
A Algorithm Details

In this section, we first formally introduce the Multiple Gradient Descent Algorithm and the Projecting
Conflicting Gradients method. Then we provide the full proof of Thm. 3.2.

A.1 Multiple Gradient Descent Algorithm (MGDA)

The Multiple Gradient Descent Algorithm (MGDA) explicitly optimizes towards a Pareto-optimal
point for multiple objectives (See the definition 3.1). It is known that a necessary condition for θ
to be a Pareto-optimal point is that we could find a convex combination of the task gradients at θ
that results in the 0 vector. Therefore, MGDA proposes to minimize the minimum possible convex
combination of task gradients:

min
1

2

∥∥∥∥∥
K∑
i=1

wigi

∥∥∥∥∥
2

, s.t.
K∑
i=1

wi = 1, and ∀i, wi ≥ 0. (6)

We call this the dual objective for MGDA, as the primal objective of MGDA has a close connection
to CAGrad’s primal objective in Eq. (3). Specifically, the primal objective of MGDA is

max
∥d∥≤1

min
i
⟨d, gi⟩. (7)

To see the primal-dual relationship, denote gw =
∑

i wigi, where w ∈ W ≜ {w ∈ RK :
∑

i wi =
1, wi ≥ 0,∀i ∈ [K]}. Note that mini⟨gi, d⟩ = minw∈W⟨

∑
i wigi, d⟩. The Lagrangian of Eq. (7) is

max
d

min
λ≥0,w∈W

⟨d, gw⟩ −
λ

2
(∥d∥2 − 1). (8)

Since the problem is a convex programming and the Slater’s condition holds when c > 0 (On the
other hand, if c = 0, then it is easy to check that all the results hold trivially), the strong duality holds
and we can exchange the min and max:

min
λ≥0,w∈W

max
d
⟨d, gw⟩ −

λ

2
(∥d∥2 − 1). (9)

The optimal d∗ = gw/λ and the resulting primal objective is therefore

min
λ≥0,w∈W

λ(
1

2
∥gw∥2 + 1). (10)

Here, λ corresponds to the constraint ∥d∥ ≤ 1. If we fix λ to be any constant, then we recover the
dual objective in Eq. (6).

Remark Looking at the primal form of MGDA in Eq. (7), the major difference between MGDA
and CAGrad is that the new update vector d is searched around the 0 vector for MGDA and g0 for
CAGrad. Therefore, theoretically both MGDA and CAGrad optimizes the worst local update, but
MGDA is more conservative and can converge to any point on the Pareto set without explicit control
(See Thm. 2 from [6]). This also explains MGDA’s behavior in practice that it often learns much
slower than other methods.

A.2 Projecting Conflicting Gradients (PCGrad)

Identifying that a major challenge for multi-task optimization is the conflicting gradient, Yu et al. [41]
propose to project each task gradient to the normal plane of others before combining them together
to form the final update vector. In the following, we provide the full algorithm of the Projecting
Conflicting Gradients (PCGrad):

Fig. 2 provides a visualization of PCGrad’s update rule for two-task learning (the 3rd column).
Different from MGDA and CAGrad, PCGrad does not have a clear optimization objective at each
step, which makes it hard to analyze PCGrad’s convergence guarantee in general. In practice, the
random ordering to do the projection is particularly important for PCGrad to work well [41], which
suggests that the intuition of removing the “conflicting" part of each gradient might not be always
correct. For the convergence analysis, Yu et al. establishes the convergence guarantee for PCGrad
only under the two-task learning setting. Moreover, PCGrad is only guaranteed to converge to the
Pareto set without explict control over which point it will arrive at (See Thm. A.1 in the following).

14



Algorithm 2 Projecting Conflicting Gradient Update Rule
Input: model parameter vector θ and differentiable loss functions {Li}Ki=1.
gi ← ∇θLi(θ).
gPC
i = gi, ∀i.

for task i ∈ [K] do
for j ̸= i ∈ [K] in random order do

if gPC
i · gj < 0 then
gPC
i = gPC

i −
gPC
i ·gj
∥gj∥2 gj .

end if
end for

end for
Return the new update vector d = gPC = 1

K

∑
i g

PC
i .

