convex functions. The involved quantities are M : total number of devices; I: number of chosen
devices for partial participation; b: minibatch size for local stochastic optimization.

Highlight of contributions. The theoretical contributions of this work are highlighted as follows:

• From the perspective of algorithmic stability theory, we provide a set of novel local dissimilarity
invariant convergence guarantees for the widely used FedProx algorithm for non-convex heteroge-
neous FL, with smooth or non-smooth local functions. Our theory for the first time reveals that
local dissimilarity and smoothness are not necessary to guarantee the convergence of FedProx with
reasonable rates.

• We present FedMSPP as a minibatch stochastic extension of FedProx and analyze its population
optimization performance for both smooth and non-smooth FL problems, again without assuming
local dissimilarity conditions. Particularly for smooth problems, our result provably shows that
FedMSPP enjoys linear speedup in terms of minibatching size and partial participation ratio.

Paper organization. In Section 2 we present our local dissimilarity invariant convergence analysis for
the vanilla FedProx with smooth or non-smooth loss functions. In Section 3 we propose FedMSPP as
a minibatch stochastic extension of FedProx and analyze its convergence behavior through the lens
of algorithmic stability theory. In Section 4, we discuss some additional related work on the topics
covered by this paper. The concluding remarks are made in Section 5. Finally, all the technical proofs
and some additional related work are relegated to the appendix sections.

2 Convergence of FedProx

We begin by providing an improved analysis for the vanilla FedProx which is not relying on the
(B,H)-LGD type conditions. We first introduce notations that will be used in the analysis to follow.

Notations. Throughout the paper, we use [n] to denote the set {1, ..., n}, ‖ · ‖ to denote the Euclidean
norm and 〈·, ·〉 to denote the Euclidean inner product. We say a function f is G-Lipschitz continuous
if |f(w) − f(w′)| ≤ G‖w − w′‖ for all w,w′ ∈ Rp, and it is L-smooth if |∇f(w) − ∇f(w′)| ≤
L‖w − w′‖ for all w,w′ ∈ Rp. Moreover, we say f is ν-weakly convex if for any w,w′ ∈ Rp,

f(w) ≥ f(w′) + 〈∂f(w′), w − w′〉 − ν

2
‖w − w′‖2,

where ∂f(w′) represents a subgradient of f evaluated at w′. We denote by

fη(w) := min
u

{
f(u) +

1

2η
‖u− w‖2

}
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the η-Moreau-envelope of f , and by

proxηf (w) := arg min
u

{
f(u) +

1

2η
‖u− w‖2

}
the proximal mapping associated with f . We also need to access the following definition of inexact
local update oracle for FedProx.
Definition 2 (Local inexact oracle of FedProx). Suppose that the local proximal point regularized
objective Q(m)

erm (w;wt−1) (cf. (3)) admits a global minimizer. For each time instance t, we say that
the local update oracle of FedProx is εt-inexactly solved with sub-optimality εt ≥ 0 if

Q(m)
erm (w

(m)
t ;wt−1) ≤ min

w
Q(m)

erm (w;wt−1) + εt.

Throughout our analysis, we focus on the case where the devices are sampled with replacement,
while all the results extend well to the regime of sampling without replacement.

2.1 Results for Smooth Problems

The following theorem is our main result on the convergence rate of FedProx for smooth and non-
convex federated optimization problems. A proof of this result is deferred to Appendix B.1. We
assume that the initial sub-optimality ∆̄

(0)
erm := R̄erm(w0)−minw∈Rp R̄erm(w) is bounded.

Theorem 1. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz and L-smooth

with respect to its first argument. Set |It| ≡ I and ηt ≡ 1
3L min

{
1

T 1/3 ,
√

I
T

}
. Suppose that the local

update oracle of FedProx is εt-inexactly solved with εt ≤ min
{

2L2G2η3t
I2(Lηt+1) ,

G2ηt
2I(Lηt+1)

}
. Let t∗ be

an index uniformly randomly chosen in {0, 1, ..., T − 1}. Then it holds that

E
[∥∥∇R̄erm(wt∗)

∥∥2
]
.
(
L∆̄(0)

erm +G2
)

max

{
1

T 2/3
,

1√
TI

}
.

A few remarks are in order.
Remark 1. Compared to the O

(
1
T

)
bound from Li et al. (2020b), our rate established in Theorem 1

is slower but it is valid without assuming the unrealistic (B, 0)-LGD conditions and imposing strong
regularization conditions on I (see, e.g., Li et al., 2020b, Remark 5). Moreover, the dominant term

1√
TI

in our bound reveals the benefit of device sampling for linear speedup which is not clear in the
previous analysis by Li et al. (2020b).
Remark 2. In the extreme case of full device participation, i.e., It ≡ [M ], the terms related to I in
Theorem 1 can be removed and thus the convergence rate becomes 1

T 2/3 under ηt = O
(

1
LT 1/3

)
. In

this same setting, we comment that the rate can also be improved to O
(

1
T

)
using our proof augments

if (B, 0)-LGD is additionally assumed.
Remark 3. The G-Lipschitz-loss assumption in Theorem 1 can be alternatively replaced by the
bounded gradient condition as commonly used in the analysis of FL algorithms (Li et al., 2020b;
Zhang et al., 2020). Despite that our analysis does not rely on the (B, 0)-LGD condition, the
assumed G-Lipschitz (or bounded gradient) condition actually implies that the local objective
gradients are not too dissimilar, which shares a close spirit to the typically assumed (0, H)-LGD
condition (Karimireddy et al., 2020) and inter-client-variance condition (Khanduri et al., 2021). It is
noteworthy that these mentioned client heterogeneity conditions are substantially milder than the
(B, 0)-LGD condition as required in the original analysis of FedProx.

2.2 Results for Non-smooth Problems

Now we turn to study the convergence of FedProx for weakly convex but not necessarily smooth
problems. For the sake of presentation clarity, we work on the exact FedProx in which the local
update oracle is assumed to be exactly solved, i.e. εt ≡ 0. Extension to the inexact case is more or
less straightforward, though with somewhat more involved perturbation treatments. In the analysis to
follow, we assume that the initial sub-optimality ∆̄

(0)
erm,ρ := R̄erm,ρ(w0)−minw R̄erm,ρ(w) associated

with ρ-Moreau-envelope of R̄erm is bounded. The following is our main result on the convergence of
FedProx for non-smooth and weakly convex problems.
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Theorem 2. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz and ν-weakly
convex with respect to its first argument. Set ηt ≡ ρ√

T
for arbitrary ρ < 1

2ν . Suppose that the local
update oracle of FedProx is exactly solved with εt ≡ 0. Let t∗ be an index uniformly randomly
chosen in {0, 1, ..., T − 1}. Then it holds that

E
[∥∥∇R̄erm,ρ(wt∗)

∥∥2
]
.

∆̄
(0)
erm,ρ + ρG2

ρ
√
T

.

Proof. The proof technique is inspired by the arguments from Davis and Drusvyatskiy (2019) devel-
oped for analyzing stochastic model-based algorithms, with several new elements along developed
for handling the challenges introduced by the model averaging and partial participation mechanisms
associated with FedProx. A particular crux here is that due to the random subset model aggregation
of wt = 1

|It|
∑
ξ∈It w

(ξ)
t , the local function values R(ξ)

erm(wt) are no longer independent of each other

though ξ is uniformly random. As a consequence, 1
|It|
∑
ξ∈It R

(ξ)
erm(wt) is not an unbiased estimation

of R̄erm(wt). To overcome this technical obstacle, we make use of a key observation that w(m)
t will

be almost surely close enough to wt−1 if the learning rate ηt is small enough (which is the case in
our choice of ηt), and thus we can replace the former with the latter whenever beneficial but without
introducing too much approximation error. See Appendix B.2 for a full proof of this result.

A few remarks are in order.
Remark 4. To our best knowledge, Theorem 2 is the first convergence guarantee for FL algorithms
applicable to generic non-smooth and weakly convex problems. This is in sharp contrast with
FCO (Yuan et al., 2021) which focuses on composite convex and non-smooth problems such as `1-
estimation, or Fed-HT (Tong et al., 2020) which is specially customized for cardinality-constrained
sparse learning problems where the non-convexity essentially arises from the cardinality constraint.
Remark 5. Let us consider w̄t∗ := proxρR̄erm

(wt∗), the proximal mapping of wt∗ associated with
R̄erm. In view of a feature of Moreau envelope to characterize stationarity (Davis and Drusvyatskiy,
2019), if wt∗ has small gradient norm

∥∥∇R̄erm,ρ(wt∗)
∥∥, then w̄t∗ must be a near-stationary solution

andwt∗ stays in the proximity of w̄t∗ due to the identity ‖wt∗−w̄t∗‖ = ρ
∥∥∇R̄erm,ρ(wt∗)

∥∥. Therefore,
the bound in Theorem 2 suggests that in expectation w̄t∗ converges to a stationary solution and wt∗
converges to w̄t∗ , both at the rate of O

(
1√
T

)
.

Remark 6. We comment that the bound in Theorem 2 is not dependent on I , the number of selected
devices. On one hand, for I = O(1) and sufficiently large T > O(I3), the bounds Theorem 1 and
Theorem 2 are comparable to each other, which demonstrates that the smoothness is not must-have for
FedProx to get sharper convergence bound with small device sampling rate. On the other hand, in the
near-full participation setting where I = O(M), the bound in Theorem 2 for non-smooth problems
will be slower when M is large. Extremely when It = [M ], the O

(
1√
T

)
bound is substantially

inferior to the smooth case which has improved rate of O
(

1
T 2/3

)
as discussed in Remark 2.

