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1 Training

1.1 Learning rule derivation

The REINFORCE rule naturally emerges if we optimize the log likelihood of the labels, while
considering the attended locations as latent variables [1]. Given a batch of N images, for the log
likelihood we get:

N∑
i=1

log p(yi|xi, w) =
N∑
i=1

log
∑
li

p(li|xi, w)p(yi|li, xi, w) (1)

where xi is the i-th image in the batch, yi is its label, and w are the parameters of our model.
p(li|xi, w) is the probability that the sequence of locations li is attended for image xi, and
p(yi|li, xi, w) is the probability of predicting the correct label after attending to li. Equation 1
describes the log likelihood of the labels in terms of all location sequences that could be attended.
p(yi|li, xi, w) is computed by the classification module, and p(li|xi, w) is computed by the location
module (see Section 1.2).

We use Jensen’s inequality in Equation 1 to derive the following lower bound on the log likelihood:
N∑
i=1

log p(yi|xi, w) ≥
N∑
i=1

∑
li

p(li|xi, w) log p(yi|li, xi, w) = F (2)

By maximizing the lower bound F , we expect to maximize the log likelihood. The update rule we
use, is the partial derivative of F with respect to w, normalized by the number of images in the batch.
We get:

1

N

∂F

∂w
=

1

N

N∑
i=1

∑
li

[
p(li|xi, w)

∂ log p(yi|li, xi, w)
∂w

+ log p(yi|li, xi, w)
∂p(li|xi, w)

∂w

]
⇒

1

N

∂F

∂w
=

1

N

N∑
i=1

∑
li

p(li|xi, w)
[∂ log p(yi|li, xi, w)

∂w
+ log p(yi|li, xi, w)

∂ log p(li|xi, w)
∂w

]
(3)

To derive (3), we used the log derivative trick. As we can see, for each image xi we need to calculate
an expectation according to p(li|xi, w). We approximate each expectation with a Monte Carlo
estimator of M samples:

1

N

∂F

∂w
≈ 1

N

∂F̃

∂w
=

1

N

N∑
i=1

1

M

M∑
m=1

[∂ log p(yi|li,m, xi, w)
∂w

+

log p(yi|li,m, xi, w)
∂ log p(li,m|xi, w)

∂w

]
(4)
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li,m is the sequence of locations attended during the m-th sample from p(li|xi, w) (we get samples
by repeating the processing of image xi).

In order to reduce the variance of the estimator, we replace log p(yi|li,m, xi, w) with a reward function
Ri,m, which is equal to 1 when the prediction for xi in the m-th sample is correct, and 0 otherwise.
In addition, we use the baseline technique from [26], which corresponds to the exponential moving
average of the mean reward Ri,m ∀i,m, and is updated after processing each training batch. Our
baseline is initialized to 0.5, and after the n-th batch we get:

bn = 0.9 · bn−1 + 0.1 · 1

NM

NM∑
i=1

Rn
i (5)

where Rn
i is the reward for the i-th image in the n-th batch. Since we use M samples for the Monte

Carlo estimator of each image, we simply consider that our batch has size NM to simplify notation.
Our learning rule (4) is updated as follows:

LF =
1

NM

NM∑
i=1

[∂ log p(yi|li, xi, w)
∂w

+ λf (Ri − b)
∂ log p(li|xi, w)

∂w

]
(6)

For simplicity, we drop the subscript of bn that indicates the batch we are processing. Also, we add a
weighting hyperparameter λf . Equation 6 is the learning rule we presented in Section 4.1. of our
paper, and this concludes our derivation.

1.2 Sampling approximation

In order to attend to a sequence of locations li, we sample without replacement from a series of
Categorical distributions. For the probability of attending to a sequence li, we get:

p(li|xi, w) =
N li∏
j=1

Lli

j∏
r=1

g∏
k=1

[ pl
i

j (lk|xi, w)u
li

j,k,r∑g
k=1

[
pl

i

j (lk|xi, w)
∏r−1

r′=1
(1− uli

j,k,r′
)
]] (7)

where N li is the number of Categorical distributions (equal to the number of times the location
module is applied), Lli

j is the number of samples we draw from the j-th distribution, and g is the total
number of candidate locations per distribution. In the example of Fig. 2 in our paper, we consider 3
distributions (N li = 3), Lli

1 = 2 in the 2nd processing level and Lli

2 = Lli

3 = 1 in the 3rd, and g = 4
since we consider a 2× 2 grid.

lk is the k-th out of the g candidate locations, and pl
i

j (lk|xi, w) is the probability of selecting lk in the
j-th distribution. ul

i

j,k,r is an indicator function that is equal to 1 when location lk is attended as the

r-th sample of the j-th distribution, and 0 otherwise. pl
i

j (lk|xi, w) is computed by the location module,
and ul

i

j,k,r is the outcome of sampling from the j-th Categorical distribution. The denominator in (7)
is applicable for r > 1, and normalizes the probabilities of the j-th Categorical distribution before
the r-th sample, to account for the lack of replacement.

In order to simplify our implementation of sampling dictated by (7), we introduce two modifications.
First, we approximate sampling by selecting the locations with the Lli

j highest probabilities. Potential
downside is that we miss the opportunity to attend to less probable locations that may have valuable
information (less exploration). However, at the beginning of training, all locations start with practically
equal probability, and even by picking the top Lli

j locations, we are able to explore the location space.