Theorem A.1 (Convergence of PCGrad [41]). Consider two-task learning, assume the loss functions
L1 and L2 are convex and differentiable. Suppose the gradient of L0 = (L1 + L2)/2 is H-Lipschitz
with H > 0. Then, the PCGrad update rule with step size t ≤ 1/H will converge to a Pareto-
stationary point.

A.3 Conflit-Averse Gradient descent (CAGrad)

We provide the full derivation of CAGrad and the proof for its convergence in this section. Our proof
assumes L0 is a general function with gradient g0 = ∇L0, that is, it does not have to be the average
of Li as the case we focus on in the main paper.

Lemma A.2. Let d∗ be the solution of

max
d∈Rm

min
i∈[K]

g⊤i d s.t. ∥g0 − d∥ ≤ c ∥g0∥ ,

where c ≥ 0, and g0, g1, . . . , gK ∈ Rm. Then we have

d∗ = g0 +
c ∥g0∥
∥gw∗∥

gw∗ ,

where gw∗ =
∑

i w
∗
i gi and w∗ is the solution of

min
w≥W

g⊤wg0 + c ∥g0∥ ∥gw∥ , (11)

whereW = {w ∈ RK :
∑

i wi = 1, wi ≥ 0,∀i ∈ [K]}. In addition,

min
i

g⊤i d
∗ = g⊤w∗g0 + c ∥g0∥ ∥gw∗∥ . (12)

Proof. Denote ϕ = c2 ∥g0∥2. Note that mini⟨gi, d⟩ = minw∈W⟨
∑

i wigi, d⟩. The Lagrangian of
the objective in Eq. (3) is

max
d∈Rm

min
λ≥0,w∈W

g⊤wd−
λ

2
(∥g0 − d∥2 − ϕ).

Since the problem is a convex programming and the Slater’s condition holds when c > 0 (On the
other hand, if c = 0, then it is easy to check that all the results hold trivially), the strong duality holds
and we can exchange the min and max:

min
λ≥0,w∈W

max
d∈Rm

g⊤wd−
λ

2
∥g0 − d∥2 + λϕ

2
.

With λ,w fixing, the optimal d is achieved when d = g0+gw/λ, yielding the following dual problem

min
w,λ≥0

g⊤w (g0 + gw/λ)−
λ

2
∥gw/λ∥2 +

λ

2
ϕ.

15



This is equivalent to

min
w,λ≥0

g⊤wg0 +
1

2λ
∥gw∥2 +

λϕ

2
.

Optimizing out the λ we have
min
w∈W

g⊤wg0 +
√
ϕ ∥gw∥ ,

where the optimal λ = ∥gw∥ /ϕ1/2. This solves the problem. (12) is the consequence of the strong
duality.

Convergence Analysis

Assumption A.3. Assume individual loss functions L0, L1, . . . , LK are differentiable on Rm

and their gradients ∇Li(θ) are all H-Lipschitz, i.e. ∥∇Li(x)−∇Li(y)∥ ≤ H ∥x− y∥ for
i = 0, 1, . . . ,K, where H ∈ (0,∞). Assume L∗

0 = infθ∈Rm L0(θ) > −∞.

Theorem A.4 (Convergence of CAGrad). Assume Assumption A.3 holds. With a fixed step size α
satisfying 0 < α ≤ 1/H , we have for the CAGrad in Alg. 1:

1) If 0 ≤ c < 1, then CAGrad converges to stationary points of L0 convergence rate in that

T∑
t=0

∥g0(θt)∥2 ≤
2(L0(θ0)− L∗

0)

α(1− c2)
.

2) For any c ≥ 0, all the fixed point of CAGrad are Pareto-stationary points of (L0, L1, . . . , LK).

