A Proof of Proposition 2

Given $Y=\left(y_{1}, \ldots, y_{N}\right) \in\left(\mathbb{R}^{d}\right)^{N} \backslash \mathbb{D}_{N}$, one has for any $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
\int_{P_{i}(Y)}\left\|x-y_{i}\right\|^{2} \mathrm{~d} \rho(x) & =\int_{P_{i}(Y)}\left\|x-b_{i}(Y)+b_{i}(Y)-y_{i}\right\|^{2} \mathrm{~d} \rho(x) \\
& =\int_{P_{i}(Y)}\left\|x-b_{i}(Y)\right\|^{2} \mathrm{~d} \rho(x)+\frac{1}{N}\left\|b_{i}(Y)-y_{i}\right\|^{2}
\end{aligned}
$$

Summing these equalities over i and remarking that the map T_{Y} defined by $\left.T_{Y}\right|_{P_{i}(Y)}=y_{i}$ is an optimal transport map between ρ and δ_{Y}, we get

$$
\begin{aligned}
\frac{1}{N}\left\|B_{N}(Y)-Y\right\|^{2} & =\mathrm{W}_{2}^{2}\left(\rho, y_{i}\right)-\sum_{i} \int_{P_{i}(Y)}\left\|x-b_{i}(Y)\right\|^{2} \mathrm{~d} \rho(x) \\
& \leq \mathrm{W}_{2}^{2}\left(\rho, \delta_{Y}\right)-\mathrm{W}_{2}^{2}\left(\rho, \delta_{B_{N}(Y)}\right)
\end{aligned}
$$

Thus, with $Y^{k+1}=B_{N}\left(Y^{k}\right)$, we have

$$
N\left\|\nabla F_{N}\left(Y^{k}\right)\right\|^{2}=\frac{1}{N}\left\|Y^{k+1}-Y^{k}\right\|^{2} \leq 2\left(F_{N}\left(Y^{k}\right)-F_{N}\left(Y^{k+1}\right)\right)
$$

This implies that the values of $F_{N}\left(Y^{k}\right)$ are decreasing in k and, since they are bounded from below, that $\left\|\nabla F_{N}\left(Y^{k}\right)\right\| \rightarrow 0$ since $\sum_{k}\left\|\nabla F_{N}\left(Y^{k}\right)\right\|^{2}<+\infty$. The sequence $\left(Y^{k}\right)_{k}$ can be easily seen to be bounded, since $F_{N}\left(Y^{k}\right)$ is bounded, which implies a bound on the second moment of $\delta_{Y^{k}}$.
For fixed N, since all atoms of $\delta_{Y^{k}}$ have mass $1 / N$, this implies that all points y_{i}^{k} belong to a same fixed compact ball. If ρ itself is compactly supported, we can also prove that all points $Y^{k+1}=B_{N}\left(Y^{k}\right)$ are contained in a compact subset of $\left(\mathbb{R}^{d}\right)^{N} \backslash \mathbb{D}_{N}$, which means obtaining a lower bound on the distances $\left|b_{i}(Y)-b_{j}(Y)\right|$ for arbitrary Y. This lower bound can be obtained in the following way: since ρ is absolutely continuous it is uniformly integrable which means that for every $\varepsilon>0$ there is $\delta=\delta(\varepsilon)>0$ such that for any set A with Lebesgue measure $|A|<\delta$ we have $\rho(A)<\varepsilon$. We claim that we have $\left|b_{i}(Y)-b_{j}(Y)\right| \geq r:=(2 R)^{1-d} \delta\left(\frac{1}{2 N}\right)$, where R is such that ρ is supported in a ball B_{R} of radius R. Indeed, it is enough to prove that every barycenter $b_{i}(Y)$ is at distance at least $r / 2$ from each face of the convex polytope $P_{i}(Y)$. Consider a face of such a polytope and suppose, by simplicity, that it lies on the hyperplane $\left\{x_{d}=0\right\}$ with the cell contained in $\left\{x_{d} \geq 0\right\}$. Let s be such that $\rho\left(P_{i}(Y) \cap\left\{x_{d}>s\right\}\right)=\rho\left(P_{i}(Y) \cap\left\{x_{d}<s\right\}\right)=\frac{1}{2 N}$. Then since the diameter of $P_{i}(Y) \cap B_{R}$ is smaller than $2 R$, the Lebesgue measure of $P_{i}(Y) \cap\left\{x_{d}<s\right\}$ is bounded by $(2 R)^{d-1} s$, which provides $s \geq r$ because of the definition of r. Since at least half of the mass (according to ρ) of the cell $P_{i}(Y)$ is above the level $x_{d}=s$ the x_{d}-coordinate of the barycenter is at least $r / 2$. This shows that the barycenter lies at distance at least $r / 2$ from each of its faces.
As a consequence, the iterations Y^{k} of the Lloyd algorithm lie in a compact subset of $\left(\mathbb{R}^{d}\right)^{N} \backslash \mathbb{D}_{N}$, on which F_{N} is C^{1}. This implies that any limit point must be a critical point.