3 Convergence of FedProx with Stochastic Minibatching

When it comes to the implementation of FedProx, a notable challenge is that the local proximal
point update oracle (3) is by itself a full-batch ERM problem which would be expensive to solve
even approximately in large-scale settings. Moreover, in the settings where the data distribution over
devices is highly imbalanced, the computational overload of local update could vary significantly
across the network, which impairs communication efficiency. It is thus desirable to seek stochastic
approximation schemes for hopefully improving the local oracle update efficiency and overload
balance of FedProx. To this end, inspired by the recent success of minibatch stochastic proximal point
methods (MSPP) (Asi et al., 2020; Deng and Gao, 2021), we propose to implement FedProx using
MSPP as the local stochastic optimization oracle. More precisely, letB(m)

t = {z(m)
i,t }bi=1

i.i.d.∼ (D(m))b

be a minibatch of b i.i.d. samples drawn from the distribution D(m) at device m and time instance
t ≥ 1. We denote

R
(m)

B
(m)
t

(w) :=
1

b

b∑
i=1

`(m)(w; z
(m)
i,t ) (7)
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Algorithm 1: FedMSPP: Federated Minibatch Stochastic Proximal Point
Input :Minibatch size b; learning rates {γt}t∈[T ].
Output :wT .
Initialization Set w0, e.g., typically as a zero vector.
for t = 1, 2, ..., T do

/* Device selection and model broadcast on the server */
Server uniformly randomly selects a subset It ⊆ [M ] of devices and sends wt−1 to all the
selected devices;
/* Local model updates on the selected devices */
for ξ ∈ It in parallel do

Device ξ samples a minibatch B(ξ)
t = {z(ξ)

i,t }bi=1
i.i.d.∼ (D(ξ))b.

Device ξ inexactly updates the its local model as

w
(ξ)
t ≈ arg min

w∈Rp

{
Q

(ξ)

B
(ξ)
t

(w;wt−1) := R
(ξ)

B
(ξ)
t

(w) +
1

2ηt
‖w − wt−1‖2

}
, (8)

where R(ξ)

B
(ξ)
t

(w) is given by (7).

Device ξ sends w(ξ)
t back to server.

end
/* Model aggregation on the server */
Sever aggregates the local models received from It to update the global model as
wt = 1

|It|
∑
ξ∈It w

(ξ)
t .

end

as the local minibatch empirical risk function over B(m)
t . Here, the only modification we propose

to make is to replace the empirical risk R(m)
erm (w) in the original update form (3) with its minibatch

counterpart R(m)

B
(m)
t

(w). The resultant FL framework, which we refer to as FedMSPP (Federated

MSPP), is outlined in Algorithm 1. Clearly, the vanilla FedProx is a special case of FedMSPP when
applied to the federated ERM form (2) with full data batch B(m)

t ≡ D(m).

3.1 Results for Smooth Problems

We first analyze the convergence rate of FedMSPP for smooth and non-convex problems using the
tools borrowed from algorithmic stability theory. Analogous to the Definition 2, we introduce the
following definition of inexact local update oracle for FedMSPP.
Definition 3 (Local inexact oracle of FedMSPP). Suppose that the local proximal point regularized
objective Q(m)

B
(m)
t

(w;wt−1) (cf. (8)) admits a global minimizer. For each time instance t, we say that

the local update oracle of FedMSPP is εt-inexactly solved with sub-optimality εt ≥ 0 if

Q
(m)

B
(m)
t

(w
(m)
t ;wt−1) ≤ min

w
Q

(m)

B
(m)
t

(w;wt−1) + εt.

We also assume that the initial population sub-optimality ∆̄(0) = R̄(w(0)) − minw∈Rp R̄(w) is
bounded. The following theorem is our main result on FedMSPP for smooth and non-convex FL
problems.

Theorem 3. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz and L-smooth

with respect to its first argument. Set |It| ≡ I and ηt ≡ 1
8L min

{
1

T 1/3 ,
√

bI
T

}
. Suppose that the

local update oracle of FedMSPP is εt-inexactly solved with εt ≤ min
{

G2ηt
2(Lηt+1) ,

G2ηt
8b2 ,

L2G2η3t
2bI(Lηt+1)

}
.

Let t∗ be an index uniformly randomly chosen in {0, 1, ..., T − 1}. Then it holds that

E
[∥∥∇R̄(wt∗)

∥∥2
]
.
(
L∆̄(0) +G2

)
max

{
1

T 2/3
,

1√
TbI

}
.
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Proof. Let us consider d(m)
t = ∇R(m)

B
(m)
t

(w
(m)
t ) which is roughly the local update direction on device

m, in the sense that w(m)
t ≈ wt−1 − ηtd(m)

t given that the local update oracle is solved to sufficient
accuracy. As a key ingredient of our proof, we show via some extended uniform stability arguments
in terms of gradients (see Lemma 3) that the averaged directions dt := 1

|It|
∑
ξ∈It d

(ξ)
t aligns well

with the global gradient ∇R̄(wt−1) in expectation (see Lemma 11). Therefore, in average it roughly
holds that wt = 1

|It|
∑
ξ∈It w

(ξ)
t ≈ wt−1 − ηtdt ≈ wt−1 − ηt∇R̄(wt−1), which suggests that wt

is updated roughly along the direction of global gradient descent and thus is expected to converge
quickly. Based on this novel analysis, we are free of explicitly imposing local dissimilarity type
conditions on local objectives. See Appendix C.1 for a full proof of this result.

Remark 7. For T ≥ (bI)3, the bound in Theorem 3 is dominated by O
(

1√
TbI

)
which gives the

communication complexity 1
bIε2 . This shows that FedMSPP enjoys linear speedup with respect to both

local minibatching and device sampling sizes.

Remark 8. While the bound in Theorem 3 is derived for the population form of FL in (1), an identical
bound naturally holds for the empirical form (2) under minibatch sampling according to local data
empirical distribution.

3.2 Results for Non-smooth Problems

Analogues to FedProx , we can further show that FedMSPP converges reasonably well when applied
to weakly convex and non-smooth problems. In the analysis to follow, we assume that the initial
sub-optimality ∆̄

(0)
ρ := R̄ρ(w0) − minw∈Rp R̄ρ(w) associated with ρ-Moreau-envelope of R̄ is

bounded. The following is our main result in this line.

Theorem 4. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz and ν-weakly
convex with respect to its first argument. Set ηt ≡ ρ√

T
for arbitrary ρ < 1

2ν . Suppose that the local
update oracle of FedMSPP is exactly solved with εt ≡ 0. Let t∗ be an index uniformly randomly
chosen in {0, 1, ..., T − 1}. Then it holds that

E
[∥∥∇R̄ρ(wt∗)∥∥2

]
.

∆̄
(0)
ρ + ρG2

ρ
√
T

.

Proof. The proof argument is a slight adaptation of that of Theorem 2 to the population FL setup (1)
with FedMSPP. For the sake of completeness, a full proof is reproduced in Appendix C.2.

We comment in passing that the discussions made in Remarks 4-6 extend directly to Theorem 4.

4 Additional Related Work

The present work is situated at the intersection of federated learning, stochastic proximal point
optimization and algorithmic stability theory. We next briefly review some additional work in these
lines of research that are closely related to ours.

Heterogenous federated learning. The presence of device heterogeneity features a key distinction
between FL and classic distributed learning. The most commonly used FL method is FedAvg (M-
cMahan et al., 2017), where the local update oracle is formed as multi-epoch SGD. FedAvg was
early analyzed for identical functions (Stich, 2019; Stich and Karimireddy, 2020) under the name
of local SGD. In heterogeneous setting, numerous recent studies have focused on the analysis of
FedAvg and other variants under various notions of local dissimilarity (Li et al., 2020c; Woodworth
et al., 2020; Chen et al., 2020; Khaled et al., 2020; Reddi et al., 2021; Khanduri et al., 2021; Li
et al., 2022; Chen et al., 2022; Zhao et al., 2022). As another representative FL method, FedProx (Li
et al., 2020b) has recently been proposed to apply averaged proximal point updates to solve het-
erogeneous federated minimization problems. The theoretical guarantees of FedProx have been
established for both convex and non-convex problems, but under a fairly stringent assumption of
gradient similarity (see Definition 1) to measure data heterogeneity (Li et al., 2020b; Pathak and
Wainwright, 2020; Nguyen et al., 2021). This assumption was relaxed by FedPD (Zhang et al., 2020)
inside a meta-framework of primal-dual optimization. The SCAFFOLD (Karimireddy et al., 2020) and
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VRL-SGD (Liang et al., 2019) are two algorithms that utilize variance reduction techniques to correct
the local update directions, achieving convergence guarantees independent of the data heterogeneity.
For composite non-smooth FL problems, the FCO proposed in Yuan et al. (2021) employs a server
dual averaging procedure to circumvent the curse of primal averaging suffered by FedAvg. In sharp
contrast to these prior works which either require certain stringent local dissimilarity conditions, or
require full device participation, or only applicable to smooth problems, we show through a novel
analysis based on algorithmic stability theory that the well-known FedProx can elegantly overcome
all these shortcomings in a simple algorithmic framework. Another research direction in FL is to
adopt compression methods for efficient communication (e.g., Haddadpour et al. (2020); Li and Li
(2022)), which could also be applied to FedProx, as a topic for future investigation.

Minibatch stochastic proximal point methods. The proposed FedMSPP algorithm is a variant of
FedProx that simply replaces the local proximal point oracle with MSPP, which in each iteration
updates the local model via (approximately) solving a proximal point estimator over a stochastic
minibatch. The MSPP-type methods have been shown to attain a substantially improved iteration
stability and adaptivity for large-scale machine learning, especially in non-smooth optimization
settings (Li et al., 2014; Wang et al., 2017; Asi and Duchi, 2019; Deng and Gao, 2021). However,
it is not yet known if FedProx or FedMSPP can achieve similar strong guarantees for non-smooth
heterogenous FL problems.

Algorithmic stability. Our analysis for FedMSPP builds largely upon the classic algorithmic stability
theory. Since the seminal work of Bousquet and Elisseeff (2002), algorithmic stability has been
serving as a powerful proxy for establishing strong generalization bounds (Zhang, 2003; Mukherjee
et al., 2006; Shalev-Shwartz et al., 2010). Particularly, the state-of-the-art risk bounds of strongly
convex ERM are offered by approaches based on the notion of uniform stability (Feldman and
Vondrák, 2018, 2019; Bousquet et al., 2020; Klochkov and Zhivotovskiy, 2021). It was shown
by Hardt et al. (2016) that the solution obtained via SGD is stable for smooth convex or non-convex
loss functions. For non-smooth convex losses, the stability induced generalization bounds have been
established for SGD (Lei and Ying, 2020; Bassily et al., 2020; Yuan and Li, 2022). Through the lens
of uniform algorithmic stability, convergence rates of MSPP have been studied for non-smooth and
convex (Wang et al., 2017), or weakly convex (Deng and Gao, 2021) losses.