Proof. We will first prove 1). Consider the t-th optimization step and denote d∗(θt) the update
direction obtained by solving (3) at the t-th iteration. Then we have

L0(θt+1)− L0(θt) = L0(θt − αd∗(θt))− L0(θt)

≤ −αg0(θt)⊤d∗(θt) +
Hα2

2
∥d∗(θt)∥2

≤ −αg0(θt)⊤d∗(θt) +
α

2
∥d∗(θt)∥2 //α ≤ 1/H

≤ −α

2

(
∥g0(θt∥2 + ∥d∗(θt)∥2 − ∥g0(θt)− d∗(θt)∥2

)
+

α

2
∥d∗(θt)∥2

= −α

2

(
∥g0(θt)∥2 − ∥d∗(θt)− g0(θt)∥2

)
≤ −α

2
(1− c2) ∥g0(θt)∥2 //by the constraint in (3)

Using telescoping sums, we have L0(θT+1)−L0(0) = −(α/2)(1− c2)
∑T

t=0 ∥g0(θt)∥
2. Therefore

min
t≤T
∥g0(θt)∥2 ≤

1

T + 1

T∑
t=0

∥g0(θt)∥2 ≤
2(L0(0)− L0(θT+1))

α(1− c2)(T + 1)
.

Therefore, if L0 is lower bounded, that is, L∗
0 := infθ∈Rm L0(θ) > −∞, then mint≤T ∥g0(θt)∥2 =

O(1/T ).

For general c ≥ 0, in the fixed point, we have d∗(θ) = g0(θ) + λgw∗(θ) = 0, which readily match
the definition of Pareto Stationarity.

In the following, we show an additional result that when c ≥ 1, and we use a properly decaying step
size, the limit points of CAGrad are either stationary points of L0, or Pareto-stationary points of
(L1, . . . , LK).

Theorem A.5. Under Assumption A.3, assume c ≥ 1 and we a time varying step size satisfying

αt ≤
∥∥gw∗

t
(θt)

∥∥
H(c− 1) ∥g0(θt)∥

,

16



where w∗
t is the solution of (11) at the t-th iteration, then we have

T∑
t=0

αt ∥g0(θt)∥
∥∥gw∗

t
(θt)

∥∥ ≤ 2
mini(Li(θ0)− Li(θT+1))

(c− 1)
.

Therefore, if we hae L∗
i = infθ∈Rm L(θ) > −∞ and c > 1, then we have αt ∥g0(θt)∥

∥∥gw∗
t
(θt)

∥∥→
0 as t→∞, meaning that we have either αt → 0, or ∥g0(θt)∥ → 0 or

∥∥gw∗
t
(θt)

∥∥→ 0.

In this case, the actual behavior of the algorithm depends on the specific choice of the step size. For

example, if we take αt =

∥∥∥gw∗
t
(θt)

∥∥∥
H(c−1)∥g0(θt)∥ , then the result becomes

T∑
t=0

∥∥gw∗
t
(θt)

∥∥2 ≤ 2Hmin
i
(Li(θ0)− Li(θT+1)).

which ensures
∥∥gw∗

t
(θt)

∥∥2 → 0.

Proof. For any task i ∈ [K],

Li(θt+1)− Li(θ) ≤ −αtgi(θt)
⊤d∗(θt) +

Hα2
t

2
∥d∗(θt)∥2

≤ −αt min
i

gi(θt)
⊤d∗(θt) +

Hα2
t

2
∥d∗(θt)∥2

≤ −αt

(
gw∗

t
(θt)

⊤g0(θt) + c ∥g0(θt)∥
∥∥gw∗

t
(θt)

∥∥)+ Hα2
t

2
∥d∗(θt)∥2 //by (12)

Meanwhile, note that

∥d∗(θt)∥2 =

∥∥∥∥∥g0(θt) + c ∥g0(θt)∥∥∥gw∗
t
(θt)

∥∥gw∗
t
(θt)

∥∥∥∥∥
2

= (c2 + 1) ∥g0(θt)∥2 + 2
c ∥g0(θt)∥∥∥gw∗

t
(θt)

∥∥g0(θt)⊤gw∗
t
(θt)

= 2c
∥g0(θt)∥∥∥gw∗

t
(θt)

∥∥ (gw∗
t
(θt)

⊤g0(θt) + c ∥g0(θt)∥
∥∥gw∗

t
(θt)

∥∥)+ (1− c2) ∥g0(θt)∥2 .