We do not discuss here whether the whole sequence converges or not, which seems to be a delicate matter even for fixed N. It is anyway possible to prove (but we do not develop the details here) that the set of limit points is a closed connected subet of $\left(\mathbb{R}^{d}\right)^{N}$ with empty interior, composed of critical points of F_{N} all lying on a same level set of F_{N}.

B Proof of Corollary 5

Given $Y=\left(y_{1}, \ldots, y_{N}\right) \in\left(\mathbb{R}^{d}\right)^{N}$, we denote

$$
I_{\varepsilon}(Y)=\left\{i \in\{1, \ldots, N\} \mid \forall j \neq i,\left\|y_{i}-y_{j}\right\| \geq \varepsilon\right\}, \quad \kappa_{\varepsilon}(Y)=\frac{1}{N} \operatorname{Card}\left(I_{\varepsilon}(Y)\right)
$$

We call points y_{i} such that $i \in I_{\varepsilon}(Y) \varepsilon$-isolated, and points y_{i} such that $i \notin I_{\varepsilon}(Y) \varepsilon$-connected. Thus, κ_{ε} gives the proportion of ε-isolated points in a cloud.
Lemma 1. Let X_{1}, \ldots, X_{N} be independent, \mathbb{R}^{d}-valued, random variables. Then, there is a constant $C_{d}>0$ such that

$$
\mathbb{P}\left(\left\{\left|\kappa_{\varepsilon}\left(X_{1}, \ldots, X_{N}\right)-\mathbb{E}\left(\kappa_{\varepsilon}\right)\right| \geq \eta\right\}\right) \leq \mathrm{e}^{-N \eta^{2} / C_{d}}
$$

Proof. This lemma is a consequence of McDiarmid's inequality. To apply this inequality, we need evaluate the amplitude of variation of the function κ_{ε} along changes of one of the points x_{i}. Denote c_{d} the maximum cardinal of a subset S of the ball $B(0, \varepsilon)$ such that the distance between any distinct points in S is at least ε. By a scaling argument, one can check that c_{d} does not, in fact, depend on ε. To evaluate

$$
\left|\kappa_{\varepsilon}\left(x_{1}, \ldots, x_{i}, \ldots, x_{N}\right)-\kappa_{\varepsilon}\left(x_{1}, \ldots, \tilde{x}_{i}, \ldots, x_{N}\right)\right|
$$

we first note that at most c_{d} points may become ε-isolated when removing x_{i}. To prove this, we remark that if a point x_{j} becomes ε-isolated when x_{i} is removed, this means that $\left\|x_{i}-x_{j}\right\| \leq \varepsilon$ and $\left\|x_{j}-x_{k}\right\|>\varepsilon$ for all $k \notin\{i, j\}$. The number of such j is bounded by c_{d}. Symmetrically, there may be at most c_{d} points becoming ε-connected under addition of \hat{x}_{i}. Finally, the point x_{i} itself may change status from ε-isolated to ε-connected. To summarize, we obtain that with $C_{d}=2 c_{d}+1$,

$$
\left|\kappa_{\varepsilon}\left(x_{1}, \ldots, x_{i}, \ldots, x_{N}\right)-\kappa_{\varepsilon}\left(x_{1}, \ldots, \tilde{x}_{i}, \ldots, x_{N}\right)\right| \leq \frac{1}{N} C_{d}
$$