Second, we disregard the normalization factor for each pl
i

j (lk|xi, w)u
li

j,k,r (denominator in (7)). This
simplification does not affect the relative ordering between the probabilities of each Categorical
distribution. As a result, the Lli

j locations with the highest probabilities that we attend to, remain the
same.
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Table 1: Building blocks of our architectures. ConvBlock and MBConvF have residual connections
that add the input to the output. If s > 1, or the number of input channels is not equal to the
output channels, MBConvF drops the residual connection. If the same conditions hold true for
the ConvBlock, it applies an 1× 1 convolution with stride s and channels C to the input before it
is added to the output. Also, if p is VALID, a total margin of k − 1 pixels is dropped from each
spatial dimension of the input, before it is passed through the residual connection. The first layer in
MBConvF is performed only if F 6= 1. Both for SE-(Cr, r) and MBConvF , Cin corresponds to the
number of input channels and is not a parameter of the blocks. Batch Norm [13] is applied before the
activation. GAP stands for Global Average Pooling, and DWConv for depthwise convolution.

Block Type Layer/Block
Type

Kernel
Size

#Output
Channels Stride Padding Batch

Norm Activation

ConvBlock [8]
Conv 1× 1 C/4 1 SAME - Leaky ReLU
Conv k × k C/4 s p - Leaky ReLU
Conv 1× 1 C 1 SAME - Leaky ReLU

Squeeze and
Excitation-(Cr, r)

SE-(Cr, r) [10]

GAP - Cin - - - -
Conv 1× 1 Cr · r 1 SAME - SiLU
Conv 1× 1 Cin 1 SAME - Sigmoid

Multiply - Cin - - - -

MBConvF [18]

Conv
(if F 6= 1) 1× 1 Cin · F 1 SAME

√
SiLU

DWConv k × k Cin · F s SAME
√

SiLU
SE-(Cin, 0.25) - Cin · F - - - -

Conv 1× 1 C 1 SAME
√

-

2 Experimental evaluation

2.1 Architectures

We first present the architectures we use in our experiments (Section 5 in our paper), and then we
provide more details about the design of individual modules. In Table 1, we provide the building
blocks of our architectures.

2.1.1 Models used on ImageNet

In Table 2, we provide the TNet architecture we use in our experiments on ImageNet [4] (Section 5.1
in our paper). BagNet-77 baseline corresponds to TNet’s feature extraction module followed by the
classification module.

BagNet-77 results from BagNet-77-lowD with 3 modifications. First, we replace "VALID" padding of
some convolutional layers with "SAME", to obtain less aggressive reduction of the spatial dimensions;
the base resolution of TNet is 77 × 77 px, instead of 224 × 224 px which is the input size of the
Saccader’s backbone. Second, we remove Batch Normalization due to technical issues in preliminary
experiments (Batch Norm was successfully used in later experiments with the other datasets). Third,
we use Leaky ReLU instead of ReLU activations, to allow non-zero gradients for negative inputs.

2.1.2 Models used on fMoW

In Table 3, we provide the TNet architecture we use in our experiments on fMoW [2] (Section 5.2 in
our paper). EfficientNet-B0 baseline corresponds to TNet’s feature extraction module followed by
the classification module.

2.1.3 Models used on CUB-200-2011 and NABirds

We get the feature extraction module of each TNet-Bi, i ∈ {0, 1, ..., 4}, by removing the last fully
connected layer of the corresponding EN-Bi model; this happens in Table 3 as well, where we get the
feature extraction module of TNet from EN-B0. The location and positional encoding modules are
implemented as in Table 3, with output channels scaled according to the feature extraction module in
use. For the location module, the attention grid is 5× 5, leading to an output of size 1× 25. Also, for
different TNet-Bi models, the input to the location module may vary in number of channels; more
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Table 2: TNet architecture used on ImageNet (Section 5.1 in our paper). BagNet-77 baseline
corresponds to the feature extraction module followed by the classification module. For simplicity,
we provide only the spatial dimensions (without the channel dimension) of the feature extraction
module’s output. The location module receives two inputs and combines them into a single input
feature map of size 5 × 5 × 1538 (see Section 2.1.4). The positional encoding module receives a
feature vector and a positional encoding vector, and concatenates them to an 1× 1024 input vector
(see Section 2.1.5).

Module Layer/Block Kernel #Output
Channels Stride Padding Activation Output Receptive

Type Size Size Field

Feature
Extraction

Input - - - - - 77× 77 -

Conv 3× 3 64 1 VALID Leaky ReLU 75× 75 3× 3

ConvBlock 3× 3 256 2 SAME - 38× 38 5× 5
ConvBlock 3× 3 256 1 SAME - 38× 38 9× 9
ConvBlock 1× 1 256 1 SAME - 38× 38 9× 9

ConvBlock 3× 3 512 2 SAME - 19× 19 13× 13
ConvBlock 3× 3 512 1 SAME - 19× 19 21× 21

ConvBlock (×2) 1× 1 512 1 SAME - 19× 19 21× 21

ConvBlock 3× 3 1024 2 VALID - 9× 9 29× 29
ConvBlock 3× 3 1024 1 SAME - 9× 9 45× 45

