
Supplementary Material

This document presents additional implementation details, visualizations, and conceptual discussions
that were excluded or briefed due to space limitations in the main paper. The organization mirrors
the sections from the main paper (with the exact same order and numbering), and the exposition
generally maintains a question-answer format. It aims to provide significantly more details, at a
degree of clarity sufficient for re-implementation. As such, we recommend referring to this document
whenever any section in the main paper can benefit from further elaboration. The supplementary
material consists of:

• vizdoom_nav — navigation videos in VizDoom.
• habitat_roxbox_nav — navigation videos in the training apartment Roxbox in Habitat.
• habitat_annawan_nav — navigation videos in the test apartment Annawan in Habitat.
• maze2d_experiments — goal reaching videos in Maze2D.
• planning_vis — videos visualizing the execution of R-RRT and R-RRT*.
• palmer_supmat.pdf — this document.

Table of Contents

1. Introduction

• Why learn a latent distance metric for nearest neighbor retrieval?
• What does stitching transitions together mean?

2. Perception-Action Loop with Memory Reorganization

2.1. Perceptual Representations that Capture Local Reachability

• What does local reachability mean?

2.2. Representation Learning via Reinforcement Learning

• How are the model components trained, and what are their exact inputs and outputs?
• What do the terms in the contrastive loss-function LQ mean?

2.3. Perceptual Experience Retrieval (PER)

• How do we solve the optimization problem in equation 1 from the main paper?
• What do the retrieved trajectories τM(sc,sg) look like?

2.4. Long-Horizon Planning Through Stitching Trajectory Segments

• How does R-PRM work in detail?
• How does R-RRT work in detail?
• How does R-RRT* work in detail?
• What does optimizing the Bellman error on the roadmap mean?
• What does restitching transitions at arbitrary resolution mean?

2.5. Refining Memory Contents via Forming and Executing Plans

• What does optimizing memory contents mean?
• How does the perception-action loop in PALMER work in detail?

3. Related Work

• What is the main reason why memory-based reasoning over actually observed transitions is
necessary? Why are methods like SPTM or SoRB that solely rely on learning-based distance
estimates are inherently prone to false predictions?

1

• What are the details for our implementations of SoRB and SPTM?

4. Experiments

Setup

• What are the details for the experimental setup in VizDoom?

Validating Perceptual Experience Retrieval (PER)

• What is the exact evaluation process that produced Fig.4 in the main paper?

Robust Distances

• What is the exact evaluation process for the right panel of Fig.5 in the main paper?

Proposed Planning Algorithms

• Why does the policy πM∗ use R-PRM for planning?
• What are the details for the πmpc baseline?

Experiments in Habitat

• What are the details for the experimental setup in Habitat?
• Why does the agent occasionally take random-looking actions in the habitat navigation

trials?

5. Discussion and Future Directions

• How is PALMER related to the "Options Framework (Sutton et al.)" and "Skill-Chaining
(Konidaris et al.)"?

• How is PALMER related to "LQR-Trees (Tedrake et al.)?

1 Introduction

Why learn a latent distance metric for nearest neighbor retrieval: In a low-dimensional state space
such as 3D positions, L2 distance (i.e., euclidean distance) directly correlates with local physical-
reachability (i.e., we emphasize local, because euclidian distances still do not match geodesic
distances globally). Therefore in such state-spaces, grouping together two nearby states and treating
them as the same single state for downstream global planning should still result in a feasible planned
trajectory. By feasible, we mean that the gaps and approximations introduced by state grouping are
functionally inconsequential and can be handled reasonably well by a local policy tracking the global
planned trajectory. This property doesn’t hold in high-dimensional state spaces such as images, since
the L2 distance doesn’t correlate with physical reachability. The main purpose of fϕ is to project such
high-dimensional spaces into a low-dimensional representation space where this property holds, so
that nearby states can be fused together to make sampling-based planning computationally tractable.

Figure 1: Visualization of stitching together trajectories. If an agent has previous experience of separately going
through segments (A,B) and (C,D), it should be able to go from sc to sg through the segments (A,D).