The conclusion then directly follows from McDiarmid's inequality.
Lemma 2. Let $\sigma \in \mathrm{L}^{\infty}\left(\mathbb{R}^{d}\right)$ be a probability density and let X_{1}, \ldots, X_{N} be i.i.d. random variables with distribution σ. Then,

$$
\mathbb{E}\left(\kappa_{\varepsilon}\left(X_{1}, \ldots, X_{N}\right)\right) \geq\left(1-\|\sigma\|_{\mathrm{L}^{\infty}} \omega_{d} \varepsilon^{d}\right)^{N-1}
$$

Proof. The probability that a point X_{i} belongs to the ball $B\left(X_{j}, \varepsilon\right)$ for some $j \neq i$ can be bounded from above by $\sigma\left(B\left(X_{j}, \varepsilon\right)\right) \leq\|\sigma\|_{\mathrm{L}} \infty \omega_{d} \varepsilon^{d}$, where ω_{d} is the volume of the d-dimensional unit ball. Thus, the probability that X_{i} is ε-isolated is larger than

$$
\left(1-\|\sigma\|_{\mathrm{L}^{\infty}} \omega_{d} \varepsilon^{d}\right)^{N-1}
$$

We conclude by noting that

$$
\mathbb{E}\left(\kappa_{\varepsilon}\left(X_{1}, \ldots, X_{N}\right)\right)=\frac{1}{N} \sum_{1 \leq i \leq N} \mathbb{P}\left(X_{i} \text { is } \varepsilon \text {-isolated }\right) .
$$

Proof of Corollary [5] We apply the previous Lemma 2 with $\varepsilon_{N}=N^{-\frac{1}{\beta}}$ and $\beta=d-\frac{1}{2}$. The expectation of $\kappa_{\varepsilon_{N}}\left(X_{1}, \ldots, X_{N}\right)$ is lower bounded by:

$$
\begin{aligned}
\mathbb{E}\left(\kappa_{\varepsilon_{N}}\left(X_{1}, \ldots, X_{N}\right)\right) & \geq\left(1-N^{-\frac{d}{\beta}}\|\sigma\|_{\mathrm{L}^{\infty}} \omega_{d}\right)^{N-1} \\
& \geq 1-C N^{1-\frac{d}{\beta}}
\end{aligned}
$$

for large N, since $\beta<d$. By Lemma 1, for any $\eta>0$,

$$
\mathbb{P}\left(\kappa_{\varepsilon_{N}}\left(X_{1}, \ldots, X_{N}\right) \geq 1-C N^{1-\frac{d}{\beta}}-\eta\right) \geq 1-e^{-K N \eta^{2}},
$$

for constants $C, K>0$ depending only on $\|\sigma\|_{\mathrm{L}^{\infty}}$ and d. We choose $\eta=N^{-\frac{1}{2 d-1}}$, so that η is of the same order as $N^{1-\frac{d}{\beta}}$ since $1-\frac{d}{\beta}=-\frac{1}{2 d-1}$. Thus, for a slightly different C,

$$
\mathbb{P}\left(\kappa_{\varepsilon_{N}}\left(X_{1}, \ldots, X_{N}\right) \geq 1-C \eta\right) \geq 1-\mathrm{e}^{-K N \eta^{2}}
$$

Now, for $\omega_{1}, \ldots, \omega_{N}$ such that

$$
\kappa_{\varepsilon_{N}}\left(X_{1}\left(\omega_{1}\right), \ldots, X_{N}\left(\omega_{N}\right)\right) \geq 1-C \eta,
$$