ConvBlock (×4) 1× 1 1024 1 SAME - 9× 9 45× 45

ConvBlock 3× 3 2048 1 VALID - 7× 7 61× 61
ConvBlock 3× 3 2048 1 SAME - 7× 7 77× 77
ConvBlock 1× 1 2048 1 SAME - 7× 7 77× 77

Conv 1× 1 512 1 SAME Leaky ReLU 7× 7 77× 77
GAP - 512 - - - 1× 1 -

Location

Input - - - - - 5× 5× 1024, -- 1× 1× 512

Conv 1× 1 512 1 SAME Leaky ReLU 5× 5× 512 -
Conv 1× 1 1 1 SAME - 5× 5× 1 -

L2 Normalization - 25 - - - 1× 25 -
Softmax - 25 - - - 1× 25 -

Positional
Encoding

Input - - - - - 1× 512, -- 1× 512

Fully Connected - 512 - - - 1× 512 -

Classification
Input - - - - - 1× 512 -

Fully Connected - 1000 - - - 1× 1000 -

details are provided in Section 2.1.4. The classification module is a linear layer, as in Table 3. The
number of output nodes is equal to the number of classes; 200 for CUB-200-2011 [24], and 555 for
NABirds [22].

In Table 4, we provide the feature weighting module of TNet-B0. The same design is followed for the
other TNet-Bi models as well, with output channels scaled according to different feature extraction
modules. The input to the feature weighting module is of variable size, as it depends on the number
of attended locations. More details are provided in Section 2.1.6.

2.1.4 Location module

In Tables 2 and 3, we provide two different implementations of the location module. In Table 2,
location module receives two inputs. The first one is a feature map of size 5 × 5 × 1024, which
originates from an intermediate layer of the feature extraction module. The spatial dimensions of the
feature map are equal to the dimensions of the candidate location grid. Each 1× 1× 1024 vector of
the feature map, describes the image region within the corresponding grid cell.

To achieve this, we aim for the receptive field of each pixel in the feature map to align with the image
region that it is supposed to describe. In the specific architecture of Table 2, we assume a 5× 5 grid
of overlapping cells, and an input to the feature extraction module of fixed size 77 × 77 px. Each
grid cell occupies 34.375% of the corresponding input dimension. Based on that, when the 5 × 5
grid is superimposed onto the 77× 77 px input, each cell is approximately of size 27× 27 px.

The layer of the feature extraction module with the closest receptive field size, is in the 8-th ConvBlock
with 29× 29 px. However, the effective receptive field size is usually smaller that the actual receptive
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Table 3: TNet architecture used on fMoW (Section 5.2 in our paper). EfficientNet-B0 baseline
corresponds to the feature extraction module followed by the classification module. For simplicity, we
provide only the spatial dimensions of the feature extraction module’s output. The location module
receives the downsampled output feature map of the 8-th MBConv block as input (receptive field of
147× 147 px). The positional encoding module receives a 1× 320 positional encoding vector that is
projected to 1× 1280, and then it is added to the second input of the module, which is a 1× 1280
feature vector.

Module Layer/Block Kernel #Output
Channels Stride Batch

Norm Activation Output Receptive
Type Size Size Field

Feature
Extraction

Input - - - - - 224× 224 -

Conv 3× 3 32 2
√

SiLU 112× 112 3× 3

MBConv1 3× 3 16 1 - - 112× 112 7× 7

MBConv6 3× 3 24 2 - - 56× 56 11× 11
MBConv6 3× 3 24 1 - - 56× 56 19× 19

MBConv6 5× 5 40 2 - - 28× 28 35× 35
MBConv6 5× 5 40 1 - - 28× 28 67× 67

MBConv6 3× 3 80 2 - - 14× 14 83× 83
MBConv6 3× 3 80 1 - - 14× 14 115× 147
MBConv6 3× 3 80 1 - - 14× 14 147× 115

MBConv6 5× 5 112 1 - - 14× 14 211× 211
MBConv6 (×2) 5× 5 112 1 - - 14× 14 339× 339

MBConv6 5× 5 192 2 - - 7× 7 403× 403
MBConv6 (×3) 5× 5 112 1 - - 7× 7 787× 787

MBConv6 3× 3 320 1 - - 7× 7 851× 851

Conv 1× 1 1280 1
√

SiLU 7× 7 851× 851
GAP - 1280 - - - 1× 1 -

Location

Input - - - - - 3× 3× 80 -

Conv 1× 1 80 1 - SiLU 3× 3× 80 -
SE-(80, 0.5) - 80 - - - 3× 3× 80 -

Conv 1× 1 80 1 - SiLU 3× 3× 80 -
Conv 1× 1 1 1 - - 3× 3× 1 -

L2 Normalization - 9 - - - 1× 9 -
Softmax - 9 - - - 1× 9 -

Positional
Encoding

Input - - - - - 1× 320 -

Fully Connected - 1280 - - - 1× 1280 -

Input - - - - - 1× 1280 -

Add - 1280 - - SiLU 1× 1280 -

Classification
Input - - - - - 1× 1280 -

Fully Connected - 62 - - - 1× 62 -

Table 4: The feature weighting module of TNet-B0 (Section 5.3 in our paper). The input consists of
the N feature vectors extracted while attending to a sequence of N − 1 locations; N − 1 vectors are
extracted from the attended locations, and a feature vector from the downscaled version of the whole
image (1st processing level). The module first calculates N weights that sum up to 1, and then, it
uses them to perform a weighted average of the N input feature vectors.