What does stitching transitions together mean: As shown in Fig1, if there are two separate sequences
of transitions in an offline memory buffer that traverse segments (A,B) and (C,D), an agent should
be capable of going from sc to sg through the segments (A,D) event if such a direct path of transitions

2

was never actually observed. Traditional deep Q-learning methods achieve this by combining and
propagating value estimates through TD-updates (i.e., argmaxaQ(s1, a, sg) points to segment D
after TD updates over the path (C,D), therefore the argmax policy would follow the path (A,D)
when going from sc to sg. [?] provides a further discussion). In our approach, this is achieved by
setting edge distances for (A,B,C,D) in a planning graph through perceptual experience retrieval,
and then performing a shortest path computation to retrieve the path (A,D).

2 Perception-Action Loop with Memory Reorganization

2.1 Perceptual Representations that Capture Local Reachability

What does local reachability mean: At a high-level (and for the special case of image-based naviga-
tion) what the term ‘local reachability’ intends to convey is that if two images I1 and I2 are from
physically close positions, dϕ = |fϕ(I1)− fϕ(I2)| should be small. This in turn provides a metric for
grouping together states that is better than the L2 distance in image space, which has no correlation
with physical reachability. Such a metric is necessary to make search and sampling-based planning
planning over the memory buffer computationally tractable. This learned metric dϕ serves the exact
same purpose as the hand-crafted image compression criterion employed in [?] to initialize cells
from states.

2.2 Representation Learning via Reinforcement Learning

Figure 2: Visualization of the model architecture, reproduced here for ease of reference.

How are the model components trained, and what are their exact inputs and outputs: More detailed
descriptions for all model components are given below (Fig.2 presents a visualization):

• The architecture and training of Q(st, at, sg) is completely decoupled from the other components.
It consists of cascaded convolutional and fully-connected layers with batch normalization and
ReLU activations between each layer. It takes as input the concatenated images for current and
goal states (i.e., shape B × C ×H ×W), and outputs a vector of Q-values for each action (i.e.,
shape B × num_actions). It is trained through offline DDQN [?] with hindsight goal-relabelling
[?]. We first sample t ∼ Uniform(0, dataset_size) and T ∼ Geom(p), and then retrieve from
the replay buffer a transition and a goal state as (st, at, st+1, sg := st+T). We then minimize the
TD error [Qθ(st, at, sg)− (1st+1=sg + γ1st+1 ̸=sg maxa Qθ−(st+1, a, sg))]

2, as in [?].

• The perceptual backbone fϕ(s) uses a standard Resnet-18 architecture. It takes as input the
images for a given state (i.e., B × C ×H ×W), and outputs a low-dimensional representation
vector z = fϕ(s) (i.e., shape B ×D). All other components take as input these low-dimensional
representations, rather than operating over images.

• pfwd(z
′
t+1 | zt, at), πinv(a

′
t | zt, zg), and pt(T

′ | zt, zg) all consist of fully-connected layers with
ReLU activations. To train them, we first sample t ∼ Uniform(0, dataset_size). We then
sample T according to T ∼ Uniform(0, Tmax) or T ∼ Uniform(Tmax, dataset_size − t),
half the time from the former distribution, half the time from the latter. We retrieve from the
replay buffer a transition and a goal state as (st, at, st+1, sg := st+T), and project them into
low dimensional representations (zt, at, zt+1, zg) using fϕ. These are concatenated and passed
to models pfwd(z

′
t+1 | zt, at), πinv(a

′
t | zt, zg), pt(T ′ | zt, zg) in a way compatible with their

3

arguments. pfwd outputs the mean for the predicted next state distribution (i.e., shape B ×D), and
is trained using the MSE loss Lfwd with zt+1 as the target. πinv outputs a vector of probabilities
over actions (i.e., shape B × num_actions), and is trained with the cross-entropy loss Linv with
at as the target. pt also outputs a discrete probability distribution over [0, Tmax] that predicts the
distribution of time-steps to reach the goal, where the last bin Tmax serves as a catch-all for all
values above it. It is trained using the cross entropy loss LT , with T as the target. As mentioned in
the main paper, all components fϕ, pfwd(z

′
t+1 | zt, at), πinv(a

′
t | zt, zg), pt(T ′ | zt, zg) are trained

jointly, with an additional loss function LQ that regularizes fϕ.