Theorem 3 yields:

$$
W_{2}^{2}\left(\delta_{B_{N}(X(\omega))}, \rho\right) \lesssim \frac{N^{\frac{d-1}{\beta}}}{N}+\eta \lesssim N^{-\frac{1}{2 d-1}}
$$

and such a disposition happens with probability at least

$$
1-\mathrm{e}^{-K N \eta^{2}}=1-\mathrm{e}^{-K N^{\frac{2 d-3}{2 d-1}}}
$$

C Proof of Corollary 6

We first note that by Proposition 1, we have $\left\|\nabla F_{N}(Y)\right\|^{2}=\frac{1}{N^{2}}\left\|B_{N}(Y)-Y\right\|^{2}$. We then use $\mathrm{W}_{2}^{2}\left(\delta_{B_{N}(Y)}, \delta_{Y}\right) \leq \frac{1}{N}\left\|B_{N}(Y)-Y\right\|^{2}$ and

$$
\mathrm{W}_{2}^{2}\left(\rho, \delta_{Y}\right) \leq 2 \mathrm{~W}_{2}^{2}\left(\rho, \delta_{B_{N}(Y)}\right)+2 N\left\|\nabla F_{N}(Y)\right\|^{2}
$$

Thus, using Theorem 3 to bound $\mathrm{W}_{2}^{2}\left(\rho, \delta_{B_{N}(Y)}\right)$ from above, we get the desired result.

D Proof of Theorem 7

Lemma 3. Let $Y^{0} \in\left(\mathbb{R}^{d}\right)^{N} \backslash \mathbb{D}_{N, \varepsilon_{N}}$ for some $\varepsilon_{N}>0$. Then, the iterates $\left(Y^{k}\right)_{k \geq 0}$ of (13) satisfy for every $k \geq 0$, and for every $i \neq j$

$$
\begin{equation*}
\left\|y_{i}^{k}-y_{j}^{k}\right\| \geq\left(1-\tau_{N}\right)^{k} \varepsilon_{N} \tag{23}
\end{equation*}
$$

Proof. We consider the distance between two trajectories after k iterations: $e_{k}=\left\|y_{i}^{k}-y_{j}^{k}\right\|$. Assuming that $e_{k}>0$, the convexity of the norm immediately gives us:

$$
\begin{aligned}
e_{k+1}-e_{k} & \geq\left(\frac{y_{i}^{k}-y_{j}^{k}}{\left\|y_{i}^{k}-y_{j}^{k}\right\|}\right) \cdot\left(y_{i}^{k+1}-y_{j}^{k+1}-\left(y_{i}^{k}-y_{j}^{k}\right)\right) \\
& =\tau_{N}\left(\frac{y_{i}^{k}-y_{j}^{k}}{\left\|y_{i}^{k}-y_{j}^{k}\right\|}\right) \cdot\left(b_{i}^{k}-b_{j}^{k}\right)-\tau_{N}\left\|y_{i}^{k}-y_{j}^{k}\right\|
\end{aligned}
$$

where we denoted $b_{i}^{k}:=b_{i}\left(Y_{N}^{k}\right)$ the barycenter of the i th Power cell $P_{i}\left(Y_{N}^{k}\right)$ in the tesselation associated with the point cloud Y_{N}^{k}. Since each barycenter b_{i}^{k} lies in its corresponding Power cell, the scalar product $\left(y_{i}^{k}-y_{j}^{k}\right) \cdot\left(b_{i}^{k}-b_{j}^{k}\right)$ is non-negative: Indeed, for any $i \neq j$,

$$
\left\|y_{i}^{k}-b_{i}^{k}\right\|^{2}-\left\|y_{j}^{k}-b_{i}^{k}\right\|^{2} \leq \phi_{i}^{k}-\phi_{j}^{k}
$$

Summing this inequality with the same inequality with the roles of i and j reversed, we obtain:

$$
\left(y_{i}^{k}-y_{j}^{k}\right) \cdot\left(b_{i}^{k}-b_{j}^{k}\right) \geq 0
$$

thus giving us the geometric inequality $e_{k+1} \geq\left(1-\tau_{N}\right) e_{k}$. Since Y_{N}^{0} was chosen in $\Omega^{N} \backslash \mathbb{D}_{N, \varepsilon_{N}}$, this yields $e_{k} \geq\left(1-\tau_{N}\right)^{k} e_{0}$ and inequality 23