Module Layer/Block Kernel #Output
Channels Stride Padding Activation Output

Type Size Size

Feature
Weighting

Input - - - - - 1×N × 1280

SE-(1280, 0.25) - 1280 - - - 1×N × 1280
Conv 1× 1 1 1 SAME - 1×N × 1

Softmax - N - - - 1×N
Multiply - 1280 - - - 1× 1280

field size [14], as a result, we pick the output feature map of the 13-th ConvBlock with receptive field
45 × 45 px. The spatial dimensions of this feature map are 9 × 9, and we need to downsample it
to 5 × 5 px. To this end, we calculate the image level coordinates of the receptive field centers of
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the feature map pixels, and we pick the 25 of them with receptive fields that better align with the
assumed candidate image regions. Based on our previous remarks about the effective receptive field
size, we don’t consider perfect alignment to be crucial.

The second input to the location module provides contextual information, and it is the output feature
vector of the feature extraction module. This vector is of size 1 × 1 × 512, and we concatenate it
across the channel dimension at each spatial position of the input feature map, increasing its size to
5× 5× 1536.

We pass the combined feature map through two 1× 1 convolutional layers. The first one fuses the
features with the concatenated context. The second one projects each fused vector to a logit value,
which represents the relative importance of the corresponding candidate location.

We use the same weights to estimate the importance of each candidate location (1× 1 convolutions).
We don’t want to use different sets of weights (e.g., to have 25 output heads [21]), because this
doesn’t allow information learned in one location to transfer to other locations. Also, less attended
locations (e.g., corners) could lead to a partially trained model with erratic behavior.

The downside of 1×1 convolutions is that they disregard spatial information. To mitigate this problem,
we enrich the input tensor (the one of size 5× 5× 1536) with positional information according to
[27]. In particular, for each spatial location, we calculate horizontal and vertical coordinates in the
normalized range [−1, 1]. Then, we use 2 linear layers (one for each spatial dimension), to map
coordinates into a learned range. The resulting 2-dimensional vectors are concatenated across the
channel dimension, resulting to an input feature map of size 5× 5× 1538. This is the feature map
that we actually pass through the 1× 1 convolutional layers.

The estimated logits are reshaped to a 1× 25 vector, which is first normalized to have L2 norm equal
to 1, and then it is passed through a Softmax layer to get the final parameters of the Categorical
distribution. The L2 normalization aims to reduce the variance between logits, because we empirically
observe that logit values may be too negative, or very close to zero, leading Softmax outputs to be
exactly 0, and thus hindering the backpropagation of gradients.

The architecture of the location module in Table 3 is conceptually the same, but has some technical
differences. In particular, we provide only one input, the output feature map of the 8-th MBConv
block (selected and downsampled according to the process described before). This means that we
don’t provide the output vector of the feature extraction module as an additional input. The reason is
that its size of 1 × 1280 results in a parameter-heavy location module, which is antithetical to the
very light design of the feature extraction module.

To inject contextual information to the input feature map, we pass it through a squeeze-and-excitation
(SE) block [10]. Other than that, we follow the design principles described before. We use 1 × 1
convolutions, we augment the SE output feature map with 2-dimensional spatial coordinates’ vectors,
and we L2 normalize the logits.

In TNet-Bi models, location module is implemented as in Table 3 (see Section 2.1.3). However, the
input feature map may originate from different layers of the feature extraction module, to account for
receptive field differences between backbone networks. For TNet-B0, the location module receives
as input the output of the 6-th MBConv block, while for TNet-B1, TNet-B2 and TNet-B3, the input
comes from the 7-th MBConv block. Finally, for TNet-B4, the location module receives as input the
output of the 8-th MBConv block

2.1.5 Positional encoding module

In Tables 2 and 3, we provide two different implementations of the positional encoding module.
In both cases, the positional encoding module receives two inputs. The first one is the output
feature vector of the feature extraction module. The second input is a vector that encodes positional
information about the image region described by the first input. The encoded positional information
is 3-dimensional; the first 2 dimensions correspond to spatial coordinates, and the 3rd one to scale.

Given a processing level l, we assume that a grid is superimposed onto the input image, where its
cells correspond to all possible candidate locations of the level. In the example of Fig. 2 in our paper,
in the 1st processing level, the assumed grid consists of a single cell. In the second level (l = 2) the
gird is 2× 2, and for l = 3 the gird is 4× 4.
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The spatial coordinates of the grid cells start with (0, 0) in the top left corner, and increase linearly
with step 1 both horizontally and vertically. The scale coordinate is equal to l− 1. Based on this, each
candidate image region has a unique positional triplet (x, y, s), where x, y are the spatial coordinates
and s is the scale.

We use sine and cosine functions of different frequencies to encode positional triplets (x, y, s)
according to [23]. In particular, for positional encodings of size 1×N , we get:

Ps(p,~t) = sin(p ·
( 1

100

) ~t
bN/6c

),

Pc(p,~t) = cos(p ·
( 1

100

) ~t
bN/6c

),

p ∈ [x, y, s]

~t = [0, 1, 2, ...bN/6c]

The final positional encoding for triplet (x, y, s), results by concatenating Ps(x,~t), Pc(x,~t), Ps(y,~t),
Pc(y,~t), Ps(s,~t) and Pc(s,~t).