What do the terms in the contrastive loss-function LQ mean: The loss function LQ(st, sg) =

lhinge(dϕ(st, sg)−dp) 1dQ(st,sg)≤cQ+lhinge(dp−dϕ(st, sg)) 1dQ(st,sg)≥cQ consists of two penalty
terms lhinge(dϕ(st, sg)− dp) (i.e., only active when dϕ ≥ dp) and lhinge(dp − dϕ(st, sg)) (i.e., only
active when dϕ ≤ dp). These penalty terms are gated through two complementary indicator functions
1dQ(st,sg)≤cQ and 1dQ(st,sg)≥cQ . This essentially means that for LQ to be zero, dϕ ≤ dp should
hold (i.e., perceptual representations are close) if and only if dQ(st, sg) ≤ cQ holds (i.e., states are
physically close). The reason for employing such a conservative switching mechanism with a hinge
loss in LQ (i.e., rather than a continuous penalty term as in [? ?]) is because Q-value estimates are
quite inaccurate (especially when sc and sg are far apart), and their exact value is generally unreliable
(i.e., they can indicate whether two-states are close sufficiently well, but cannot robustly answer how
close they are). To pick the hyperparameter cQ, we compute the average Q-value between states in
the replay buffer that were observed to be within one-step proximity, and use a fraction of this value
to as a conservative estimate. While conceptually the choice for the hyperparameter dp is arbitrary,
we heuristically pick it by examining the average dϕ distance between subsequent states in the replay
buffer, obtained from a preliminary fϕ backbone trained without LQ.

2.3 Perceptual Experience Retrieval (PER)

How do we solve the optimization problem in equation 1 from the main paper: Our experiments use
−R(τ) = len(τ). We first compute the perceptual representations z for all states in the replay
buffer, and stack them into a tensor block of shape (dataset_size,D). Given sc and sg, we search
this tensor with vectorized masking operations to retrieve a set of neighboring states N(sc, dp) and
N(sg, dp) (i.e., sets of states within a perceptual distance threshold dp of sc and sg), to address
cons.4. We sort the resulting pairs of states (si, sj) ∈ N(sc, dp)×N(sg, dp) in terms of j − i, and
filter these pairs using cons.5. We then pick the first (i.e., closest) pair, and return all the states with
indices between i, j from the replay buffer as the resulting trajectory τM(sc,sg). The important thing
to emphasize about all of these operations is that they can be trivially vectorized, and therefore the
optimization problem in eq.3-5 can be solved in less time than a forward pass of fϕ.

Figure 3: Visualization of retrieved trajectories, with different perceptual distance threshold. Query states sc
and sg are represented as white squares with a cross in the center, while the start and end points of the retrieved
trajectory τM(sc,sg) are denoted with a black square and a yellow square with a diagonal dash respectively.

What do the retrieved trajectories τM(sc,sg) look like: As the perceptual distance threshold for dϕ
increases, the physical radii spanned by the nearest neighbor sets N(sc, dp) and N(sg, dp) increase,
as shown in Fig.3. As a result, constraint 4 in the PER equation gets looser, more trajectories satisfy
constraints 4 and 5 (because their start and end points are allowed to deviate further from the query
pair sc, sg), and therefore the optimization in equation 3 returns a shorter trajectory τM(sc,sg).

4

2.4 Long-Horizon Planning Through Stitching Trajectory Segments

Algorithm 1 Classic PRM (Roadmap Construction)

1: V ← {SampleFreei}i=1,...,num_vertices; E ← ∅ ▷ Initialize vertices and edges
2: for each si ∈ V do
3: U ← Near(V, si, r) \ {si}
4: for each sj ∈ U do ▷ Draw lines as edges
5: if CollisionFree(si, sj) then E ← E ∪ {(si, sj), (sj , si)}

return G = (V,E)

Algorithm 2 Classic PRM (Shortest-Path Queries Over the Roadmap)

1: Input: sc, sg, G = (V,E),R(τ), fϕ,M
2: for each si ∈ V do ▷ Insert sc and sg into the PRM graph
3: if CollisionFree(sc, si) then
4: E ← E ∪ {(sc, si), (si, sc)}
5: if CollisionFree(si, sg) then
6: E ← E ∪ {(si, sg), (sg, si)}

return {sj} ← ShortestPath(sc, sg, G) ▷ Shortest path through graph search

Algorithm 3 R-PRM (Roadmap Construction)