Lemma 4. For any $k \geq 0$

$$
\begin{equation*}
F_{N}\left(Y_{N}^{k}\right) \leq F_{N}\left(Y_{N}^{0}\right) \eta_{N}^{k}+2 C_{d, \Omega}\left(1-\eta_{N}\right) \frac{\varepsilon_{N}^{1-d}}{N} \frac{A_{N}^{k}-\eta_{N}^{k}}{A_{N}-\eta_{N}} \tag{24}
\end{equation*}
$$

where we denote $\eta_{N}=1-\frac{\tau_{N}}{2}\left(2-\tau_{N}\right)$ and $A_{N}=\left(1-\tau_{N}\right)^{1-d}$.
Proof. This is obtained in a very similar fashion as Lemma3 For any $k \geq 0$, the semi-concavity of F_{N} yields the inequality:

$$
F_{N}\left(Y_{N}^{k+1}\right)-\frac{\left\|Y_{N}^{k+1}\right\|^{2}}{2 N}-\left(F_{N}\left(Y_{N}^{k}\right)-\frac{\left\|Y_{N}^{k}\right\|^{2}}{2 N}\right) \leq\left(-\frac{\mathrm{B}_{N}^{k}}{N}\right) \cdot\left(Y_{N}^{k+1}-Y_{N}^{k}\right)
$$

with $B_{N}^{k}:=B_{N}\left(Y_{N}^{k}\right)$ in accordance with the previous proof.
Rearranging the terms,

$$
\begin{aligned}
F_{N}\left(Y_{N}^{k+1}\right)-F_{N}\left(Y_{N}^{k}\right) & \leq-\tau_{N}\left(1-\frac{\tau_{N}}{2}\right) \frac{\left\|B_{N}^{k}-Y_{N}^{k}\right\|^{2}}{N} \\
& =-\tau_{N}\left(1-\frac{\tau_{N}}{2}\right) \mathrm{W}_{2}^{2}\left(\delta_{B_{N}^{k}}, \delta_{Y_{N}^{k}}\right) \\
& \leq \tau_{N}\left(1-\frac{\tau_{N}}{2}\right)\left(-\frac{1}{2} \mathrm{~W}_{2}^{2}\left(\delta_{Y_{N}^{k}}, \rho\right)+\mathrm{W}_{2}^{2}\left(\rho, \delta_{B_{N}^{k}}\right)\right)
\end{aligned}
$$

by applying first the triangle inequality to $\mathrm{W}_{2}\left(\delta_{B_{N}^{k}}, \delta_{Y_{N}^{k}}\right)$ and then Cauchy-Schwartz's inequality. Using Theorem 3 , this yields:

$$
\begin{aligned}
F_{N}\left(Y_{N}^{k+1}\right) & \leq\left(1-\frac{\tau_{N}}{2}\left(2-\tau_{N}\right)\right) F_{N}\left(Y_{N}^{k}\right)+2 C_{d, \Omega} \tau_{N}\left(2-\tau_{N}\right) \frac{\varepsilon_{N}^{1-d}}{N}\left(1-\tau_{N}\right)^{k(1-d)} \\
& \leq \eta_{N} F_{N}\left(Y_{N}^{k}\right)+2 C_{d, \Omega}\left(1-\eta_{N}\right) \frac{\varepsilon_{N}^{1-d}}{N} A_{N}^{k} .
\end{aligned}
$$

and we simply iterate on k to end up with the bound claimed in Lemma 4
Proof of Theorem 7. To conclude, we simply make (order 1) expansions of the terms in 24 The definition of k_{N} in Theorem 7 , although convoluted, was made so that both terms in the right-hand side of this inequality, $F_{N}\left(Y_{N}^{0}\right) \eta_{N}^{k_{N}}$ and $\left(1-\eta_{N}\right) \frac{\varepsilon_{N}^{1-d}}{N} \frac{A_{N}^{k_{N}}-\eta_{N}^{k_{N}}}{A_{N}-\eta_{N}}$ have the same asymptotic decay to 0 (as $N \rightarrow+\infty$): With the notations of the previous proposition, we have for fixed N :

$$
\begin{equation*}
\mathrm{W}_{2}^{2}\left(\rho, \delta_{Y_{N}^{k_{N}}}\right) \leq \mathrm{W}_{2}^{2}\left(\rho, \delta_{Y_{N}^{0}}\right) \eta_{N}^{k_{N}}+2 C_{d, \Omega} \frac{\left(1-\eta_{N}\right)}{A_{N}-\eta_{N}} \frac{A_{N}^{k_{N}}-\eta_{N}^{k_{N}}}{N \varepsilon_{N}^{d-1}} \tag{25}
\end{equation*}
$$