The main reason we use these positional encodings (instead of, e.g., learned positional embeddings
[5]), is that they can generalize to scales and spatial dimensions of arbitrary size. This is particularly
useful for our model, because it has the potential to extend its processing to an arbitrary number of
levels.

In Table 2, the positional encoding module concatenates its 2 input vectors, and fuses their information
through a linear layer. In Table 3, we implement the positional encoding module differently, because
we aim for a relatively smaller number of parameters. To this end, we use positional encodings of 4
times smaller dimensionality compared to the input feature vector (320 instead of 1280). In addition,
only the positional encoding is processed by a trainable linear layer. This linear projection brings the
positional encoding to the size of the feature vector, while it provides a learned component to the
process of encoding position. The projected positional encoding is simply added to the input feature
vector, and the outcome is passed through a non-linearity.

2.1.6 Feature weighting module

Given a sequence of N − 1 attended locations, TNet extracts a total number of N feature vectors;
N − 1 vectors from the attended locations, and a feature vector from the downscaled version of the
whole image (1st processing level). Feature weighting module estimates N weights that sum up to 1,
in order to perform a weighted average of the N feature vectors.

As we can see in Table 4, feature weighting module receives N feature vectors as input. Since the
number of attended locations varies, the input to the feature weighting module is of variable size
as well. In order to calculate the N weights, we first inject contextual information to the N feature
vectors through a squeeze-and-excitation block. Then, each of the resulting N vectors, is projected to
a logit value through a 1× 1 convolutional layer. The N logits are passed through a Softmax layer to
get the final weights. The weighted average is implemented via multiplication with the input feature
vectors.

2.2 Training

2.2.1 Training on ImageNet

To train TNet, we use a single sample (M = 1) for the Monte Carlo estimators, and we set λf = 0.1
(Eq. 6). We experimented with different M values, e.g., of 2 and 4, but we observed no significant
differences in performance. Since the value of M has a multiplicative effect on the batch size, which
leads to considerable increase in training time, we set M = 1 in all our experiments. The BagNet-77
baseline is trained by minimizing the cross-entropy classification loss.

For both models we use batches of 64 images, distributed in 4 GPUs. We use the Adam optimizer
with the default values of β1 = 0.9, β2 = 0.999 and ε = 10−8. We use xavier initialization [6] for the
weights, and zero initialization for the biases. For regularization purposes, we use data augmentation
that is very similar to the one used in [16]. In particular, given a training image, we get a random crop
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that covers at least 85% of the image area, while it has an aspect ratio between 0.5 and 2.0. Since we
provide inputs of fixed size to our networks (224× 224 px), we resize the image crops accordingly.
Resizing is performed by randomly selecting between 8 different methods, which include bilinear,
nearest neighbor, bicubic, and area interpolation. Also, we randomly flip the resized image crops
horizontally, and we apply photometric distortions [9]. The final image values are scaled in range
[−1, 1]. Finally, the dropout mentioned in Section 5.1 of our paper, is spatial [20].

Since per-feature regularization plays a crucial role in the performance of TNet, we experimented
with a variety of different values for λr and λc, including 0.1, 0.3, 0.5, 0.7 and 0.9, while λr and λc
were not always set to be equal. We conducted similar tuning for λf , observing that differences in its
value didn’t have the impact that those of λr and λc had. In the following Sections we report only
our final choices for the values of λr, λc and λf , which led to the best performance.

2.2.2 Training on fMoW

We first train TNet with inputs of size 448× 448 px, allowing 2 processing levels. We train for 40
epochs with batches of 64 images (on 4 GPUs), with initial learning rate of 0.001 that drops once
by a factor of 0.1. We use the Adam optimizer with its default parameter values, and we follow the
weight initialization of [17].

We attend to a fixed number of 2 locations. We use λf = 0.1 and per-feature regularization with
λc = λr = 0.2. We use a single sample for the Monte Carlo estimators.

We use dropout before the linear layer of the classification module with 0.5 drop probability. We use
stochastic depth [11] with drop probability that increases linearly to a maximum value of 0.3. We use
the data augmentation technique described in Section 2.2.1.

We fine-tune TNet for 10 epochs on images of 896 × 896 px, with a fixed number of 2 attended
location in the 2nd processing level, and 1 in the 3rd (4 in total). Compared to the previous step, we
increase the maximum drop probability of stochastic depth to 0.5, and we set λc = λr = 0.05.
Also, we only use features extracted until the 2nd processing level in per-feature regularization
(features extracted in the 3rd processing level are excluded).

We use different input images to train 4 EfficientNet-B0 baselines. For the first baseline we use
images cropped according to the bounding box annotations, and resized to 224 × 224 px. We train
for 65 epochs with batches of 64 images, on 4 GPUs. Our initial learning rate is 0.001, and it drops
once by a factor of 0.1. We use the Adam optimizer with its default parameter values, and we follow
the weight initialization of [17].

We use dropout before the final classification layer with 0.75 drop probability, and L2 regularization
with weight of 10−5. We use stochastic depth with drop probability that increases linearly to a
maximum value of 0.5. We use the data augmentation technique described in Section 2.2.1.

The second baseline is trained on the original images, resized to 224 × 224 px. The only difference
with the training of the previous baseline is that we train for 60 epochs.