1: Input: fϕ,M
2: V ← {SampleFreei}i=1,...,num_vertices; E ← ∅ ▷ Initialize vertices and edges
3: for each si ∈ V do
4: U ← Near(V, si, r) \ {si}
5: for each sj ∈ U do ▷ Place PER trajectories in edges
6: E ← E ∪ {(si, sj) : τedge = τM(si,sj), dedge = −R(τM(si,sj))}

return G = (V,E)

How does R-PRM work in detail: Alg.1, 2 give step-by-step descriptions for the classical PRM algo-
rithm (adapted from [?]), while Alg.3, 4 describe our new definitions for R-PRM. It can be seen that
there are two main differences:

• In R-PRM, whenever an edge is created, a trajectory τM(sc,si) is retrieved through perceptual
experience retrieval and stored in a field τedge, while its reward −R(τM(sc,si)) is stored in a
different field dedge.

• In PRM the length and cost of a line segment are the same (i.e., euclidian distance), whereas in
R-PRM the length of a trajectory len(τM(sc,si)) and its reward−R(τM(sc,si)) are decoupled. This
means that a shortest path query in R-PRM returns a sequence of nodes and edges that optimize
the reward functionR. An additional step in R-PRM is that at the end of the shortest-path query,
all trajectories τedge = τM(si−1,si) stored in the returned edges are concatenated into a single
trajectory τM*(sc,sg) = τstitched.

How does R-RRT work in detail: Alg.5 gives a step-by-step description for the classical RRT algo-
rithm (adapted from [?]), while Alg.6 describes our new definition for R-RRT. In addition to the
two previous differences between PRM and R-PRM, there is one additional difference between RRT
and R-RRT. In RRT, there is a steering sub-routine that draws a line segment of length r starting
from snearest and extending towards srand, to create a new vertex snew. In R-RRT, this is replaced
by retrieving a trajectory τM(snearest,srand) starting from snearest and ending at srand, and its r ’th
state is used to create the new vertex snew.

How does R-RRT* work in detail: Alg.7 gives a step-by-step description for the classical RRT*
algorithm (adapted from [?]), while Alg.8 describes our new definition for R-RRT*. R-RRT* almost
exactly maintains the tree rewiring machinery employed in RRT*, the only difference being that the

5

Algorithm 4 R-PRM (Trajectory Restitching Given the Constructed Roadmap)

1: Input: sc, sg, G = (V,E),R(τ), fϕ,M
2: for each si ∈ V do ▷ Insert sc and sg into the PRM graph
3: if len(τM(sc,si)) ≤ r then ▷ Place PER trajectories in edges
4: E ← E ∪ {(sc, si) : τedge = τM(sc,si), dedge = −R(τM(sc,si))}
5: if len(τM(si,sg)) ≤ r then
6: E ← E ∪ {(si, sg) : τedge = τM(si,sg), dedge = −R(τM(si,sg))}

7: τstitched ← ∅
8: {sj} ← ShortestPath(sc, sg, G,R(τ)) ▷ Trajectory stitching by dynamic programming
9: for 0 < i < |{sj}| do ▷ Concatenate PER trajectories along the shortest path

10: τstitched ← τstitched ◦ τM(si−1,si)

return τM*(sc,sg) = τstitched

Algorithm 5 Classic RRT

1: V ← {sinit}; E ← ∅ ▷ Initialize vertices and edges
2: for i = 1, ..., n do
3: srand ← SampleFreei ▷ Sample random vertex
4: snearest ← Nearest(V, srand) ▷ Find the nearest vertex in V
5: snew ← Steer(snearest, srand, r) ▷ Draw a line segment of length r
6: if CollisionFree(snearest, snew) then
7: V ← V ∪ {snew} ; E ← E ∪ {(snearest, snew), (snew, snearest)}

return G = (V,E)

line costs (i.e., euclidian distance) are replaced with −R(τM(si,sj)) (i.e., in addition to the previous
three differences from R-PRM and R-RRT).

What does optimizing the Bellman error on the roadmap mean: Dynamic programming based graph-
search algorithms like Dijkstra or (discrete) value-iteration generally employ a cost caching mech-
anism to iteratively update cost-to-come values, and these updates reduce Bellman error (i.e., the
difference between the cost-to-come values before and after the update) during forward-search [?].
R-PRM uses Dijkstra for shortest-path search, while R-RRT* employs the same dynamic program-
ming based tree-rewiring mechanism as the original RRT*, therefore both algorithms are optimizing
the Bellman error between the vertices of their graphs through dynamic programming.