5 Conclusions
In this paper, we have exposed three shortcomings of the prior analysis for FedProx in unrealistic
assumptions about local dissimilarity, inapplicability to non-smooth problems and expensive (and
potentially imbalanced) computational cost of local update. In order to tackle these issues, we
developed a novel convergence theory for the vanilla FedProx and its minibatch stochastic variant,
FedMSPP, through the lens of algorithmic stability theory. In a nutshell, our results reveal that with
minimal modifications, FedProx is able to kill three birds with one stone: it enjoys favorable rates of
convergence which are simultaneously invariant to certain stringent local dissimilarity conditions,
applicable to smooth or non-smooth problems, and scaling linearly with respect to local minibatch
size and device sampling ratio for smooth problems. To the best of our knowledge, the present work is
the first theoretical contribution that achieves all these appealing properties in a single FL framework.

Limitations. While our results in Theorems 2 and 4 for the first time guarantee the non-asymptotic
convergence of FedProx and FedMSPP for non-smooth and weakly-convex problems, the correspond-
ing rates of convergence so far cannot demonstrate any linear speedup effort w.r.t. device sampling
ratio and local minibatching size. This is as opposed to what have been shown for smooth problems in
Theorems 1 and 3; thus we view it as a potential limitation of the techniques used by our analysis. In
the smooth-loss case, the comparison in Table 1 suggests that our results in Theorem 1 and Theorem 3
show no faster convergence rates than those of the existing FL methods based on local SGD update,
despite that FedProx/FedMSPP requires a considerably more expensive oracle for local update.
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The appendix is structured as follows:

• In Appendix A, we present a few preliminary lemmas to be used in our analysis.
• In Appendix B, we provide the technical proofs for the main results in Section 2.
• In Appendix C, we provide the technical proofs for the main results in Section 3.
• In Appendix D, we collect the technical proofs for some preliminary lemmas in Appendix A.
• In Appendix E, we present some experimental results on the evaluation of FedMSPP.

A Preliminaries

We present in this section some preliminary results on the classic algorithmic stability theory to
be used in our analysis. Let us consider an algorithm A : ZN 7→ W that maps a training data set
S = {zi}i∈[N ] ∈ ZN to a modelA(S) in a closed subsetW ⊆ Rp such that the following population
risk function (with a slight abuse of notation) evaluated at the model is as small as possible:

R(A(S)) := EZ∼D[`(A(S);Z)].

The corresponding empirical risk is defined by

RS(A(S)) := EZ∼Unif(S)[`(A(S);Z)] =
1

N

N∑
i=1

`(A(S); zi).

We denote by S .
= S′ if a pair of data sets S and S′ differ in a single data point. The following

concept of stability that serves as a powerful tool for analyzing the generalization bounds of learning
algorithms (Hardt et al., 2016; Elisseeff et al., 2005; Bassily et al., 2020).
Definition 4 (Uniform Argument Stability). Let A : ZN 7→ W be a learning algorithm that maps
a data set S ∈ ZN to a model A(S) ∈ W . Then A is said to have γ-uniform stability if for every
N ≥ 1,

sup
S
.
=S′
‖A(S)−A(S′)‖ ≤ γ.

The following basic lemma is about the uniform argument stability of an inexact regularized empirical
risk minimization (ERM) estimator. See Appendix D.1 for its proof.
Lemma 1. Assume that the loss function ` is G-Lipschitz with respect to its first argument. Suppose
that the regularized objective RrS(w) := 1

N

∑N
i=1 `(w; zi) + r(w) is λ-strongly convex for any S.

Consider the inexact estimator wS that satisfies the following for some εt ≥ 0:
RrS(wS) ≤ min

w
RrS(w) + εt.

Then wS has uniform argument stability with parameter 4G
λN + 2

√
2εt
λ .

We further need to use the following variant of Efron-Stein inequality to random vector-valued
functions (see, e.g., Lemma 6, Rivasplata et al., 2018).
Lemma 2 (Efron-Stein inequality for vector-valued functions). Let S = {Z1, Z2, ..., ZN} be a set
of i.i.d. random variables valued in Z . Suppose that the function h : ZN 7→ H valued in a Hilbert
spaceH is measurable and satisfies the bounded differences property, i.e., the following inequality
holds for any i ∈ [N ] and any z1, ..., zN , z

′
i:

‖h(z1, ..., zi−1, zi, zi+1, ..., zN )− h(z1, ..., zi−1, z
′
i, zi+1, ..., zN )‖ ≤ β.

Then it holds that
ES
[
‖h(S)− ES [h(S)]‖2

]
≤ β2N.

Based on the Efron-Stein inequality in Lemma 2, we can establish the following lemma which states
the generalization bounds of a uniformly stable learning algorithm in terms of gradient. A proof of
this result can be found in Appendix D.2.
Lemma 3. Suppose that a learning algorithm A : ZN 7→ W has γ-uniform stability. Assume that
the loss function ` is G-Lipschitz and L-smooth with respect to its first argument. Then the following
bounds hold:

‖ES [∇R(A(S))−∇RS(A(S))]‖ ≤Lγ,

ES
[
‖∇R(A(S))− ES [∇R(A(S))]‖2

]
≤L2γ2N.

15



B Proofs for Section 2

B.1 Proof of Theorem 1

Let d(m)
t = ∇R(m)

erm (w
(m)
t ). We define the following quantities

dt :=
1

|It|
∑
ξ∈It

d
(ξ)
t , d̄t :=

1

M

M∑
m=1

d
(m)
t . (9)

The following elementary lemma is useful in our analysis.

Lemma 4. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz. Set |It| ≡ I . Then
it holds that

E [dt] = d̄t, E
[
‖dt − d̄t‖2

]
≤ G2

I
.

Proof. By uniform sampling strategy we have

E [dIt ] = E

 1

|It|
∑
ξ∈It

d
(ξ)
t

 =
1

I

∑
ξ∈It

E
[
d

(ξ)
t

]
=

1

I

∑
ξ∈It

1

M

M∑
m=1

d
(m)
t = d̄t.

Then it follows that

E
[
‖dt − d̄t‖2

]
=E


∥∥∥∥∥∥ 1

|It|
∑
ξ∈It

d
(ξ)
t − d̄t

∥∥∥∥∥∥
2


=
1

I2
E


∥∥∥∥∥∥
∑
ξ∈It

(d
(ξ)
t − d̄t)

∥∥∥∥∥∥
2


=
1

I2

∑
ξ∈It

E
[∥∥∥d(ξ)

t − d̄t
∥∥∥2
]
≤ 1

I
E
[
(d

(ξ)
t )2

]
≤ G2

I
,

where we have used the fact E
[
d

(ξ)
t

]
= d̄t, the independence among the indices in It and the

G-Lipschitzness of losses. The desired bounds are proved.

We also need the following lemma which quantifies the impact of local update precision to the
gradient norm at the inexact solution.

Lemma 5. Assume that for each m ∈ [M ], the loss function `(m) is L-smooth with respect to its first
argument. Suppose that the local update oracle of FedProx is εt-inexactly solved and ηt < 1

L . Then
it holds that ∥∥∥w(m)

t − wt−1 + ηtd
(m)
t

∥∥∥ ≤ ηt√2(L+ η−1
t )εt.

Proof. RecallQ(m)
erm (w;wt−1) = R

(m)
erm (w)+ 1

2ηt
‖w−wt−1‖2. Since the loss functions are L-smooth

and ηt < 1
L , Q(m)

erm (w;wt−1) is strongly convex and thus admits a global minimizer. Then we have∥∥∥∥∇R(m)
erm (w

(m)
t ) +

1

ηt
(w

(m)
t − wt−1)

∥∥∥∥2

=
∥∥∥∇Q(m)

erm (w
(m)
t ;wt−1)

∥∥∥2

≤2(L+ η−1
t )

(
Q(m)

erm (w
(m)
t ;wt−1)−min

w
Q(m)

erm (w;wt−1)
)
≤ 2(L+ η−1

t )εt,

where in the last inequality is due to Definition 2. This implies the desired bound.
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Lemma 6. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz and L-smooth with
respect to its first argument. Suppose that the local update oracle of FedProx is εt-inexactly solved
and ηt < 1

L . Then the following holds almost surely:

‖∇R̄erm(wt−1)− d̄t‖2 ≤ L2

(
G+

√
2(L+ η−1

t )εt

)2

η2
t .

Proof. By Lemma 5 we know that

‖w(m)
t − wt−1‖ ≤ ηt‖d(m)

t ‖+ ηt

√
2(L+ η−1

t )εt ≤
(
G+

√
2(L+ η−1

t )εt

)
ηt, (10)

where we have used the G-Lipschitz assumption of loss. By definition we can see that

‖∇R̄erm(wt−1)− d̄t‖2 =

∥∥∥∥∥ 1

M

M∑
m=1

(
∇R(m)

erm (wt−1)−∇R(m)
erm (w

(m)
t )

)∥∥∥∥∥
2

≤ 1

M

M∑
m=1

∥∥∥∇R(m)
erm (wt−1)−∇R(m)

erm (w
(m)
t )

∥∥∥2

ζ1
≤L

2

M

M∑
m=1

∥∥∥wt−1 − w(m)
t

∥∥∥2

ζ2
≤L2

(
G+

√
2(L+ η−1

t )εt

)2

η2
t ,

where in “ζ1” we have used the L-smoothness of loss, in “ζ2” we have used (10). This proves the
desired bound.

With all the above lemmas in place, we can prove the main result in Theorem 1. Let {Ft}t≥1

be the filtration generated by the random iterates {wt}t≥1 as Ft = σ (w1, w2, ..., wt), where the
randomness comes from the sampling of devices for partial participation.

Proof of Theorem 1. Let us denote δ(m)
t := η−1

t (w
(m)
t − w(t−1)) + d

(m)
t , δt := 1

|It|
∑
ξ∈It δ

(ξ)
t and

δ̄t := 1
M

∑M
m=1 δ

(m)
t . Then we have E[δt] = δ̄t and

wt = wt−1 − ηt(dt − δt).