We make use here of the notation from Section 3

$$
T_{N}=k_{N} \tau_{N}=\left\lfloor\frac{1}{d} \ln \left(F_{N}\left(Y_{N}^{0}\right) N \varepsilon_{N}^{d-1}\right)\right\rfloor
$$

to clear this expression a bit, and, because of the assumption $\lim _{N \rightarrow \infty} \tau_{N}=0$, we may write:

$$
\frac{A_{N}^{k_{N}}-\eta^{k_{N}}}{N \varepsilon_{N}^{d-1}}=\frac{\mathrm{e}^{(d-1) T_{N}}}{N \varepsilon_{N}^{d-1}}+o_{N \rightarrow \infty}\left(\frac{T_{N}}{\left(N \varepsilon_{N}^{d-1}\right)^{\frac{1}{d}}}\right)
$$

as well as $\eta^{k_{N}}=\mathrm{e}^{-T_{N}}+o_{N \rightarrow \infty}\left(\frac{T_{N}}{\left(N \varepsilon_{N}^{d-1}\right)^{\frac{1}{d}}}\right)$, and substituting T_{N},

$$
\begin{aligned}
\mathrm{W}_{2}^{2}\left(\rho, \delta_{Y_{N} k_{N}}\right) & \lesssim \frac{\mathrm{W}_{2}^{2}\left(\rho, \delta_{Y_{N}^{0}}\right)^{\frac{d-1}{d}}}{\left(N \varepsilon_{N}^{d-1}\right)^{\frac{1}{d}}}+o_{N \rightarrow \infty}\left(\frac{T_{N}}{\left(N \varepsilon_{N}^{d-1}\right)^{\frac{1}{d}}}\right) \\
& \lesssim \mathrm{W}_{2}^{2}\left(\rho, \delta_{Y_{N}^{0}}\right)^{1-\frac{1}{d}} N^{\frac{-1}{d^{2}}+\alpha\left(1-\frac{1}{d}\right)}
\end{aligned}
$$

E Case of a low variance Gaussian in Section 4

Here, we consider ρ_{σ} the probability measure obtained by truncating and renormalizing a centered normal distribution with variance σ to the segment $[-1,1]$. We first show that for any $N \in \mathbb{N}$ and $\delta \in(0,1)$, we can find a small $\sigma_{N, \delta}$ such that the Wasserstein distance beween $\rho_{\sigma_{N, \delta}}$ and its best N-points approximation of is at least $C N^{-(2-\delta)}$.
Proposition 8. For any $\sigma>0$, consider $\rho_{\sigma} \stackrel{\text { def }}{=} m_{\sigma} \mathrm{e}^{-\frac{|x|^{2}}{2 \sigma^{2}}} \mathbb{1}_{[-1 ; 1]} d x$ the truncated centered Gaussian density, where m_{σ} is taken so that ρ_{σ} has unit mass. Then, for every $\delta \in(0,1)$, there exists a constant $C>0$ and a sequence of variances $\left(\sigma_{N}\right)_{N \in \mathbb{N}}$ such that

$$
\forall Y \in\left(\mathbb{R}^{d}\right)^{N} \backslash \mathbb{D}_{N}, \quad \mathrm{~W}_{2}^{2}\left(\delta_{B_{N}(Y)}, \rho_{\sigma_{N}}\right) \geq C N^{-(2-\delta)}
$$

From the proof, one can see that the dependence of σ_{N} on N is logarithmic.
Proof. We denote $g: x \in \mathbb{R} \mapsto \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{|x|^{2}}{2}}$ the density of the centered Gaussian distribution and F_{g} its cumulative distribution function, so that

$$
\begin{equation*}
m_{\sigma}^{-1}=\int_{-1}^{1} \mathrm{e}^{-\frac{|x|^{2}}{2 \sigma^{2}}} d x=\sigma \sqrt{2 \pi} \int_{-1 / \sigma}^{1 / \sigma} g(y) d y=\sqrt{2 \pi} \sigma\left(F_{g}(1 / \sigma)-F_{g}(-1 / \sigma)\right) \tag{26}
\end{equation*}
$$