What does restitching transitions at arbitrary resolution mean: The retrospective-planning algo-
rithms R-PRM, R-RRT, R-RRT* are sampling based. This means that if two consequent states
st and st+1 are retrieved during their SampleFreei routines, then these algorithms will set an
edge using τM(st,st+1), which is simply the single transition (st, at, st+1). Therefore, given enough
samples, these algorithms can restitch trajectories down to the level of individual transitions.

2.5 Refining Memory Contents via Forming and Executing Plans

What does optimizing memory contents mean: A replay bufferM is a collection of trajectories. Op-
timizing its contents means adding trajectories toM that achieve higher total reward.

How does the perception-action loop in PALMER work in detail: Alg.9 gives a step-by-step descrip-
tion of the overall perception-action loop implemented in PALMER. What PALMER does is
essentially bridging any auxiliary exploration method with any auxiliary exploitation method,
by reorganizing exploration experience inM into τM*(sc,sg) that can be used for exploitation. The
particular way in which the trajectories τM*(sc,sg) can be executed for exploitation has a great deal of
flexibility, for example: all actions in τM*(sc,sg) can be executed sequentially in an open-loop manner,
the first actions of τM*(sc,sg) generated at each timestep can be executed in a model predictive control
(MPC) manner, states in τM*(sc,sg) can be tracked by an auxiliary local feedback controller, or the
entirety of τM*(sc,sg) can be used to initialize a separate trajectory optimization method.

6

Algorithm 6 R-RRT

1: V ← {sinit}; E ← ∅ ▷ Initialize vertices and edges
2: for i = 1, ..., n do
3: srand ← SampleFreei ▷ Sample random vertex
4: snearest ← Nearest(V, srand) ▷ Find the nearest vertex in V
5: snew ← τM(snearest,srand),r ▷ Get the r ’th state in τM(snearest,srand)

6: if len(τM(snearest,snew)) ≤ r then
7: V ← V ∪ {snew}
8: E ← E ∪ {(snearest, snew) : τedge = τM(snearest,snew),
9: dedge = −R(τM(snearest,snew))}

return G = (V,E)

Algorithm 7 Classic RRT*

1: V ← {sinit}; E ← ∅ ▷ Initialize vertices and edges
2: for i = 1, ..., n do
3: srand ← SampleFreei ▷ Sample random vertex
4: snearest ← Nearest(V, srand) ▷ Find the nearest vertex in V
5: snew ← Steer(snearest, srand, r) ▷ Draw a line segment of length r
6:
7: if CollisionFree(snearest, snew) then
8: Snear ← Near(V, snew, r)
9: V ← V ∪ {snew}

10: smin ← snearest
11: cmin ← Cost(snearest) + Cost(Line(snearest, snew))
12:
13: for each snear ∈ Xnear do ▷ Connect along a minimum-cost path
14: cnear ← Cost(snear) + Cost(Line(snear, snew))
15: if CollisionFree(snear, snew) and cnear ≤ cmin then
16: smin ← snear ; cmin ← cnear
17: E ← E ∪ {(smin, snew)}
18:
19: for each snear ∈ Xnear do ▷ Rewire the tree
20: cnear,new ← Cost(snew) + Cost(Line(snew, snear))
21: if CollisionFree(snew, snear) and cnear,new ≤ cnear then
22: sparent ← Parent(snear)
23: E ← (E\{(sparent, snear)} ∪ {snew, snear})

return G = (V,E)

3 Related Work

What is the main reason why memory-based reasoning over actually-observed transitions is neces-
sary? Why are methods like SPTM or SoRB that solely rely on learning-based distance estimates
are inherently prone to false predictions: By definition, states that are far apart from each other
in-terms of physical reachability are rarely observed together in an experiential learning framework
(e.g., within the same RL episode, or within close by time-steps during random exploration). There-
fore, for any learning-based prediction model that is conditioned on current-goal state pairs (e.g.,
Q(st, a, sg), πinv(a

′|st, sg), pt(T
′|st, sg)), if it is trained solely on the observed distribution of

experiential data, far apart states will be out of distribution (i.e., they have a low probability of being
sampled from the experiential data distribution, therefore they are underrepresented in the replay
buffer). This means that predictions for such far apart states will inevitably be inaccurate, unless a
hard-negative sampling mechanism is implemented to explicitly push their reachability-estimates
lower. The problem with this is that there is no inherent signal solely contained in perceptual input
(e.g., images) that can guide the resampling process in a way that is generally applicable to all tasks.