The third baseline is trained on the original images resized to 448 × 448 px. We train for 30 epochs
with batches of 32 images. We reduce stochastic depth maximum drop probability to 0.3. All other
training hyperparameters remain the same.

The fourth baseline is trained on the original images resized to 896 × 896 px. We train for 30 epochs
with batches of 32 images. We set dropout drop probability to 0.3, and stochastic depth maximum
drop probability to 0.2. All other training hyperparameters remain the same.

2.2.3 Training on CUB-200-2011 and NABirds

CUB-200-2011 [24] and NABirds [22] are fine-grained classification datasets with images of different
bird species. Images from different classes may exhibit very high visual similarity, and as a result,
successful classification requires learning subtle discriminative features. To alleviate this problem,
we consider the contrastive loss term from [7]:

Lcon = λcon ·
1

N2

N∑
i

[ N∑
j:yi=yj

(
1− cos_sim(fi, fj)

)
+

N∑
j:yi 6=yj

max
(
cos_sim(fi.fj)− α, 0

)]
(9)
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where N is the batch size, xk is the k-th image in the batch, fk is a feature vector representing
xk, yk is the class label of xk, and cos_sim(·, ·) is a function that receives two vectors as input and
calculates their cosine similarity. α is a hyperparameter that constitutes a similarity threshold. λcon is
a hyperparameter that specifies the relative importance of Lcon within the total loss used for training.

The first term in Equation 9 is used to maximize the similarity between feature vectors that represent
images from the same class. The second term is used to not allow the similarity between feature
vectors that represent images from different class to exceed α.

For all models, we use pre-trained weights that are available in [19]. In particular, we use the weights
of EfficientNet models trained with NoisyStudent [25] and RandAugment [3] on ImageNet with extra
JFT-300M unlabeled data.

Training on CUB-200-2011. We train TNet-B0 on images of size 448× 448 px, for 200 epochs,
with batches of 64 images, on 4 NVIDIA Quadro RTX 8000 GPUs. The feature extraction module is
initialized with pre-trained weights, while for the rest of the modules we follow the random weight
initialization of [17]. For the weights of the feature extraction module we use a learning rate of 10−4,
while for the rest of the weights we use a learning rate of 10−3. Both learning rates drop once by a
factor of 0.1. We use the Adam optimizer with its default parameter values.

We attend to a fixed number of 5 locations, with processing extended to 2 levels. We use the learning
rule of Eq. 3 from our paper, with λf = 0.1, and λc = λr = 0.3. We use a single sample for the
Monte Carlo estimators.

We use dropout [15] before the linear layer of the classification module with 0.75 drop probability.
We use stochastic depth [11] with drop probability that increases linearly to a maximum value of
0.5. We use L2 regularization with weight of 10−4. We use contrastive loss with λcon = 100 and
α = 0.4.

For data augmentation, given a training image, we get a random crop that covers at least 85% of the
image area, while it has an aspect ratio between 0.5 and 2.0. We resize the image crop to 448× 448
px by randomly selecting between 8 different resizing methods. We randomly flip the resized image
crops horizontally. We don’t apply photometric distortions because color is a discriminative feature
for bird species. We perform random translation and rotation of the image. The final image values
are scaled in the range of [−1, 1].
We train TNet-B1, TNet-B2 and TNet-B3 by following the same training procedure we described for
TNet-B0. For TNet-B4, the only differences is that we train for fewer epochs, 125 instead of 200.

We train all EN-Bi, i ∈ {0, 2, ..., 4} baselines under the same training regime. We train on images
of size 448× 448 px, for 200 epochs, with batches of 64 images, on 4 NVIDIA Quadro RTX 8000
GPUs. We initialize all layers with pre-trained weights, except the last fully connected layer, which
size depends on the number of output classes. This last output layer is randomly initialized according
to [17].

For layers initialized with pre-trained weights, we use a learning rate of 5 · 10−5, while for the output
layer we use a learning rate of 10−3. Both learning rates drop once by a factor of 0.1. We use the
cross entropy loss, and we add a contrastive loss term with λcon = 100 and α = 0.4. We use Adam
optimizer with its default parameter values. We use the regularization and data augmentation methods
we described for the TNet-Bi models, with the same hyper-parameters as well.

Training on NABirds. We train all TNet-Bi, i ∈ {0, 2, ..., 4} models according to the procedure we
followed on CUB-200-2011, and we only change some hyperparameter values. In particular, we train
for 100 epochs, and we set λcon = 50 for the contrastive loss term. We train TNet-B0, TNet-B1 and
TNet-B2 with a fixed number of 5 attended locations, while we train TNet-B3 and TNet-B1 with 3
attended locations.

We train all EN-Bi, i ∈ {0, 2, ..., 4} models according to the procedure we followed on CUB-200-
2011. The only difference is that we train for 100 epochs, and we set λcon = 50 for the contrastive
loss term.

9



Table 5: Detailed results on CUB-200-2011 dataset [24] (Section 5.3 in our paper).