Note that, whenever $\sigma \rightarrow 0$, we have $\left(\sigma m_{\sigma}\right)^{-1} \rightarrow \sqrt{2 \pi}$. We denote by $F_{\sigma}:[-1,1] \rightarrow[0,1]$ the cumulative distribution function of ρ_{σ}. Given any point cloud $Y=\left(y_{1}, \ldots, y_{N}\right)$ such that $y_{1} \leq \ldots \leq y_{N}$, the Power cells $P_{i}(Y)$ is simply the segment

$$
P_{i}(Y)=\left[F_{\sigma}^{-1}(i / N), F_{\sigma}^{-1}((i+1) / N)\right]
$$

Since these segments do not depend on Y, we will denote them $\left(P_{i}\right)_{1 \leq i \leq N}$. Finally, defining $b_{i}=N \int_{P_{i}} x \mathrm{~d} \rho_{\sigma}(x)$ as the barycenter of the i th power cell and $\delta_{B}=\frac{1}{N} \sum_{i} \bar{\delta}_{b_{i}}$, we have

$$
\begin{align*}
\mathrm{W}_{2}^{2}\left(\delta_{B}, \rho_{\sigma}\right) & =\sum_{i=1}^{N} \int_{P_{i}}\left(x-b_{i}\right)^{2} \mathrm{~d} \rho_{\sigma}(x) \\
& \geq \rho_{\sigma}(-1) \sum_{i=1}^{N} \int_{P_{i}}\left(x-b_{i}\right)^{2} \mathrm{~d} x \tag{27}\\
& \geq C \rho_{\sigma}(-1) \sum_{i=1}^{N}\left(F_{\sigma}^{-1}((i+1) / N)-F_{\sigma}^{-1}(i / N)\right)^{3}
\end{align*}
$$

where we used that ρ_{σ} attains its minimum at ± 1 to get the first inequality. We now wish to provide an approximation for $F_{\sigma}^{-1}(t), t \in[0,1]$. We first note, using Taylor's formula, that we have

$$
\begin{aligned}
F_{\sigma}^{-1}(t) & =\sigma F_{g}^{-1}\left(F_{g}\left(\frac{-1}{\sigma}\right)+t\left[F_{g}\left(\frac{1}{\sigma}\right)-F_{g}\left(\frac{-1}{\sigma}\right)\right]\right) \\
& =\sigma F_{g}^{-1}\left(F_{g}\left(\frac{-1}{\sigma}\right)+\frac{t}{\sqrt{2 \pi} \sigma m_{\sigma}}\right) \\
& =-1+\sigma\left(F_{g}^{-1}\right)^{\prime}\left(F_{g}\left(\frac{-1}{\sigma}\right)\right) \frac{t}{\sqrt{2 \pi} \sigma m_{\sigma}}+\frac{\sigma}{2}\left(F_{g}^{-1}\right)^{\prime \prime}(s) \frac{t^{2}}{2 \pi \sigma^{2} m_{\sigma}^{2}}
\end{aligned}
$$

for some $s \in\left[F_{g}\left(-\frac{1}{\sigma}\right), F_{g}\left(-\frac{1}{\sigma}\right)+t\left(F_{g}\left(\frac{1}{\sigma}\right)-F_{g}\left(-\frac{1}{\sigma}\right)\right)\right]$. But,

$$
\begin{gathered}
\left(F_{g}^{-1}\right)^{\prime}(t)=\frac{1}{g \circ F_{g}^{-1}(t)}=\sqrt{2 \pi} \mathrm{e}^{\frac{\left|F_{g}^{-1}(t)\right|^{2}}{2}} \\
\left(F_{g}^{-1}\right)^{\prime \prime}(t)=-\frac{g^{\prime} \circ F_{g}^{-1}(t)}{\left(g \circ F_{g}^{-1}(t)\right)^{3}}=2 \pi F_{g}^{-1}(t) \mathrm{e}^{\left|F_{g}^{-1}(t)\right|^{2}}
\end{gathered}
$$

and we see that

$$
\left|F_{\sigma}^{-1}(t)-\left(-1+\frac{t}{m_{\sigma}} \mathrm{e}^{\frac{1}{2 \sigma^{2}}}\right)\right| \leq \mathrm{e}^{\frac{1}{\sigma^{2}}} \frac{t^{2}}{2 \sigma^{2} m_{\sigma}^{2}}
$$