7

Algorithm 8 R-RRT*

1: V ← {sinit}; E ← ∅ ▷ Initialize vertices and edges
2: for i = 1, ..., n do
3: srand ← SampleFreei ▷ Sample random vertex
4: snearest ← Nearest(V, srand) ▷ Find the nearest vertex in V
5: snew ← τM(snearest,srand),r ▷ Get the r ’th state in τM(snearest,srand)

6:
7: if len(τM(snearest,snew)) ≤ r then
8: Snear ← Near(V, snew, r)
9: V ← V ∪ {snew}

10: smin ← snearest
11: cmin ← Cost(snearest) +−R(τM(snearest,snew))
12:
13: for each snear ∈ Xnear do ▷ Connect along a minimum-cost path
14: cnear ← Cost(snear) +−R(τM(snear,snew))
15: if len(τM(snear,snew)) ≤ r and cnear ≤ cmin then
16: smin ← snear ; cmin ← cnear
17: E ← E ∪ {(smin, snew) : τedge = τM(smin,snew), dedge = −R(τM(smin,snew))}
18:
19: for each snear ∈ Xnear do ▷ Rewire the tree
20: cnear,new ← Cost(snew) +−R(τM(snew,snear))
21: if len(τM(snew,snear)) ≤ r and cnear,new ≤ cnear then
22: sparent ← Parent(snear)
23: E ← (E\{(sparent, snear)} ∪ {snew, snear})

return G = (V,E)

For example, [?] employs a hard-negative sampling mechanism for a manipulation task using joint
pose labels for guidance, but such a mechanism has two bottlenecks: i) it is specific to their particular
manipulation task, ii) it assumes auxiliary labels. Similarly, the temporally consistent localization
mechanism used in SPTM is essentially a heuristic fix specific to navigation. For the case of SoRB,
there is no inherent mechanism in distributional RL that addresses this out-of-distribution issue either.
While employing an ensemble of Q-functions could potentially capture the epistemic uncertainty for
out-of-distribution pairs to directly address this problem, we used an ensemble of Q-functions in our
implementation of SoRB and empirically observed that it was insufficient. A similar conclusion can
be drawn from the Fig.8 of the original SoRB paper [?], as the bulk of the performance increase
appears to be due to distributional RL, and ensembles only provide a moderate benefit.

All of these considerations highlight the importance of memory as a robustification mechanism.
To summarize the discussions from above, there are two main reasons that cause false reachability
predictions: i) there is no robust and general signal solely contained in the isolated instances of
perceptual input (sc, sg) (i.e., without the trajectory of states in between that connect them) that can
identify whether two states are physically far apart, ii) both physically close and far apart states can
occur with a long temporal distance in between. Therefore, an agent needs to rely on memory: in
order to identify whether two states are close or not, it should try to remember if it ever actually
observed those two states close-by in a segment of past experience.

What are the details for our implementations of SoRB and SPTM: Tha main difference of our SPTM
implementation is that it doesn’t employ temporally consistent localization and adaptive waypoint
selection. The main differences of our SoRB implementation are: i) we use an ensemble of Q-
functions, but they are trained with DDQN rather than distributional RL, ii) we train the Q-function
on offlline random-walk data, rather than an online episodic training setup with resets and a reward
oracle as employed in the original paper. We acknowledge and emphasize that for SoRB, these
differences are the most likely reason for the lower performance level we observed in our evaluations
compared to the original paper, as they inevitably reduce the accuracy of Q-values. We however note
that our method also employs the same Q-values, and generally these implementation differences in
the baselines were chosen to facilitate a clear understanding of our approach without confounders,

8

Algorithm 9 PALMER: Perception-Action Loop with Memory Retrieval

1: Input: R(τ)
2: fϕ.init(), Q.init(),M← ∅ ▷ Initialize policy parameters
3: while t ≤ max_timestep do

4: while i ≤ num_exploration_steps do ▷ Exploration
5: i) Using [any suitable method]: explore the environment

to obtain an exploration trajectory τnew
6: ii) Using [τnew]: updateM ▷ Memory expansion