It can be verified based on Lemma 5 and triangle inequality that the following holds almost surely:

max
{
‖δ̄t‖, ‖δt‖

}
≤
√

2(L+ η−1
t )εt. (11)
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Since the loss is L-smooth, we can show that

E[R̄erm(wt) | Ft−1]

≤E
[
R̄erm(wt−1) +

〈
∇R̄erm(wt−1), wt − wt−1

〉
+
L

2
‖wt − wt−1‖2 | Ft−1

]
=E

[
R̄erm(wt−1)− ηt

〈
∇R̄erm(wt−1), dt − δt

〉
+
Lη2

t

2
‖dt − δt‖2 | Ft−1

]
=R̄erm(wt−1) + E

[
−ηt

〈
∇R̄erm(wt−1), d̄t − δ̄t

〉
+
Lη2

t

2
‖dt − δt‖2 | Ft−1

]
ζ1
≤R̄erm(wt−1)

+ E
[
−ηt

〈
∇R̄erm(wt−1), d̄t

〉
+ ηtG‖δ̄t‖+

3Lη2
t

2
‖d̄t‖2 +

3Lη2
t

2
‖dt − d̄t‖2 +

3Lη2
t

2
‖δt‖2 | Ft−1

]
ζ2
≤R̄erm(wt−1) + E

[
−ηt

2
‖∇R̄erm(wt−1)‖2 − ηt

2
‖d̄t‖2 +

ηt
2
‖∇R̄erm(wt−1)− d̄t‖2 +Gηt

√
2(L+ η−1

t )εt

+
3Lη2

t

2

∥∥d̄t∥∥2
+

3LG2η2
t

2I
+ 3L(L+ η−1

t )η2
t εt | Ft−1

]
ζ3
≤R̄erm(wt−1)− ηt

2
‖∇R̄erm(wt−1)‖2 + E

[ηt
2
‖∇R̄erm(wt−1)− d̄t‖2 | Ft−1

]
+

3LG2η2
t

2I
+Gηt

√
2(L+ η−1

t )εt + 3L(L+ η−1
t )η2

t εt

ζ4
≤R̄erm(wt−1)− ηt

2
‖∇R̄erm(wt−1)‖2 +

L2

(
G+

√
2(L+ η−1

t )εt

)2

η3
t

2
+

3LG2η2
t

2I

+Gηt

√
2(L+ η−1

t )εt + 3L(L+ η−1
t )η2

t εt

≤R̄erm(wt−1)− ηt
2
‖∇R̄erm(wt−1)‖2 + 2L2G2η3

t +
5LG2η2

t

I
,

where in “ζ1” we have used the G-Lipschitz of loss and triangle inequality, in “ζ2” we have used
Lemma 4 and (11), in “ζ3” we have used ηt ≤ 1

3L , in “ζ4” we have used the first bound of

Lemma 6, and in the last inequality we have used the condition of εt ≤ min
{

2L2G2η3t
I2(Lηt+1) ,

G2ηt
2I(Lηt+1)

}
.

Rearranging the terms and taking expectation over Ft−1 in the above yields

E
[
‖∇R̄erm(wt−1)‖2

}
≤ 2

ηt
E
[
R̄erm(wt−1)− R̄erm(wt)

]
+ 4L2G2η2

t +
10LG2ηt

I
.

Averaging the above from over t = 1, 2, ..., T with ηt ≡ η yields

1

T

T−1∑
t=0

E
[
‖∇R̄erm(wt)‖2

]
≤ 2

ηT
E
[
R̄erm(w0)− R̄erm(wT )

]
+ 4L2G2η2 +

10LG2η

I

≤ 2

ηT
∆̄(0)

erm + 4L2G2η2 +
10LG2η

I
.

If T < I3, setting η = 1
3LT 1/3 yields

1

T

T−1∑
t=0

E
[
‖∇R̄erm(wt)‖2

]
.
L∆̄

(0)
erm +G2

T 2/3
+

G2

T 1/3I
.
L∆̄

(0)
erm +G2

T 2/3
.

If T ≥ I3, setting η = 1
3L

√
I
T yields

1

T

T−1∑
t=0

E
[
‖∇R̄erm(wt)‖2

]
.
L∆̄

(0)
erm +G2

√
TI

+
G2I

T
.
L∆̄

(0)
erm +G2

√
TI

.

Combining the preceding two inequalities and appealing to the definition of wt∗ yields the desired
bound.

18



B.2 Proof of Theorem 2

We first present the following elementary lemma which will be used in the proof. It can be viewed as
an inexact extension of the well-known three-point lemma to weakly convex functions.

Lemma 7. Let f be a ν-weakly convex function and η < 1
ν . Consider

w+ = arg min
u

{
f(u) +

1

2η
‖u− w‖2

}
.

Then for any u, we have

f(w+) +
1

2η
‖w+ − w‖2 ≤ f(u) +

1

2η
‖u− w‖2 − 1/η − ν

2
‖w+ − u‖2.

Proof. Since η < 1
ν , we must have that the regularized objective f(u) + 1

2η‖u− w‖
2 is (1/η − ν)-

strongly convex with respect to u, which immediately implies the desired bound.

We will make use of the following lemma which shows that w(m)
t will be close to wt−1 if the learning

rate ηt is small enough.

Lemma 8. Assume that for eachm ∈ [M ], the loss function `(m) isG-Lipschitz and ν-weakly convex
with respect to its first argument. Suppose that the local update oracle of FedProx is exactly solved
and ηt < 1

ν . Then it holds that ∥∥∥w(m)
t − wt−1

∥∥∥ ≤ Gηt.
Proof. Recall Q(m)

erm (w;wt−1) = R
(m)
erm (w) + 1

2ηt
‖w − wt−1‖2. Since the loss function is ν-weakly

convex and ηt < 1
ν , Q(m)

erm (w;wt−1) is strongly convex and thus admits a global minimizer. Since the
local update oracle is exactly solved, we must have∥∥∥∥∇R(m)

erm (w
(m)
t ) +

1

ηt
(w

(m)
t − wt−1)

∥∥∥∥ = 0,

which implies the desired bound due to the G-Lipschitzness.

With the above two preliminary lemmas in place, we are now in the position to prove the main result
in Theorem 2.

Proof of Theorem 2. Since the losses are ν-weakly convex and ηt < 1
ν , in view of Lemma 7 we can

show for each m ∈ [M ] that the following holds for any w,

R(m)
erm (w

(m)
t )+

1

2ηt
‖w(m)

t −wt−1‖2 ≤ R(m)
erm (w)+

1

2ηt
‖w−wt−1‖2−

1/ηt − ν
2

‖w(m)
t −w‖2. (12)

Let us denote

w̄t−1 := proxρR̄erm
(wt−1) = arg min

w

{
R̄erm(w) +

1

2ρ
‖w − wt−1‖2

}
.

Setting w = w̄t−1 in the right hand side of (12) yields

R(m)
erm (w

(m)
t )+

1

2ηt
‖w(m)

t −wt−1‖2 ≤ R(m)
erm (w̄t−1)+

1

2ηt
‖w̄t−1−wt−1‖2−

1/ηt − ν
2

‖w(m)
t −w̄t−1‖2.
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In view of the above inequality we can show that for any ξ ∈ It,

R(ξ)
erm(wt−1) +

1

2ηt
‖w(ξ)

t − wt−1‖2

=R(ξ)
erm(w

(ξ)
t ) +

1

2ηt
‖w(ξ)

t − wt−1‖2 +R(ξ)
erm(wt−1)−R(ξ)

erm(w
(ξ)
t )

≤R(ξ)
erm(w

(ξ)
t ) +

1

2ηt
‖w(ξ)

t − wt−1‖2 +G‖wt−1 − w(ξ)
t ‖

≤R(ξ)
erm(w

(ξ)
t ) +

1

2ηt
‖w(ξ)

t − wt−1‖2 +G2ηt

≤R(ξ)
erm(w̄t−1) +

1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖w(ξ)
t − w̄t−1‖2 +G2ηt,

(13)

where in the last but one inequality we have applied Lemma 8. Now recall that wt = 1
I

∑
ξ∈It w

(ξ)
t .

Then based on triangle inequality we can see that

1

I

∑
ξ∈It

R(ξ)
erm(wt−1) +

1

2ηt
‖wt − wt−1‖2

=
1

I

∑
ξ∈It

R(ξ)
erm(wt−1) +

1

2ηt

∥∥∥∥∥∥1

I

∑
ξ∈It

w
(ξ)
t − wt−1

∥∥∥∥∥∥
2

≤1

I

∑
ξ∈It

{
R(ξ)

erm(wt−1) +
1

2ηt

∥∥∥w(ξ)
t − wt−1

∥∥∥2
}

(13)
≤ 1

I

∑
ξ∈It

{
R(ξ)

erm(w̄t−1) +
1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖w(ξ)
t − w̄t−1‖2 +G2ηt

}

≤1

I

∑
ξ∈It

R(ξ)
erm(w̄t−1) +

1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

∥∥∥∥∥∥1

I

∑
ξ∈It

w
(ξ)
t − w̄t−1

∥∥∥∥∥∥
2

+G2ηt

=
1

I

∑
ξ∈It

R(ξ)
erm(w̄t−1) +

1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖wt − w̄t−1‖2 +G2ηt.

Conditioned onFt−1 , taking expectation over both sides of the above inequality leads to the following
inequality:

E
[
R̄erm(wt−1) +

1

2ηt
‖wt − wt−1‖2 | Ft−1

]

=E

1

I

∑
ξ∈It

R(ξ)
erm(wt−1) +

1

2ηt
‖wt − wt−1‖2 | Ft−1


≤E

1

I

∑
ξ∈It

R(ξ)
erm(w̄t−1) +

1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖wt − w̄t−1‖2 +G2ηt | Ft−1


=E

[
R̄erm(w̄t−1) +

1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖wt − w̄t−1‖2 +G2ηt | Ft−1

]
.
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Based the above inequality and by applying Lemma 8 again we can show that

E
[
R̄erm(wt) +

1

2ηt
‖wt − wt−1‖2 | Ft−1

]
=E

[
R̄erm(wt−1) +

1

2ηt
‖wt − wt−1‖2 + R̄erm(wt)− R̄erm(wt−1) | Ft−1

]
≤E

[
R̄erm(w̄t−1) +

1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖wt − w̄t−1‖2 +G‖wt − wt−1‖ | Ft−1

]
≤E

[
R̄erm(w̄t−1) +

1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖wt − w̄t−1‖2 + 2G2ηt | Ft−1

]
,

(14)
where in the last inequality we have used ‖wt − wt−1‖ ≤ 1

I

∑
ξ∈It ‖w

(ξ)
t − wt−1‖ ≤ Gηt due to

triangle inequality and Lemma 8.