Therefore,

Li(θt+1)− Li(θ)

≤ −αt

(
1−Hαtc

∥g0(θt)∥∥∥gw∗
t
(θt)

∥∥
)(

gw∗
t
(θt)

⊤g0(θt) + c ∥g0(θt)∥
∥∥gw∗

t
(θt)

∥∥)+ Hα2
t

2
(c2 − 1) ∥g0(θt)∥2

(∗)
≤ −αt

(
1−Hαtc

∥g0(θt)∥∥∥gw∗
t
(θt)

∥∥
)
(c− 1) ∥g0(θt)∥

∥∥gw∗
t
(θt)

∥∥− Hα2
t

2
(c2 − 1) ∥g0(θt)∥2

= −αt(c− 1) ∥g0(θt)∥
∥∥gw∗

t
(θt)

∥∥+ Hα2
t

2
(c− 1)2 ∥g0(θt)∥2

≤ −1

2
αt(c− 1) ∥g0(θt)∥

∥∥gw∗
t
(θt)

∥∥ //assume αt ≤
∥∥gw∗

t
(θt)

∥∥
H(c− 1) ∥g0(θt)∥

, c ≥ 1

where inequality (*) uses Cauchy-Schwarz inequality. Therefore, a telescoping sum gives
T∑

t=0

αt ∥g0(θt)∥
∥∥gw∗

t
(θt)

∥∥ ≤ 2
mini(Li(θ0)− Li(θT+1))

(c− 1)
,

when c ≥ 1.

17



B Experiment Details

B.1 Multi-Fashion+MNIST

Experiment Details We follow the experiment setup from [23] and use the same shrinked LeNet
that consists of the following layers as the shared base network: CONV(1,5,9,1), MAXPOOL2D(2),
RELU, BATCHNORM2D(5), CONV2D(5,10,5,1), MAXPOOL2D(2), RELU, BATCHNORM1D(250),
LINEAR(250, 50). Then a task-specific linear head LINEAR(50, 10) is attached to the shared base
for the MNIST and FashionMNIST prediction. We use Adam [16] optimizer with a 0.001 learning
rate and 0.01 weight decay, and then train for 50 epochs with a batch size of 256. The training set
consists of 120000 images of size 36x36 and the test set consists of 20000 images of the same size.

B.2 Multi-task Supervised Learning

Experiment Details For the multi-task supervised learning experiments on the NYU-v2 and
CityScapes datasets, we follow exactly the same setup from MTAN [21]. We describe the details in
the following. We adopt the SegNet [1] architecture as the backbone network and apply the attention
mechanism from MTAN [21] on top of it. For the CityScapes dataset, we use the 7-class semantics
labels. We train MTAN, Cross-Stitch, PCGrad and CAGrad with 200 epochs with a batch size of
2 for NYU-v2 and a batch size of 8 for CityScapes, using the Adam [16] optimizer with a learning
rate of 0.0001. We further decay the learning rate to 0.00005 at the 100th epoch. As Liu et al.
do not separately create a validation set, they average the test performance of each method in the
last 10 epochs. We follow this and also average the test performance over the last 10 epochs, but
additionally run over 3 seeds and calculate the mean and the standard error. We train CAGrad with
c ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and pick the best c using their corresponding averaged
training performance (c = 0.4 for NYU-v2 and c = 0.4 for CityScapes).

We also provide the final test losses and the per-epoch training times of each method in Fig. 5.

Figure 5: Test loss and training time comparison on NYU-v2 and Cityscapes.

More Ablation Studies on NYU-v2 and CityScapes Datasets We conduct the following additional
studies on NYU-v2 and CityScapes datasets: 1) How do different methods perform when we
additional apply the uncertain weight method [15]? 2) How do CAGrad perform with different values
of c? 3) How does PCGrad perform when we enlarge the learning rate? Specifically we double the
learning rate to 2e-4. Results are provided in Tab. 5 and Tab. 6. We can see that CAGrad perform
consistently with different values of 0 < c < 1. PCGrad with larger learning rate will not perform
better. Under the uncertain weights, MTAN and PCGrad indeed perform better but CAGrad is still
comparable or better than them.