7: while i ≤ num_updates do
8: Using [M]: update Q(st, at, sg) ▷ Train value function
9: Using [M and Q(st, at, sg)]: update fϕ(st, sg) ▷ Train perception model

10: while i ≤ num_exploitation_steps do ▷ Exploitation
11: i) Using [M]: sample a random goal sg ∼M
12: ii) Using [fϕ(sc, sg) andR(τ)]: generate τM*(sc,sg)

13: iii) Using [any suitable method]: execute τM*(sc,sg)

to obtain a real trajectory τreal
14: iv) Using [τreal]: updateM ▷ Memory optimization

because: i) they do not directly address the root cause of the false prediction problem (as discussed
above), ii) one of the main benefits of our method is that it operates over arbitrary offline data without
any resets or reward oracles (and it uses DDQN to train the related Q-function).

4 Experiments

Setup

Figure 4: Visualization of the map used in VizDoom experiments. Further video visuals of image-based
navigation can be found in the folder vizdoom_nav provided in the supplementary alongside this document.

What are the details for the experimental setup in VizDoom: As shown in Fig.4, states solely consist
of four images INorth/East/South/West that form a panorama (i.e., 4× 3× 160× 120 dimensions),
and actions move the agent North/South/East/West by a fixed distance ∆. The geodesic distances
scale approximately by a factor of×3 compared to euclidian distances (e.g., If a goal has an euclidian
distance of 14∆, it takes approximately 42 timesteps for an optimal policy to reach it). The map
contains many long-thin column-like obstructions (e.g., torches, pillars, trees), as we found that
image-based navigation policies are prone to getting stuck in such obstacles. These obstacles have
dynamically changing appearances (e.g., flickering flames on torches, glowing lights on pillars), and
can completely block the field of view of the agent after a collision (as shown in IEast in Fig.4). The
replay bufferM consists of 300k images obtained from a uniform random walk exploring the map in
a single continuous sequence of actions, without resets and rewards.

9

Validating Perceptual Experience Retrieval (PER)

What is the exact evaluation process that produced Fig.4 in the main paper: For every integer value
n ∈ [0, 14], we randomly sample 1000 pairs of start and goal-states in a way that the euclidian
distance between them lies within n×∆ and (n+ 1)×∆ through rejection sampling, and a policy
is considered successful if it can get within ∆ proximity of the goal-state.

Robust Distances

What is the exact evaluation process for the right panel of Fig.5 in the main paper: To produce the
roadmap visualizaitons, we randomly sample 250 states from the replay buffer and set the edges
between them by thresholding the distance estimates from all methods. Thresholds were calibrated
individually and by hand for each baseline, by picking the threshold with the lowest number of false
edges until a further reduction in the threshold resulted in splitting the roadmap into a large number
of isolated subgraphs (i.e., therefore making it impossible to use it for global planning).

Proposed Planning Algorithms

Why does the policy πM∗ use R-PRM for planning: PRM and R-PRM are multi-query methods [?
], meaning that the full roadmap only needs to be constructed once. For any query pair of current-
goal states (sc, sg), the same roadmap can be reutilized by inserting (sc, sg) in the roadmap and
performing a shortest path query. In contrast, RRT and RRT* require recreating a full roadmap for
every new query pair. Since πM∗ replans at each timestep with a different current state st, PRM based
approaches are computationally much cheaper. We also note that planning graphs for all methods in
this experiment contain 500 vertices.

What are the details for the πmpc baseline: The πmpc policy uses the pfwd model to obtain simulated
rollouts, and uses the pt model to rank those rollouts in terms of how close they get to the goal.
This allows an MPC optimization loop that picks and implements the first action from the most
successful simulated rollout. As previously discussed above, the main bottleneck for SPTM and
SoRB is the difficulty of estimating reachability metrics solely using the two states sc, sg without any
consideration of the states in between. Simulated rollouts in πmpc naturally address this problem by
generating and evaluating entire trajectories. The main bottleneck for πmpc is that the accuracy of
state predictions in simulated rollouts from pfwd degrade with the rollout length.

Experiments in Habitat

Figure 5: Visualization of the apartments used in Habitat experiments. Further video visuals of image-based
navigation can be found in the folders habitat_roxbox_nav and habitat_annawan_nav provided in the
supplementary alongside this document.