Since R̄erm is also ν-weakly convex, invoking Lemma 7 to w̄t−1 = proxρR̄erm
(wt−1) yields

R̄erm(w̄t−1) +
1

2ρ
‖w̄t−1 − wt−1‖2 ≤ R̄erm(wt) +

1

2ρ
‖wt − wt−1‖2 −

1/ρ− ν
2

‖w̄t−1 − wt‖2,

which immediately leads to the following conditioned expectation bound:

E
[
R̄erm(w̄t−1) +

1

2ρ
‖w̄t−1 − wt−1‖2 | Ft−1

]
≤E

[
R̄erm(wt) +

1

2ρ
‖wt − wt−1‖2 −

1/ρ− ν
2

‖w̄t−1 − wt‖2 | Ft−1

]
.

(15)

By summing up (14) and (15) we have

E
[

1/ηt − 1/ρ

2
‖wt − wt−1‖2 | Ft−1

]
≤E

[
1/ηt − 1/ρ

2
‖w̄t−1 − wt−1‖2 −

1/ηt + 1/ρ− 2ν

2
‖w̄t−1 − wt‖2 + 2G2ηt | Ft−1

]
.

Since by assumption ηt ≤ ρ, rearranging the terms in the above yields

E
[
‖wt − w̄t−1‖2 | Ft−1

]
≤ 1/ηt − 1/ρ

1/ηt + 1/ρ− 2ν
‖w̄t−1 − wt−1‖2 +

4G2ηt
1/ηt + 1/ρ− 2ν

≤‖w̄t−1 − wt−1‖2 −
2(1/ρ− ν)

1/ηt + 1/ρ− 2ν
‖w̄t−1 − wt−1‖2 +

4G2ηt
1/ηt + 1/ρ− 2ν

.

Then based on the above and the definition of Moreau envelope we can show that

E
[
R̄erm,ρ(wt) | Ft−1

]
=E

[
R̄erm(w̄t) +

1

2ρ
‖w̄t − wt‖2 | Ft−1

]
≤E

[
R̄erm(w̄t−1) +

1

2ρ
‖w̄t−1 − wt‖2 | Ft−1

]
=R̄erm(w̄t−1) +

1

2ρ
E
[
‖w̄t−1 − wt‖2 | Ft−1

]
≤R̄erm(w̄t−1) +

1

2ρ
‖w̄t−1 − wt−1‖2 −

(1/ρ− ν)/ρ

1/ηt + 1/ρ− 2ν
‖w̄t−1 − wt−1‖2 +

2G2ηt/ρ

1/ηt + 1/ρ− 2ν

=R̄erm,ρ(wt−1)− (1/ρ− ν)/ρ

1/ηt + 1/ρ− 2ν
‖w̄t−1 − wt−1‖2 +

2G2ηt/ρ

1/ηt + 1/ρ− 2ν

=R̄erm,ρ(wt−1)− 1− ρν
1/ηt + 1/ρ− 2ν

∥∥∇R̄erm,ρ(wt−1)
∥∥2

+
2G2ηt/ρ

1/ηt + 1/ρ− 2ν
,
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where in the last equality we have used the identity ‖w̄t−1 − wt−1‖2 = ρ2
∥∥∇R̄erm,ρ(wt−1)

∥∥2
(see,

e.g., Davis and Drusvyatskiy, 2019). By rearranging the terms in the above and taking expectation
over Ft−1 we obtain that

1− ρν
1/ηt + 1/ρ− 2ν

E
[∥∥∇R̄erm,ρ(wt−1)

∥∥2
]
≤ E

[
R̄erm,ρ(wt−1)

]
−E

[
R̄erm,ρ(wt)

]
+

2G2ηt/ρ

1/ηt + 1/ρ− 2ν
.

Averaging the above over t = 1, ..., T yields

1

T

T−1∑
t=0

E
[∥∥∇R̄erm,ρ(wt)

∥∥2
]
≤1/ηt + 1/ρ− 2ν

T (1− ρν)
E
[
R̄erm,ρ(w0)− R̄erm,ρ(wT )

]
+

2G2ηt
ρ(1− ρν)

≤1/ηt + 1/ρ− 2ν

T (1− ρν)
∆̄(0)

erm,ρ +
2G2ηt

ρ(1− ρν)

=
(1− 2ρν)∆̄

(0)
erm,ρ

Tρ(1− ρν)
+

∆̄
(0)
erm,ρ

ηtT (1− ρν)
+

2G2ηt
ρ(1− ρν)

≤∆̄
(0)
erm,ρ

Tρ
+

2∆̄
(0)
erm,ρ

ηtT
+

4G2ηt
ρ

=
∆̄

(0)
erm,ρ

Tρ
+

2∆̄
(0)
erm,ρ + 4G2ρ

ρ
√
T

,

where in the last but one inequality we have used ρ < 1
2ν , and in the last inequality we have used the

choice of ηt ≡ ρ√
T

. The desired bound follows by preserving the dominant terms in the above bound
and appealing to the definition of t∗.

C Proofs for Section 3

C.1 Proof of Theorem 3

For each time instance t, let us overload the notation d(m)
t as

d
(m)
t = ∇R(m)

B
(m)
t

(w
(m)
t ) =

1

b

b∑
i=1

∇`(m)(w
(m)
t ; z

(m)
i,t ).

We then accordingly overload the quantities dt and d̄t as defined in (9). We then have the following
lemma analogous to Lemma 5.

Lemma 9. Assume that for each m ∈ [M ], the loss function `(m) is L-smooth with respect to its first
argument. Suppose that the local update oracle of FedMSPP is εt-inexactly solved and ηt < 1

L . Then
it holds that ∥∥∥w(m)

t − wt−1 + ηtd
(m)
t

∥∥∥ ≤ ηt√2(L+ η−1
t )εt.

Proof. Consider Q(m)

B
(m)
t

(w;wt−1) = R
(m)

B
(m)
t

(w) + 1
2ηt
‖w − wt−1‖2. Since the loss functions are

L-smooth and ηt < 1
L , Q(m)

B
(m)
t

(w;wt−1) must be strongly convex and thus admits a global minimizer.

Then we have∥∥∥∥∇R(m)

B
(m)
t

(w
(m)
t ) +

1

ηt
(w

(m)
t − wt−1)

∥∥∥∥2

=

∥∥∥∥∇Q(m)

B
(m)
t

(w
(m)
t ;wt−1)

∥∥∥∥2

≤2(L+ η−1
t )

(
Q

(m)

B
(m)
t

(w
(m)
t ;wt−1)−min

w
Q

(m)

B
(m)
t

(w;wt−1)

)
≤ 2(L+ η−1

t )εt,

where in the last inequality is due to Definition 3. This implies the desired bound.
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Let {Ft}t≥1 be the filtration generated by the random iterates {wt}t≥1 as Ft = σ (w1, w2, ..., wt),
where the randomness jointly comes from the sampling of devices for partial participation and
sampling of minibatch for local update on each chosen device.

Lemma 10. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz and L-smooth
with respect to its first argument. Suppose that ηt < 1

L and the local update oracle of FedMSPP is

εt-inexactly solved with εt ≤ G2ηt
8b2 . Then it holds for every m ∈ [M ] that

∥∥∥E [∇R(m)(w
(m)
t )− d(m)

t | Ft−1

]∥∥∥ ≤ 5LGηt
(1− ηtL)b

,

E
[∥∥∥∇R(m)(w

(m)
t )− E[∇R(m)(w

(m)
t ) | Ft−1]

∥∥∥2

| Ft−1

]
≤ 25L2G2ηt

(1− ηtL)2b
.

Proof. Let us recall Definition 3 where the inexact solution w(m)
t is given by

Q
(m)

B
(m)
t

(w
(m)
t ;wt−1) ≤ min

w
Q

(m)

B
(m)
t

(w;wt−1) + εt.

Since the loss functions are L-smooth and 1
ηt
> L, it is easy to verify that the regularized objective

Q
(m)

B
(m)
t

(w;wt−1) is ( 1
ηt
− L)-strongly convex. Then invoking Lemma 1 yields that w(m)

t uniformly

stable with parameter 4G
(1/ηt−L)b + 2

√
2εt

1/ηt−L ≤
5G

(1/ηt−L)b , which is due to the condition on εt.
Conditioned on the sigma-field Ft−1, the desired bounds follows immediately from Lemma 3.

The next lemma, which can be proved based on the previous lemmas, is key to our analysis.

Lemma 11. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz and L-smooth
with respect to its first argument. Suppose that ηt < 1

L and the local update oracle of FedMSPP is

εt-inexactly solved with εt ≤ min
{

G2ηt
2(Lηt+1) ,

G2ηt
8b2

}
. Then we have

E
[∥∥∇R̄(wt−1)− dt

∥∥2 | Ft−1

]
≤ 8L2G2η2

t +
2G2

b|It|
,

and

∥∥∇R̄(wt−1)− E[d̄t | Ft−1]
∥∥2 ≤ 12L2G2η2

t +
75L2G2η2

t

(1− ηtL)2b2
+

75L2G2η2
t

(1− ηtL)2b
.