Model # Locs Top-1 Acc. Top-5 Acc. FLOPs (B) Params (M)

EfficientNet-B0 - 86.49% 96.82% 1.55 4.31
EfficientNet-B1 - 88.25% 97.55% 2.29 6.83
EfficientNet-B2 - 88.13% 97.34% 2.65 8.05
EfficientNet-B3 - 88.42% 97.38% 3.88 11.09
EfficientNet-B4 - 89.08% 97.26% 6.09 18.03

ResNet-50 - 84.5% - 16.35 23.99
API-Net [28] - 90.0% - - 29
TransFG [7] - 91.7% - - 86

TNet-B0

5 87.75% 97.27% 2.32

5.56

4 87.59% 97.26% 1.94
3 87.66% 97.26% 1.55
2 87.07% 97.17% 1.16
1 85.66% 96.5% 0.78
0 77.84% 93.5% 0.39

TNet-B1

5 88.33% 97.67% 3.44

8.07

4 88.18% 97.55% 2.86
3 88.35% 97.46% 2.29
2 87.56% 97.20% 1.72
1 85.93% 96.63% 1.15
0 79.72% 94.56% 0.57

TNet-B2

5 88.35% 97.60% 3.99

9.55

4 88.20% 97.48% 3.32
3 87.80% 97.27% 2.66
2 87.64% 97.20% 1.99
1 86.16% 96.81% 1.33
0 80.10% 94.46% 0.67

TNet-B3

5 89.35% 97.88% 5.84

12.87

4 89.02% 97.74% 4.86
3 89.1% 97.67% 3.89
2 88.44% 97.50% 2.92
1 87.18% 97.24% 1.95
0 81.64% 95.41% 0.97

TNet-B4

5 90.06% 98.29% 9.15

20.46

4 89.97% 98.21% 7.63
3 89.92% 98.1% 6.1
2 89.27% 98.02% 4.58
1 87.95% 97.39% 3.05
0 82.59% 95.88% 1.53

2.3 Metrics

We calculate the FLOPs of a convolutional layer in the following way:

NFLOPs = (Cin · k2) · (Hout ·Wout · Cout) (10)

where Cin is the number of channels in the input feature map, k × k are the spatial dimensions of the
convolutional kernel, Hout ×Wout is the spatial resolution of the output, and Cout is the number of
output channels. Each time the kernel is applied, we make Cin · k2 multiplications, and we apply the
kernel Hout ·Wout · Cout times (number of output pixels). For fully connected layers, simply holds
k = 1 and Hout = Wout = 1.

Equation 10 accounts only for multiplications. If we consider additions as well, the number of FLOPs
approximately doubles. We use Eq. 10 because it allows us to calculate FLOPs for our EfficientNet
baselines that are in accordance with the FLOPs reported in [17].

We time our models during inference by using 45 sets of 10 batches with 64 images in each batch. For
each model, we calculate the average value and the standard deviation among the 45 sets of batches.
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Table 6: Detailed results on NABirds dataset [22] (Section 5.3 in our paper).

Model # Locs Top-1 Acc. Top-5 Acc. FLOPs (B) Params (M)

EfficientNet-B0 - 84.97% 96.77% 1.55 4.76
EfficientNet-B1 - 86.55% 97.44% 2.29 7.29
EfficientNet-B2 - 86.79% 97.50% 2.65 8.55
EfficientNet-B3 - 87.63% 97.50% 3.88 11.63
EfficientNet-B4 - 87.87% 97.59% 6.09 18.67

API-Net [28] - 88.1% - - 29
TransFG [7] - 90.8% - - 86

TNet-B0

5 86.56% 97.78% 2.33

6.01

4 86.49% 97.72% 1.94
3 86.16% 97.57% 1.55
2 85.56% 97.22% 1.16
1 83.87% 96.45% 0.78
0 73.82% 91.95% 0.39

TNet-B1

5 87.85% 98.15% 3.44

8.52

4 87.63% 98.06% 2.86
3 87.20% 97.89% 2.29
2 86.39% 97.57% 1.72
1 84.65% 96.77% 1.15
0 76.99% 93.61% 0.57

TNet-B2

5 87.52% 97.92% 3.99

10.05

4 87.22% 97.81% 3.32
3 86.73% 97.56% 2.66
2 85.84% 97.15% 1.99
1 83.93% 96.35% 1.33
0 76.58% 93.15% 0.67

TNet-B3

5 88.33% 98.06% 5.84

13.42

4 88.26% 98.00% 4.87
3 87.98% 97.78% 3.89
2 87.47% 97.56% 2.92
1 86.01% 96.98% 1.95
0 78.78% 93.74% 0.97

TNet-B4

5 88.41% 98.04% 9.15

21.09

4 88.25% 97.95% 7.63
3 88.07% 97.76% 6.1
2 87.53% 97.48% 4.58
1 86.12% 96.82% 3.05
0 79.57% 93.61% 1.53

These are the time measurements reported in Tables 1 and 2 of our paper. We measure memory
requirements in batches of 64 images, by using the TensorFlow memory profiler. During profiling,
we disregard the first processing iterations, to avoid any computational and memory overhead that
stems from the creation of the TensorFlow graph. Finally, TensorFlow automatically calculates the
number of our models’ parameters.

2.4 Results

2.4.1 Results on fMoW

In Figure 1 we plot the main results from Table 2 in our paper.

2.4.2 Results on CUB-200-2011 and NABirds

We present our results on CUB-200-2011 [24] and NABirds [22] datasets in Tables 5 and 6 respec-
tively. API-Net [28] is using a DenseNet-161 backbone [12], and TransFG [7] is using a ViT-B/16 [5].
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Figure 1: Graphical representation of the main results on fMoW (Table 2 in our paper). Numeric
annotations correspond to the number of attended locations.