What are the details for the experimental setup in Habitat: As shown in Fig.5, states solely con-
sist of a single 150 FOV image (i.e., 3 × 256 × 256 dimensions). There are 3 actions:
{turn_left_30_deg, turn_right_30_deg,move_forward_∆}. We run evaluations on two ran-
domly picked apartments: Roxbox, and Annawan. In both apartments, we collect a replay bufferM
that consists of 150k images obtained from a uniform random walk exploring the map in a single

10

continuous sequence of actions, without resets and rewards. We use only the memory buffer from
Roxbox to train the perception model fϕ, and use this same model to do perceptual experience
retrieval and trajectory stitching on replay buffers from both apartments. We have observed that the
latent distances from fϕ generalize well, and can directly allow perceptual experience retrieval and
trajectory stitching without any fine-tuning on the images from the new test apartment.

Why does the agent occasionally take random-looking actions in the habitat navigation trials: This
is due to a combination of two main factors. First, our MPC loop replans from scratch at each timestep
using Algorithm.4. This frequent replanning has a destabilizing effect on the control loop, similar to
employing a large derivative action in a PID controller (i.e., a strong anticipatory term causes frequent
switches in the actions). This first factor is exacerbated by the second main factor: the poor perfor-
mance of argmaxa Q(st, a, sg). This is most likely due to the difficulty of offline RL training with
hindsight relabelling over random-walk data of only 150k timesteps obtained with a much more chal-
lenging non-cartesian action space {turn_left_30_deg, turn_right_30_deg,move_forward_∆}.
The restitched trajectories τM*(st,sg),s,1) produced by R-PRM at each time-step are converted to
actions by following their first state τM*(st,sg),s,1 using argmaxa Q(st, a, τM*(st,sg),s,1), and inac-
curate Q-values occasionally cause random-looking actions.

There are multiple ways to counter this. The most direct way is to train a better Q-function. Our
current Q-function is trained in a particularly challenging setting, as: i) it is trained on entirely offline
data with hindsight goal relabelling, ii) this data is collected through uniformly random actions, and
iii) it consists of only 150k environment steps. A second way is to instead counter the large derivative
action by reducing the replanning rate and introducing a momentum mechanism to the controller.
For example, we can replan through R-PRM only every n’th timestep (i.e., hence reducing the
replanning rate), and act according to argmaxa Q(st, a, τM*(st,sg),s,n) for the timesteps inbetween
(i.e., hence introducing momentum to the controls). We couldn’t get this fix to work well, because
the Q-values are only accurate up to states that are ∼ 2×∆ distance away (hence acting according
to argmaxa Q(st, a, τM*(st,sg),s,n) isn’t possible for n ≥ 2 in our case). We note however that
our method can still navigate from any point to any point in a challenging 3D reconstruction of a
real-world apartment in Habitat using poor Q-value estimates, highlighting the robustness introduced
by memory-based planning.

5 Discussion and Future Directions

How is PALMER related to the "Options Framework (Sutton et al.)" and "Skill-Chaining (Konidaris
et al.)": The idea of restitching (i.e., chaining) transition sequences from a replay buffer has direct
connections to the options framework [?] and skill-chaining [?]. Essentially, PALMER can be
thought of as a framework for converting every possible sequence of transitions τ ∈M in memory
into an option o = {πo, Io, βo}, where the option policy πo is implemented by simply executing
all the actions in τ in an open-loop manner, the initiation set is Io = {s ∈ S : dϕ(s, τs,0) ≤ dp)},
and the termination condition is βo = {s ∈ S : dϕ(s, τs,−1) ≤ dp)}. Therefore, PALMER can be
interpreted as a skill-chaining algorithm that converts unstructured transitions in a replay buffer into a
set of executable options to be chained.

How is PALMER related to "LQR-Trees (Tedrake et al.)": A central idea in PALMER is repurposing
the edge creation subroutines of sampling-based planning algorithms so that whenever an edge is
created some additional processing is done to connect the endpoints (i.e., particularly, perceptual
experience retrieval in our case). This approach is directly inspired by the method of LQR-Trees [?],
which instead creates a trajectory stabilizing LQR controller to connect the endpoints of each edge.
This results in a roadmap of local controllers, rather then a roadmap of memories as in PALMER.

11