Proof. By Lemma 9 we know that for each m ∈ [M ],

‖w(m)
t − wt−1‖ ≤ ηt‖d(m)

t ‖+ ηt

√
2(L+ η−1

t )εt ≤
(
G+

√
2(L+ η−1

t )εt

)
ηt ≤ 2Gηt, (16)
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where we have used the G-Lipschitz assumption of loss and εt ≤ G2ηt
2(Lηt+1) . By definition we can see

that
E
[
|∇R̄(wt−1)− dt‖2 | Ft−1

]
=E


∥∥∥∥∥∥∇R̄(wt−1)− 1

|It|
∑
ξ∈It

∇R(ξ)

B
(ξ)
t

(w
(ξ)
t )

∥∥∥∥∥∥
2

| Ft−1


=E


∥∥∥∥∥∥∇R̄(wt−1)− 1

|It|
∑
ξ∈It

∇R(ξ)

B
(ξ)
t

(wt−1) +
1

|It|
∑
ξ∈It

∇R(ξ)

B
(ξ)
t

(wt−1)− 1

|It|
∑
ξ∈It

∇R(ξ)

B
(ξ)
t

(w
(ξ)
t )

∥∥∥∥∥∥
2

| Ft−1


≤E

2

∥∥∥∥∥∥∇R̄(wt−1)− 1

b|It|
∑
ξ∈It

∑
i∈[b]

∇`(ξ)(wt−1; z
(ξ)
i,t )

∥∥∥∥∥∥
2

+
2

|It|
∑
ξ∈It

∥∥∥∥∇R(ξ)

B
(ξ)
t

(wt−1)−∇R(ξ)

B
(ξ)
t

(w
(ξ)
t )

∥∥∥∥2

| Ft−1


ζ1
≤ 2

b2|It|2
∑
ξ∈It

∑
i∈[b]

E
[∥∥∥∇R̄(wt−1)−∇`(ξ)(wt−1; z

(ξ)
i,t )
∥∥∥2

| Ft−1

]
+

2L2

|It|
∑
ξ∈It

E
[∥∥∥wt−1 − w(ξ)

t

∥∥∥2

| Ft−1

]
ζ2
≤ 2

b2|It|2
∑
ξ∈It

∑
i∈[b]

E
[∥∥∥∇`(ξ)(wt−1; z

(ξ)
i,t )
∥∥∥2

| Ft−1

]
+ 8L2G2η2

t

≤2G2

b|It|
+ 8L2G2η2

t ,

where in “ζ1” we have used the independent sampling of data and devices and the L-smoothness of
loss, in “ζ2” we have used the fact E[‖Z − E[Z]‖2] ≤ E[‖Z‖2] and (16), and in the last inequality
we have used the G-Lipschitzness of loss . This proves the first desired bound.

To prove the second bound, by definition we can see that∥∥∇R̄(wt−1)− E[d̄t | Ft−1]
∥∥2

=

∥∥∥∥∥ 1

M

M∑
m=1

(
∇R(m)(wt−1)− E[d

(m)
t | Ft−1]

)∥∥∥∥∥
2

=

∥∥∥∥∥ 1

M

M∑
m=1

(
∇R(m)(wt−1)−∇R(m)(w

(m)
t ) +∇R(m)(w

(m)
t )− E[∇R(m)(w

(m)
t ) | Ft−1]

+E
[
∇R(m)(w

(m)
t )− d(m)

t | Ft−1

])∥∥∥2

≤ 3

M

M∑
m=1

∥∥∥∇R(m)(wt−1)−∇R(m)(w
(m)
t )

∥∥∥2

︸ ︷︷ ︸
A′

+
3

M

M∑
m=1

∥∥∥E [∇R(m)(w
(m)
t )− d(m)

t | Ft−1

]∥∥∥2

︸ ︷︷ ︸
B′

+
3

M

M∑
m=1

∥∥∥∇R(m)(w
(m)
t )− E[∇R(m)(w

(m)
t ) | Ft−1]

∥∥∥2

︸ ︷︷ ︸
C′

.

.

By smoothness and (16) we can show that the following holds almost surely:

A′ ≤ 3L2‖w(m)
t − wt−1‖2 ≤ 12L2G2η2

t .

For the component B′, based on the first bound of Lemma 10 we can easily show that

B′ ≤ 75L2G2

(1/ηt − L)2b2
.

In terms of the component C ′, it can be bounded via invoking the second bound of Lemma 10 that

E [C ′ | Ft−1] ≤ 75L2G2

(1/ηt − L)2b
.
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Finally, by combing the preceding three bounds we obtain that∥∥∇R̄(wt−1)− E[d̄t | Ft−1]
∥∥2

=E
[∥∥∇R̄(wt−1)− E[d̄t | Ft−1]

∥∥2 | Ft−1

]
≤12L2G2η2

t +
75L2G2

(1/ηt − L)2b2
+

75L2G2

(1/ηt − L)2b
.

This proves the second desired bound.

With all the above preliminary results in place, we are now ready to prove Theorem 3.

Proof of Theorem 3. Let us denote δ(m)
t := η−1

t (w
(m)
t − w(t−1)) + d

(m)
t , δt := 1

|It|
∑
ξ∈It δ

(ξ)
t and

δ̄t := 1
M

∑M
m=1 δ

(m)
t . Then we have E[δt] = δ̄t and wt = wt−1 − ηt(dt − δt). It can be verified

based on Lemma 9 and triangle inequality that the following holds almost surely:

max
{
‖δ̄t‖, ‖δt‖

}
≤
√

2(L+ η−1
t )εt. (17)

Since the objective is L-smooth, we can show that

E
[
R̄(wt) | Ft−1

]
≤E

[
R̄(wt−1) +

〈
∇R̄(wt−1), wt − wt−1

〉
+
L

2
‖wt − wt−1‖2 | Ft−1

]
=E

[
R̄(wt−1)− ηt

〈
∇R̄(wt−1), dt − δt

〉
+
Lη2

t

2
‖dt − δt‖2 | Ft−1

]
=E

[
R̄(wt−1)− ηt

〈
∇R̄(wt−1),E[d̄t − δ̄t | Ft−1]

〉
+
Lη2

t

2
‖dt − δt‖2 | Ft−1

]
≤R̄(wt−1)− ηt

〈
∇R̄(wt−1),E[d̄t | Ft−1]

〉
+ E

[
ηtG‖δ̄t‖+ Lη2

t ‖dt‖2 + Lη2
t ‖δt‖2 | Ft−1

]
=R̄(wt−1)− ηt

2

∥∥∇R̄(wt−1)
∥∥2 − ηt

2

∥∥E[d̄t | Ft−1]
∥∥2

+
ηt
2

∥∥∇R̄(wt−1)− E[d̄t | Ft−1]
∥∥2

+ E
[
ηtG‖δ̄t‖+ Lη2

t ‖dt‖2 + Lη2
t ‖δt‖2 | Ft−1

]
ζ1
≤R̄(wt−1)− ηt

2

∥∥∇R̄(wt−1)
∥∥2

+
ηt
2

∥∥∇R̄(wt−1)− E[d̄t | Ft−1]
∥∥2

+ E
[
Gηt

√
2(L+ η−1

t )εt + Lη2
t ‖dt‖

2
+ 2L(L+ η−1

t )η2
t εt | Ft−1

]
≤R̄(wt−1)− ηt

2
‖∇R̄(wt−1)‖2 +

ηt
2
‖∇R̄(wt−1)− E[d̄t | Ft−1]‖2

+ E
[
2Lη2

t

∥∥dt −∇R̄(wt−1)
∥∥2

+ 2Lη2
t

∥∥∇R̄(wt−1)
∥∥2

+Gηt

√
2(L+ η−1

t )εt + 2L(L+ η−1
t )η2

t εt | Ft−1

]
ζ2
≤R̄(wt−1)− ηt

4

∥∥∇R̄(wt−1)
∥∥2

+
ηt
2

∥∥∇R̄(wt−1)− E[d̄t | Ft−1]
∥∥2

+ E
[
2Lη2

t

∥∥dt −∇R̄(wt−1)
∥∥2 | Ft−1

]
+Gηt

√
2(L+ η−1

t )εt + 2L(L+ η−1
t )η2

t εt

ζ3
≤R̄(wt−1)− ηt

4

∥∥∇R̄(wt−1)
∥∥2

+ 6L2G2η3
t +

38L2G2η3
t

(1− ηtL)2b2
+

38L2G2η3
t

(1− ηtL)2b

+ 16L3G2η4
t +

4LG2η2
t

bI
+Gηt

√
2(L+ η−1

t )εt + 2L(L+ η−1
t )η2

t εt

ζ4
≤R̄(wt−1)− ηt

4

∥∥∇R̄(wt−1)
∥∥2

+ 6L2G2η3
t +

43L2G2η3
t

b2
+

43L2G2η3
t

b

+ 16L3G2η4
t +

4LG2η2
t

bI
+Gηt

√
2(L+ η−1

t )εt + 2L(L+ η−1
t )η2

t εt

ζ5
≤R̄(wt−1)− ηt

4

∥∥∇R̄(wt−1)
∥∥2

+ 94L2G2η3
t +

4LG2η2
t

bI
+Gηt

√
2(L+ η−1

t )εt + 2L(L+ η−1
t )η2

t εt

≤R̄(wt−1)− ηt
4

∥∥∇R̄(wt−1)
∥∥2

+ 94L2G2η3
t +

6LG2η2
t
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,
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where in “ζ1” we have used (17), in “ζ2” we have used ηt ≤ 1
8L , in “ζ3” we have used Lemma 11, in

“ζ4” we have used ηt ≤ 1
8L , in “ζ5” we have used M, b ≥ 1 and ηt ≤ 1

8L , and in the last inequality

we used εt ≤ L2G2η3t
2bI(Lηt+1) and ηt ≤ 1

8L . By taking expectation over Ft−1 and rearranging the terms
we obtain that

E
[∥∥∇R̄(wt−1)

∥∥2
]
≤ 4

ηt

(
E[R̄(wt−1)]− E[R̄(wt)]

)
+ 376L2G2η2

t +
24LG2ηt

bI
.

Averaging the above from over t = 1, 2, .., T with ηt ≡ η yields

1

T

T−1∑
t=0

E
[∥∥∇R̄(wt)

∥∥2
]
≤ 4

ηT
(R̄(w0)− R̄(wT )) + 376L2G2η2 +

24LηG2

bI

≤4∆̄(0)

ηT
+ 376L2G2η2 +

24LηG2

bI
.

If T < (bI)3, setting η = 1
8LT 1/3 yields

1

T

T−1∑
t=0

E
[
‖∇R̄(wt)‖2

]
.
L∆̄(0) +G2

T 2/3
+

G2

T 1/3bI
.
L∆̄(0) +G2

T 2/3
.

If T ≥ (bI)3, setting η = 1
8L

√
bI
T yields

1

T

T−1∑
t=0

E
[
‖∇R̄(wt)‖2

]
.
L∆̄(0) +G2

√
TbI

+
G2bI

T
.
L∆̄(0) +G2

√
TbI

.

Combining the preceding two inequalities and appealing to the definition of t∗ yield the desired
bound.

C.2 Proof of Theorem 4

The proof argument is almost identical to that of Theorem 2. We reproduce the proof in full details
here for the sake of completeness.

Similar to Lemma 8, we first establish the following lemma which shows that w(m)
t will be close to

wt−1 if the learning rate ηt is small enough.