Table 7: Precision, recall, and image coverage, calculated on ImageNet and fMoW. We use bounding
boxes that are available for 544, 546 training images from ImageNet, and bounding boxes that are
available for all testing images of fMoW. Attended locations originate from the 2nd processing
level of TNet. Precision on ImageNet is high (small part of the background area is attended), and
recall is low (small part of the object of interest is attended); the opposite is observed on fMoW. We
attribute this behavior to the bigger size of objects of interest in ImageNet compared to fMoW, and to
the smaller attention grid cells that we use on ImageNet. Coverage does not increase linearly with
locations’ number, because of their overlap. Attending to≤ 25% of image area suffices to outperform
almost all baselines in Tables 1 and 2 of our paper.

Dataset # Locs Precision Recall Coverage Top-1 Acc.

ImageNet

1 75.52% 25.62% 11.71% 73.12%

2 72.9% 38.72% 19.65% 74.12%

3 70.22% 47.49% 26.35% 74.41%

4 67.66% 54.84% 32.46% 74.58%

5 65.3% 60.7% 38.21% 74.62%

fMoW 1 31.92% 86.51% 25.0% 70.17%

2 24.37% 90.06% 37.91% 71.46%

3 Attention policy and interpretability

3.1 Quantitative analysis

We quantify the localization capabilities of TNet, by using bounding box annotations that are available
for ImageNet and fMoW. In particular, given an image and a bounding box, we use the attended
image regions at the 2nd processing level, in order to compute precision and recall in the following
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way:

precision =
|Satt ∩ Sbbox|
|Satt|

, Satt 6= ∅ (11)

recall =
|Satt ∩ Sbbox|
|Sbbox|

, Sbbox 6= ∅ (12)

where Satt is the set of pixels that belong to image regions attended by the location module, Sbbox

is the set of pixels that belong to the bounding box of the object of interest, and |S| denotes the
cardinality of a set S. We assume Satt 6= ∅, and Sbbox 6= ∅, meaning that for every image, we
attend to at least 1 location, and we have a bounding box with area greater than 0. Both precision
and recall take values within [0, 1]. Precision measures the percentage of the attended regions’ area
that overlaps with the bounding box. When precision gets smaller, more background (image area
outside the bounding box) is attended. Recall measures the percentage of the bounding box area that
is attended. When recall gets smaller, a smaller part from the object of interest (image area inside the
bounding box) is attended.

In Table 7, we calculate precision and recall by using bounding boxes that are available for 544, 546
training images on ImageNet, and bounding boxes that are available for every image in the test set
of fMoW. Coverage corresponds to the percentage of the image area that is covered by attended
locations. Attended locations usually overlap, and as a result, coverage does not increase linearly
with the number of locations. The fact that we use images from the training set of ImageNet, could
potentially lead to biased results in Table 7. In an attempt to test this, we calculate coverage on the
validation set of ImageNet, since it doesn’t require bounding box annotations. We find that coverage
values are almost identical to the ones reported in Table 7.

We observe that precision on ImageNet is high (small part of the background area is attended), while
recall is low (small part of the object of interest is attended). This means that attended locations
mainly occupy a limited area within the bounding boxes of the objects of interest. The opposite is
observed in fMoW, with low precision, and high recall. We primarily attribute this difference in
behavior to two factors. First, bounding boxes from ImageNet are bigger on average compared to
those from fMoW. In particular, on average, a bounding box from ImageNet covers 46% of the image
area, while the same metric is 14% for bounding boxes from fMoW. Second, the attention grid cells
are smaller on ImageNet (1 location has coverage 11.71% on ImageNet, and 25% on fMoW), and as
a result, the attention policy can be more precise.

The fact that bounding boxes from fMoW have an image coverage of only 14%, can be used to explain
the drop in accuracy that is observed in Table 2 of our paper, when TNet extends processing from 4
to 6 locations. Since objects of interest are small and successfully located (high recall), attending to
more locations is expected to mostly add uninformative background clutter.

3.2 Qualitative examples

In Figure 2 we provide examples of the attention policy on the ImageNet validation set with 3
locations. In Figure 3 we provide examples of the attention policy on the fMoW test set with 2
locations at the 2nd processing level. In Figures 4 and 5 we provide attention policy examples on the
validation sets of CUB-200-2011 and NABirds respectively. In both cases, 3 location are attended,
and the weights estimated by the feature weighting module are provided as well.
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Figure 2: Attention policy examples with 3 locations on the ImageNet validation set. For every image,
the correct and predicted labels are provided.
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Figure 3: Attention policy examples with 2 locations (2nd processing level) on the fMoW test set.
For every image, the correct and predicted labels are provided.
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Figure 4: Examples from attention policy learned on CUB-200-2011. Numeric annotations cor-
respond to weights predicted by the feature weighting module, for the top 3 locations and the
downscaled version of the whole image (1st processing level). Weights sum up to 1. For every image,
the correct and predicted labels are provided.
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Figure 5: Examples from attention policy learned on NABirds. Numeric annotations correspond
to weights predicted by the feature weighting module, for the top 3 locations and the downscaled
version of the whole image (1st processing level). Weights sum up to 1. For every image, the correct
and predicted labels are provided.
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