B.3 Multi-task Reinforcement Learning

Experiment Details The multi-task reinforcement learning experiments follow the exact setup
from CARE [33]. Specifically, it is built on top of the MTRL codebase [32]. We consider the MT10
and MT50 benchmarks from the MetaWorld environment [42]. A visualization of the 50 tasks from
MT50 is provided in Fig. 6. The MT10 benchmark consists of a subset of 10 tasks from the MT50
task pool. For all methods, we use Soft Actor Critic (SAC) [10] as the underlying reinforcement
learning algorithm. All methods are trained over 2 million steps with a batch size of 1280. Following

18



Segmentation Depth Surface Normal

#P. Method (Higher Better) (Lower Better) Angle Distance
(Lower Better)

Within t◦

(Higher Better) ∆m% ↓
mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

3 Independent 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15

≈3 Cross-Stitch [25] 37.42 63.51 0.5487 0.2188 28.85 24.52 22.75 46.58 59.56 6.96

1.77 MTAN [21] 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 5.59

1.77 MGDA [30] 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 1.38

1.77 PCGrad [41] (lr=1e-4) 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 3.97

1.77 PCGrad [41] (lr=2e-4) 37.70 63.40 0.5871 0.2482 28.18 24.09 21.94 47.20 60.87 8.12

1.77 GradDrop [4] 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 3.58

1.77 CAGrad (c=0.2) 39.15 65.45 0.5563 0.2295 26.74 21.93 25.17 51.55 64.70 1.55

1.77 CAGrad (c=0.4) 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20

1.77 CAGrad (c=0.6) 39.54 65.60 0.5340 0.2199 25.87 20.94 25.88 53.78 67.00 -1.36

1.77 CAGrad (c=0.8) 39.18 64.97 0.5379 0.2229 25.42 20.47 27.37 54.73 67.73 -2.29

1.77 MTAN [21] (Uncert. Weights) 38.74 64.70 0.5360 0.2243 26.52 21.71 25.50 52.02 65.14 0.75

1.77 PCGrad [41] (Uncert. Weights) 37.81 64.35 0.5318 0.2242 26.53 21.73 25.45 51.98 65.16 1.04

1.77 CAGrad (c=0.2) (Uncert. Weights) 38.87 65.19 0.5357 0.2227 26.38 21.64 25.66 52.21 65.39 0.319

1.77 CAGrad (c=0.4) (Uncert. Weights) 38.89 64.98 0.5313 0.2242 25.71 20.72 26.89 54.14 67.13 -1.59

1.77 CAGrad (c=0.6) (Uncert. Weights) 39.80 65.32 0.5334 0.2242 25.69 20.91 26.89 54.14 67.13 -1.59

1.77 CAGrad (c=0.8) (Uncert. Weights) 39.20 65.15 0.5322 0.2202 25.28 20.17 27.83 55.41 68.25 -3.14

Table 5: Multi-task learning results on NYU-v2 dataset. #P denotes the relative model size compared
to the vanilla SegNet. Each experiment is repeated over 3 random seeds and the mean is reported.

Segmentation Depth

#P. Method (Higher Better) (Lower Better) ∆m% ↓
mIoU Pix Acc Abs Err Rel Err

2 Independent 74.01 93.16 0.0125 27.77

≈3 Cross-Stitch [25] 73.08 92.79 0.0165 118.5 90.02

1.77 MTAN [21] 75.18 93.49 0.0155 46.77 22.60

1.77 MGDA [30] 68.84 91.54 0.0309 33.50 44.14

1.77 PCGrad [41] 75.13 93.48 0.0154 42.07 18.29

1.77 GradDrop [4] 75.27 93.53 0.0157 47.54 23.73

1.77 CAGrad (c=0.2) 75.18 93.49 0.0140 40.12 13.69

1.77 CAGrad (c=0.4) 75.16 93.48 0.0141 37.60 11.64

1.77 CAGrad (c=0.6) 74.31 93.39 0.0151 34.84 11.46

1.77 CAGrad (c=0.8) 74.95 93.50 0.0143 36.05 10.74

1.77 MTAN [21] (Uncert. Weights) 75.02 93.36 0.0139 35.56 9.48

1.77 PCGrad [41] (Uncert. Weights) 74.68 93.36 0.0135 34.00 7.26

1.77 CAGrad (c=0.2) (Uncert. Weights) 75.05 93.45 0.0140 34.33 8.40

1.77 CAGrad (c=0.4) (Uncert. Weights) 74.90 93.46 0.0141 34.84 9.13

1.77 CAGrad (c=0.6) (Uncert. Weights) 74.89 93.45 0.0136 35.17 8.48

1.77 CAGrad (c=0.8) (Uncert. Weights) 75.38 93.48 0.0141 35.54 9.63

Table 6: Multi-task learning results on CityScapes Challenge. Each experiment is repeated over 3
random seeds and the mean is reported.