Therefore, if we denote $\varepsilon(\sigma, t)$ the second-order error in the above formula, i.e. $\varepsilon(\sigma, t)=\mathrm{e}^{\frac{1}{\sigma^{2}}} \frac{t^{2}}{2 \sigma^{2} m_{\sigma}^{2}}$, the size of the first Power cell $P_{0}(Y)$ is of order:

$$
F_{\sigma}^{-1}(1 / N)-F_{\sigma}^{-1}(0)=\frac{1}{N m_{\sigma}} \mathrm{e}^{\frac{1}{2 \sigma^{2}}}+O\left(\varepsilon\left(\sigma, \frac{1}{N}\right)\right)
$$

We will choose σ_{N} depending on N in order for the first term in the left-hand side to dominate the second one:

$$
\begin{equation*}
\varepsilon\left(\sigma_{N}, \frac{1}{N}\right)=o\left(\frac{1}{N m_{\sigma}} \mathrm{e}^{\frac{1}{2 \sigma^{2}}}\right) \tag{28}
\end{equation*}
$$

In this way, we have

$$
\begin{align*}
\left(F_{\sigma}^{-1}(1 / N)-F_{\sigma}^{-1}(0)\right)^{3} \rho_{\sigma}(-1) & \geq c \frac{1}{N^{3} m_{\sigma}^{3}} \mathrm{e}^{\frac{3}{2 \sigma^{2}}} m_{\sigma} \mathrm{e}^{-\frac{1}{2 \sigma^{2}}} \tag{29}\\
& =c \frac{1}{N^{3} m_{\sigma}^{2}} \mathrm{e}^{\frac{1}{\sigma^{2}}}
\end{align*}
$$

We now choose $\sigma=\sigma_{N}$ such that $\mathrm{e}^{\frac{1}{2 \sigma^{2}}}=N^{\alpha}$ for an exponent α to be chosen. We need $\alpha>0$ so that $\sigma_{N} \rightarrow 0$. This last condition and (26) implies that $m_{\sigma_{N}}$ is of order $\sqrt{\log N}$. This means that the condition 28 is satisfied if $\alpha<1$ and N large enough.

The sum in 27) is lower bounded by its first term, 29, and we get

$$
\mathrm{W}_{2}^{2}\left(\delta_{B}, \rho_{\sigma}\right) \geq c \frac{1}{N^{3} m_{\sigma_{N}}^{2}} \mathrm{e}^{\frac{1}{\sigma_{N}^{2}}} \geq C\left(\frac{N^{2 \alpha-3}}{\ln (N)}\right)
$$

for some constant $C>0$, since σ depends logarithmically on N. Finally, if we want this last expression to be larger than $N^{-(2-\delta)}$ we can take for instance $2 \alpha>1+\delta$ and N large enough.

The following corollary, whose proof can just be obtained by adapting the above proof to a simple multi-dimensional setting where measures and cells "factorize" according to the components, confirms the facts observed in the numerical section (Section 4), and the sharpness of our result (Remark 4).
Corollary 9. Fix $\delta \in(0,1)$. Given any $n \in \mathbb{N}$, consider an axis-aligned discrete grid of the form $Z_{N}=Y_{1} \times \ldots \times Y_{d}$ in \mathbb{R}^{d}, with $N=\operatorname{Card}\left(Z_{N}\right)=n^{d}$, where each Y_{j} is a subset of \mathbb{R} with cardinal n. Finally, define $\sigma_{N}:=\sigma_{n, \delta}$ as in Proposition 8 Then we have

$$
\mathrm{W}_{2}^{2}\left(\delta_{B_{N}\left(Z_{N}\right)}, \rho_{\sigma_{N}} \otimes \cdots \otimes \rho_{\sigma_{N}}\right) \geq C N^{-\frac{(2-\delta)}{d}}
$$

where the constant C is independent of N.