Lemma 12. Assume that for each m ∈ [M ], the loss function `(m) is G-Lipschitz and ν-weakly
convex with respect to its first argument. Suppose that the local update oracle of FedMSPP is exactly
solved and ηt < 1

ν . Then it holds that∥∥∥w(m)
t − wt−1

∥∥∥ ≤ Gηt.
Proof. RecallQ(m)

B
(m)
t

(w;wt−1) = R
(m)

B
(m)
t

(w)+ 1
2ηt
‖w−wt−1‖2. Since the loss function is ν-weakly

convex and ηt < 1
ν , Q(m)

B
(m)
t

(w;wt−1) is strongly convex with respect to w and thus admits a global

minimizer. Since the local update oracle is exactly solved, we must have∥∥∥∥∇R(m)

B
(m)
t

(w
(m)
t ) +

1

ηt
(w

(m)
t − wt−1)

∥∥∥∥ = 0,

which implies the desired bound due to the G-Lipschitz-loss assumption.

We are now ready to prove the main result in Theorem 4.

Proof of Theorem 4. Since the losses are ν-weakly convex and ηt < 1
ν , in view of Lemma 7 we can

show for each m ∈ [M ] that the following holds for any w,

R
(m)

B
(m)
t

(w
(m)
t ) +

1

2ηt
‖w(m)

t −wt−1‖2 ≤ R(m)

B
(m)
t

(w) +
1

2ηt
‖w−wt−1‖2 −

1/ηt − ν
2

‖w(m)
t −w‖2.

(18)
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Let us denote for any t ≥ 1

w̄t−1 := proxρR̄(wt−1) = arg min
w

{
R̄(w) +

1

2ρ
‖w − wt−1‖2

}
.

Setting w = w̄t−1 in the right hand side of (18) yields

R
(m)

B
(m)
t

(w
(m)
t )+

1

2ηt
‖w(m)

t −wt−1‖2 ≤ R(m)

B
(m)
t

(w̄t−1)+
1

2ηt
‖w̄t−1−wt−1‖2−

1/ηt − ν
2

‖w(m)
t −w̄t−1‖2.

In view of the above inequality we can show that for any ξ ∈ It,

R
(ξ)

B
(ξ)
t

(wt−1) +
1

2ηt
‖w(ξ)

t − wt−1‖2

=R
(ξ)

B
(ξ)
t

(w
(ξ)
t ) +

1

2ηt
‖w(ξ)

t − wt−1‖2 +R
(ξ)

B
(ξ)
t

(wt−1)−R(ξ)

B
(ξ)
t

(w
(ξ)
t )

≤R(ξ)

B
(ξ)
t

(w
(ξ)
t ) +

1

2ηt
‖w(ξ)

t − wt−1‖2 +G‖wt−1 − w(ξ)
t ‖

≤R(ξ)

B
(ξ)
t

(w
(ξ)
t ) +

1

2ηt
‖w(ξ)

t − wt−1‖2 +G2ηt

≤R(ξ)

B
(ξ)
t

(w̄t−1) +
1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖w(ξ)
t − w̄t−1‖2 +G2ηt,

(19)

where in the last but one inequality we have applied Lemma 12. Now recall that wt = 1
I

∑
ξ∈It w

(ξ)
t .

Then based on triangle inequality we can see that

1

I

∑
ξ∈It

R
(ξ)

B
(ξ)
t

(wt−1) +
1

2ηt
‖wt − wt−1‖2

=
1

I

∑
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R
(ξ)

B
(ξ)
t

(wt−1) +
1

2ηt

∥∥∥∥∥∥1

I

∑
ξ∈It

w
(ξ)
t − wt−1

∥∥∥∥∥∥
2

≤1

I

∑
ξ∈It

{
R

(ξ)

B
(ξ)
t

(wt−1) +
1

2ηt

∥∥∥w(ξ)
t − wt−1

∥∥∥2
}

(19)
≤ 1

I

∑
ξ∈It

{
R

(ξ)

B
(ξ)
t

(w̄t−1) +
1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖w(ξ)
t − w̄t−1‖2 +G2ηt

}

≤1

I

∑
ξ∈It

R
(ξ)

B
(ξ)
t

(w̄t−1) +
1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

∥∥∥∥∥∥1

I

∑
ξ∈It

w
(ξ)
t − w̄t−1

∥∥∥∥∥∥
2

+G2ηt

=
1

I

∑
ξ∈It

R
(ξ)

B
(ξ)
t

(w̄t−1) +
1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖wt − w̄t−1‖2 +G2ηt,

Conditioned on Ft−1 , taking expectation (w.r.t. both the randomness of device sampling and data
sampling introduced associated with the iteration step t) over both sides of the above inequality leads
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to the following:

E
[
R̄(wt−1) +

1

2ηt
‖wt − wt−1‖2 | Ft−1

]

=E

1

I

∑
ξ∈It

R(ξ)(wt−1) +
1

2ηt
‖wt − wt−1‖2 | Ft−1


=E

1

I

∑
ξ∈It

R
(ξ)

B
(ξ)
t

(wt−1) +
1

2ηt
‖wt − wt−1‖2 | Ft−1


≤E

1

I

∑
ξ∈It

R
(ξ)

B
(ξ)
t

(w̄t−1) +
1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖wt − w̄t−1‖2 +G2ηt | Ft−1


=E

[
R̄(w̄t−1) +

1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖wt − w̄t−1‖2 +G2ηt | Ft−1

]
.

Based the above inequality and by applying Lemma 12 again we can show that

E
[
R̄(wt) +

1

2ηt
‖wt − wt−1‖2 | Ft−1

]
=E

[
R̄(wt−1) +

1

2ηt
‖wt − wt−1‖2 + R̄(wt)− R̄(wt−1) | Ft−1

]
≤E

[
R̄(wt−1) +

1

2ηt
‖wt − wt−1‖2 +G‖wt − wt−1‖ | Ft−1

]
≤E

[
R̄(w̄t−1) +

1

2ηt
‖w̄t−1 − wt−1‖2 −

1/ηt − ν
2

‖wt − w̄t−1‖2 + 2G2ηt | Ft−1

]
,

(20)

where in the last inequality we have used ‖wt − wt−1‖ ≤ 1
I

∑
ξ∈It ‖w

(ξ)
t − wt−1‖ ≤ Gηt due to

triangle inequality and Lemma 12.

Since R̄ is also ν-weakly convex, invoking Lemma 7 to w̄t−1 = proxρR̄erm
(wt−1) yields

R̄(w̄t−1) +
1

2ρ
‖w̄t−1 − wt−1‖2 ≤ R̄(wt) +

1

2ρ
‖wt − wt−1‖2 −

1/ρ− ν
2

‖w̄t−1 − wt‖2,

which immediately gives the following conditioned expectation bound:

E
[
R̄(w̄t−1) +

1

2ρ
‖w̄t−1 − wt−1‖2 | Ft−1

]
≤E

[
R̄(wt) +

1

2ρ
‖wt − wt−1‖2 −

1/ρ− ν
2

‖w̄t−1 − wt‖2 | Ft−1

]
.

(21)

By summing up (20) and (21) we get

E
[

1/ηt − 1/ρ

2
‖wt − wt−1‖2 | Ft−1

]
≤E

[
1/ηt − 1/ρ

2
‖w̄t−1 − wt−1‖2 −

1/ηt + 1/ρ− 2ν

2
‖w̄t−1 − wt‖2 + 2G2ηt | Ft−1

]
.

Since by assumption ηt ≤ ρ, rearranging the terms in the above yields

E
[
‖wt − w̄t−1‖2 | Ft−1

]
≤ 1/ηt − 1/ρ

1/ηt + 1/ρ− 2ν
‖w̄t−1 − wt−1‖2 +

4G2ηt
1/ηt + 1/ρ− 2ν

≤‖w̄t−1 − wt−1‖2 −
2(1/ρ− ν)

1/ηt + 1/ρ− 2ν
‖w̄t−1 − wt−1‖2 +

4G2ηt
1/ηt + 1/ρ− 2ν

.
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Then based on the above and the definition of Moreau envelope we can show that

E
[
R̄ρ(wt) | Ft−1

]
=E

[
R̄(w̄t) +

1

2ρ
‖w̄t − wt‖2 | Ft−1

]
≤E

[
R̄(w̄t−1) +

1

2ρ
‖w̄t−1 − wt‖2 | Ft−1

]
=R̄(w̄t−1) +

1

2ρ
E
[
‖w̄t−1 − wt‖2 | Ft−1

]
≤R̄(w̄t−1) +

1

2ρ
‖w̄t−1 − wt−1‖2 −

(1/ρ− ν)/ρ

1/ηt + 1/ρ− 2ν
‖w̄t−1 − wt−1‖2 +

2G2ηt/ρ

1/ηt + 1/ρ− 2ν

=R̄ρ(wt−1)− (1/ρ− ν)/ρ

1/ηt + 1/ρ− 2ν
‖w̄t−1 − wt−1‖2 +

2G2ηt/ρ

1/ηt + 1/ρ− 2ν

=R̄ρ(wt−1)− 1− ρν
1/ηt + 1/ρ− 2ν

∥∥∇R̄ρ(wt−1)
∥∥2

+
2G2ηt/ρ

1/ηt + 1/ρ− 2ν
,

where in the last equality we have used the identity ‖w̄t−1 −wt−1‖2 = ρ2
∥∥∇R̄ρ(wt−1)

∥∥2
(see, e.g.,

Davis and Drusvyatskiy, 2019). By rearranging the terms in the above and taking expectation over
Ft−1 we obtain that

1− ρν
1/ηt + 1/ρ− 2ν

E
[∥∥∇R̄ρ(wt−1)

∥∥2
]
≤ E

[
R̄ρ(wt−1)

]
− E

[
R̄ρ(wt)

]
+

2G2ηt/ρ

1/ηt + 1/ρ− 2ν
.