CARE [32], we evaluate each method once every 10000 steps, and report the highest average test
performance of a method over 10 random seeds over the entire training stage. For CAGrad-Fast, we
sub-sample 4 and 8 tasks randomly at each optimization step as the S (See Eq. (4)) for the MT10
and MT50 experiments. For CAGrad, since MT10 and MT50 have 10 and 50 tasks, much more
than the number of tasks in supervised MTL, so instead of using standard optimization library to
solve the CAGrad objective, we apply 20 gradient descent steps to approximately solve the objective.
The gradient descent is performed with a learning rate of 25 for MT10 and 50 for MT50, with a
momentum of 0.5. We search the best c from {0.1, 0.5, 0.9} for MT10 and MT50 (c = 0.9 for MT10
and c = 0.5 for MT50). The computation efficiency is compared in Tab. 7.
In principle, PCGrad should have the same time complexity as CAGrad. However, in practice,

PCGrad projects the gradients following a random ordering of the tasks in a sequential fashion (See
Alg. 2), so it requires a for loop over that task ordering, which makes it slow for a large number of

19



Figure 6: The 50 tasks in MT50 benchmark [42].

Method MT10 Time (sec) MT50 Time (sec)

PCGrad 9.7 59.8
CAGrad 10.3 27.8
CAGrad-Fast 4.8 11.4

Table 7: The training time per update step for PCGrad, CAGrad and CAGrad-Fast on MT10/50.

tasks. Combined with the results from Tab. 3, we see that CAGrad-Fast achieves comparable or better
results than PCGrad with a roughly 2x and 5x speedup on MT10 and MT50.

B.4 Semi-Supervised Learning with Auxiliary Tasks

Experiment Details We provide the hyperparameters for reproducing the experiments in our
main text. All the methods are applied upon the original ARML baseline, with the same configuration
in [31]. Specifically, the batch size is 256 and the optimizer is Adam. The learning rate is initialized
to 0.005 in the first 160, 000 iterations and decay to 0.001 in the rest iterations. The backbone
networks is a WRN-28-2 model. To stablize the training process, the features are extracted by a
moving-averaged model like in [36] with a moving-average factor of 0.95. For PCGrad and MGDA,
we use their official implementation without any change. For CAGrad (our method), we fix c = 0.1
in all the experiments. The labeled images are randomly selected from the whole training set, and we
repeat the experiments for 3 times on the same set of labeled images. We report the test accuracy of
the model with the highest validation accuracy.

Training Losses We analyze the training losses of different methods to demonstrate the difference
between these optimization methods. We report the losses, LCE , L1

aux and L2
aux, of the last epoch,

when the number of labeled images is 2, 000. The losses are listed in Tab. 8. We have two key
observations: (1) MGDA totally ignores the main task LCE , yet it has the smallest loss on the second
auxiliary task L2

aux. This implies MGDA finds a sub-optimal solution on the Pareto front. (2) PCGrad
and CAGrad can both decrease the averaged loss L0 compared with the baseline ARML, however,
CAGrad yields a smaller L0 than PCGrad.

20



Method LCE L1
aux L2

aux L0

ARML [31] 0.0 ±0.0 0.0574 ±0.0036 -0.4946 ±0.0010 -0.4372 ±0.0046
ARML + PCGrad [41] 0.0 ±0.0 0.0494 ±0.0088 -0.4943 ±0.0007 -0.4449 ±0.0095
ARML + MGDA [30] 0.407 ±0.018 0.0453 ±0.0049 -0.4980 ±0.0007 -0.0463 ±0.0233
ARML + CAGrad (Ours) 0.0 ±0.0 0.0419 ±0.0034 -0.4926 ±0.0023 -0.4507 ±0.0058

Table 8: The Training Losses in the Last Epoch when the number of the labeled images is 2, 000.
Values that are smaller than 10−6 are replaced by 0. We report the averaged losses over 3 independent
runs for each method, and mark the smallest losses in bold.

21