Averaging the above over t = 1, ..., T yields

1

T

T−1∑
t=0

E
[∥∥∇R̄ρ(wt)∥∥2

]
≤1/ηt + 1/ρ− 2ν

T (1− ρν)
E
[
R̄ρ(w0)− R̄ρ(wT )

]
+

2G2ηt
ρ(1− ρν)

≤1/ηt + 1/ρ− 2ν

T (1− ρν)
∆̄(0)
ρ +

2G2ηt
ρ(1− ρν)

=
(1− 2ρν)∆̄

(0)
ρ

Tρ(1− ρν)
+

∆̄
(0)
ρ

ηtT (1− ρν)
+

2G2ηt
ρ(1− ρν)

≤∆̄
(0)
ρ

Tρ
+

2∆̄
(0)
ρ

ηtT
+

4G2ηt
ρ

=
∆̄

(0)
ρ

Tρ
+

2∆̄
(0)
ρ + 4G2ρ

ρ
√
T

,

where in the last but one inequality we have used ρ < 1
2ν , and in the last inequality we have used the

choice of ηt ≡ ρ√
T

. The desired bound follows by preserving the dominant terms in the above bound
and appealing to the definition of t∗.

D Proofs of Preliminary Lemmas

Here we provide the proofs of some auxiliary lemmas introduced in Appendix A.

D.1 Proof of Lemma 1

Proof. Let w∗S = arg minw∈Rp R
r
S(w). Based on the strong convexity of RrS(wS) we can see that

λ

2
‖wS − w∗S‖2 ≤ RrS(wS)−RrS(w∗S) ≤ εt,

which directly implies ‖wS − w∗S‖ ≤
√

2εt
λ . Let us consider a sample set S(i) which is i-

dentical to S except that one of the zi is replaced by another random sample z′i. Denote
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w∗
S(i) = arg minw∈Rp R

r
S(i)(w). Then we can show that

RrS(w∗S(i))−RrS(w∗S)

=
1

N

∑
j 6=i

(
`(w∗S(i) ; zj)− `(w∗S ; zj)

)
+

1

N

(
`(w∗S(i) ; zi)− `(w∗S ; zi)

)
+ r(w∗S(i))− r(w∗S)

=RrS(i)(w
∗
S(i))−RrS(i)(w

∗
S) +

1

N

(
`(w∗S(i) ; zi)− `(w∗S ; zi)

)
− 1

N

(
`(w∗S(i) ; z

′
i)− `(w∗S ; z′i)

)
ζ1
≤ 1

N

(
`(w∗S(i) ; zi)− `(w∗S ; zi)

)
− 1

N

(
`(w∗S(i) ; z

′
i)− `(w∗S ; z′i)

)
ζ2
≤2G

N
‖w∗S(i) − w∗S‖,

where “ζ1” follows from the optimality of wS(i) and “ζ2” is due to the Lipschitz continuity of loss.
The strong convexity of RrS implies

RrS(w∗S(i))−RrS(w∗S) ≥ λ

2
‖w∗S(i) − w∗S‖2.

Combining the preceding two inequalities yields

‖w∗S(i) − w∗S‖ ≤
4G

λN
.

Therefore by triangle inequality and the above bounds we get
‖wS(i) − wS‖ =‖wS(i) − w∗S(i) + w∗S(i) − w∗S + w∗S − wS‖

≤‖wS(i) − w∗S(i)‖+ ‖w∗S(i) − w∗S‖+ ‖w∗S − wS‖

≤ 4G

λN
+ 2

√
2εt
λ

which implies the desired uniform stability as the above holds for any pair of S(i) and S.

D.2 Proof of Lemma 3

Proof. Let us consider a sample set S(i) which is identical to S except that one of the Zi is replaced
by another random sample Z ′i. Since S and S(i) are both i.i.d. samples of the data distribution. It
follows that
ES [∇R(A(S))] = ES(i)

[
∇R(A(S(i)))

]
= ES(i)∪{Zi}

[
∇`(A(S(i)));Zi)

]
= ES∪{Z′i}

[
∇`(A(S(i));Zi)

]
.

Since the above holds for all i = 1, ..., N , by averaging the above equality over the training data we
obtain that

ES [∇R(A(S))] =
1

N

N∑
i=1

ES∪{Z′i}
[
∇`(A(S(i));Zi)

]
. (22)

Regarding the empirical case, by definition we have

ES [∇RS(A(S))] =
1

N

N∑
i=1

ES [∇`(A(S);Zi)] =
1

N

N∑
i=1

ES∪{Z′i} [∇`(A(S);Zi)] .

Combining the preceding two equalities gives that

‖ES [∇R(A(S))−∇RS(A(S))]‖ =

∥∥∥∥∥ 1

N

N∑
i=1

ES∪{Z′i}
[
∇`(A(S(i));Zi)−∇`(A(S);Zi)

]∥∥∥∥∥
≤L

∥∥∥A(S(i))−A(S)
∥∥∥ ≤ Lγ,

where we have used the uniform stability of A.

To prove the second inequality, again by smoothness of the loss function we have∥∥∥∇R(A(S))−∇R(A(S(i)))
∥∥∥ ≤ L∥∥∥A(S)−A(S(i))

∥∥∥ ≤ Lγ.
Then it follows from Lemma 2 that

ES
[
‖∇R(A(S))− ES [∇RS(A(S))]‖2

]
≤ L2γ2N.

The proof is completed.
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E Preliminary Experimental Results

In this section, we carry out a preliminary experimental study to demonstrate the speed-up behavior
of FedMSPP under varying minibatch sizes for achieving comparable test performances to FedProx.
We also conventionally use FedAvg as a baseline algorithm for comparison.

E.1 Data and Models

We compare the considered algorithms over the following three benchmark data sets popularly used
for evaluating heterogenous FL approaches:

• The MNIST (LeCun et al., 1998) dataset of handwritten digits 0-9 is used for digit image
classification with a two layer convolutional neural network (CNN). The model takes as
input the images of size 28× 28, and first performs a 2-layer ({1, 32, max-pooling}, {32,
64, max-pooling}) convolution followed by a fully connected (FC) layer. We use 63,000
images in which 90% are for training and the rest for test. The data are distributed over 100
devices such that each device has samples of only 2 digits.

• The FEMNIST (Li et al., 2020b) dataset is a subset of the 62-class EMNIST (Cohen et al.,
2017) database constructed by sub-sampling 10 lower case characters (’a’-’j’). We study the
performances of the considered algorithms for character image classification using the same
two layer CNN as used for MNIST, which takes as input the images of size 28× 28. We use
55,050 images in which 90% are for training and the rest for test. The data are distributed
over 50 devices, each of which has samples of 3 characters.

• The Sent140 (Go et al., 2009) dataset of text sentiment analysis on tweets is used for
evaluating the considered algorithms for sentiment classification. The model we use is a two
layer LSTM binary classifier containing 256 hidden units followed by a densely-connected
layer. The input is a sequence of 25 characters represented by a 300-dimensional GloVe
embedding (Pennington et al., 2014) and the output is one character per training sample. We
use for our experiment a total number of 21, 546 tweets from 261 twitter accounts, each of
which corresponds to a device. The training/test sample split is 80% versus 20%.

The statistics of the data and models in use are summarized in Table 2.

Dataset Model # Devices # Samples (Training)
MNIST 2-layer CNN 100 63, 000 (56700)

FEMNIST 2-layer CNN 50 55050 (49545)
Sent140 2-layer LSTM 261 21546 (17237)

Table 2: Statistics of data and models used in the experiments.

E.2 Implementation Details and Performance Metrics

We generally follow the instructions of Li et al. (2020b) for implementing FedProx, FedMSPP and
FedAvg. More specifically, we use SGD as the local solver for FedProx, FedMSPP and FedAvg. For
FedMSPP, we implement with three varying minibatch sizes on each data set as shortly reported in
the next subsection about results. The hyper-parameters used in our implementation, such as number
of communication rounds and number of local SGD epochs, are listed in Table 3.

Hyper-parameter MNIST FEMNIST Sent140
#Communication rounds 200 300 300

#Local SGD epochs 2 5 10
Local SGD minibatch size 567 512 100
Local SGD learning rate 0.25 0.06 0.1

Strength of regularization µt 0.1 0.1 0.001
Table 3: Hyper-parameter settings.

Since the chief goal of this empirical study is to illustrate the benefit of FedMSPP for speeding up
the convergence of FedProx, we use the numbers of data points and communication rounds needed
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for reaching the desired solution accuracy as performance metrics. The desired test accuracies are
{80%, 90%, 95%} on MNIST, {80%, 85%, 91%} on FEMNIST, and {68%, 70%, 73%} on Sent140.

E.3 Results

In Figure 1, we show the numbers of data samples accessed by the considered algorithms to reach
comparable test accuracies. For FedMSPP, we test with minibatch sizes {81, 63, 10} on MNIST,
{128, 64, 16} on FEMNIST, and {75, 50, 20} on Sent140. From this set of results we can observe
that:

• On all the three data sets in use, FedMSPP with varying minibatch sizes consistently needs
significantly fewer samples than FedProx and FedAvg to reach the desired test accuracies.

• FedMSPP with smaller minibatch size tends to have better sample efficiency.

Figure 2 shows the corresponding rounds of communication needed to reach comparable test accura-
cies. From this group results we can see that in most cases, FedMSPP just needs slightly increased
rounds of communication than FedProx and FedAvg to reach comparable generalization accuracy.

Overall, our numerical results confirm that FedMSPP can be served as a safe and computationally
more efficient replacement to FedProx on the considered heterogenous FL tasks.
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(a) MNIST: Numbers of data points needed to reach 80%, 90% and 95% test accuracies. For FedMSPP, we
test with different minibatch sizes 81, 63, 10.

(b) FEMNIST: Numbers of data points needed to reach 80%, 85% and 91% test accuracies. For FedMSPP,
we test with different minibatch sizes 128, 64, 16.

(c) Sent140: Numbers of data points needed to reach 68%, 70% and 73% test accuracies. For FedMSPP,
we test with different minibatch sizes 70, 50, 20.

Figure 1: Comparison of numbers of data points accessed by the considered algorithms to reach
varying desired test accuracies.
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(a) MNIST: Rounds of communication needed to reach 80%, 90% and 95% test accuracies. For FedMSPP,
we test with different minibatch sizes 81, 63, 10.

(b) FEMNIST: Rounds of communication needed to reach 80%, 85% and 91% test accuracies. For
FedMSPP, we test with different minibatch sizes 128, 64, 16.

(c) Sent140: Rounds of communication needed to reach 68%, 70% and 73% test accuracies. For FedMSPP,
we test with different minibatch sizes 70, 50, 20.

Figure 2: Comparison of rounds of communication needed by the considered algorithms to reach
varying desired test accuracies.
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