
A Proof of Proposition 2

Given Y = (y1, . . . , yN ) ∈ (Rd)N \ DN , one has for any i ∈ {1, . . . , N},∫
Pi(Y )

∥x− yi∥2 dρ(x) =
∫
Pi(Y )

∥x− bi(Y ) + bi(Y )− yi∥2 dρ(x)

=

∫
Pi(Y )

∥x− bi(Y )∥2 dρ(x) + 1

N
∥bi(Y )− yi∥2.

Summing these equalities over i and remarking that the map TY defined by TY |Pi(Y ) = yi is an
optimal transport map between ρ and δY , we get

1

N
∥BN (Y )− Y ∥2 = W2

2(ρ, yi)−
∑
i

∫
Pi(Y )

∥x− bi(Y )∥2 dρ(x)

≤ W2
2(ρ, δY )−W2

2(ρ, δBN (Y )).

Thus, with Y k+1 = BN (Y k), we have

N∥∇FN (Y k)∥2 =
1

N
∥Y k+1 − Y k∥2 ≤ 2(FN (Y k)− FN (Y k+1)).

This implies that the values of FN (Y k) are decreasing in k and, since they are bounded from below,
that ∥∇FN (Y k)∥ → 0 since

∑
k ∥∇FN (Y k)∥2 < +∞. The sequence (Y k)k can be easily seen to

be bounded, since FN (Y k) is bounded, which implies a bound on the second moment of δY k .

For fixed N , since all atoms of δY k have mass 1/N , this implies that all points yki belong to a
same fixed compact ball. If ρ itself is compactly supported, we can also prove that all points
Y k+1 = BN (Y k) are contained in a compact subset of (Rd)N \DN , which means obtaining a lower
bound on the distances |bi(Y ) − bj(Y )| for arbitrary Y . This lower bound can be obtained in the
following way: since ρ is absolutely continuous it is uniformly integrable which means that for
every ε > 0 there is δ = δ(ε) > 0 such that for any set A with Lebesgue measure |A| < δ we have
ρ(A) < ε. We claim that we have |bi(Y ) − bj(Y )| ≥ r := (2R)1−dδ( 1

2N ), where R is such that
ρ is supported in a ball BR of radius R. Indeed, it is enough to prove that every barycenter bi(Y )
is at distance at least r/2 from each face of the convex polytope Pi(Y ). Consider a face of such a
polytope and suppose, by simplicity, that it lies on the hyperplane {xd = 0} with the cell contained in
{xd ≥ 0}. Let s be such that ρ(Pi(Y ) ∩ {xd > s}) = ρ(Pi(Y ) ∩ {xd < s}) = 1

2N . Then since the
diameter of Pi(Y ) ∩BR is smaller than 2R, the Lebesgue measure of Pi(Y ) ∩ {xd < s} is bounded
by (2R)d−1s, which provides s ≥ r because of the definition of r. Since at least half of the mass
(according to ρ) of the cell Pi(Y ) is above the level xd = s the xd-coordinate of the barycenter is at
least r/2. This shows that the barycenter lies at distance at least r/2 from each of its faces.

As a consequence, the iterations Y k of the Lloyd algorithm lie in a compact subset of (Rd)N \ DN ,
on which FN is C1. This implies that any limit point must be a critical point.

We do not discuss here whether the whole sequence converges or not, which seems to be a delicate
matter even for fixed N . It is anyway possible to prove (but we do not develop the details here) that
the set of limit points is a closed connected subet of (Rd)N with empty interior, composed of critical
points of FN all lying on a same level set of FN .

B Proof of Corollary 5

Given Y = (y1, . . . , yN ) ∈ (Rd)N , we denote

Iε(Y ) = {i ∈ {1, . . . , N} | ∀j ̸= i, ∥yi − yj∥ ≥ ε}, κε(Y ) =
1

N
Card(Iε(Y )).

We call points yi such that i ∈ Iε(Y ) ε-isolated, and points yi such that i ̸∈ Iε(Y ) ε-connected. Thus,
κε gives the proportion of ε-isolated points in a cloud.
Lemma 1. Let X1, . . . , XN be independent, Rd-valued, random variables. Then, there is a constant
Cd > 0 such that

P({|κε(X1, . . . , XN )− E(κε)| ≥ η}) ≤ e−Nη2/Cd .
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Proof. This lemma is a consequence of McDiarmid’s inequality. To apply this inequality, we need
evaluate the amplitude of variation of the function κε along changes of one of the points xi. Denote
cd the maximum cardinal of a subset S of the ball B(0, ε) such that the distance between any distinct
points in S is at least ε. By a scaling argument, one can check that cd does not, in fact, depend on ε.
To evaluate

|κε(x1, . . . , xi, . . . , xN )− κε(x1, . . . , x̃i, . . . , xN )| ,
we first note that at most cd points may become ε-isolated when removing xi. To prove this, we
remark that if a point xj becomes ε-isolated when xi is removed, this means that ∥xi − xj∥ ≤ ε and
∥xj − xk∥ > ε for all k ̸∈ {i, j}. The number of such j is bounded by cd. Symmetrically, there
may be at most cd points becoming ε-connected under addition of x̂i. Finally, the point xi itself may
change status from ε-isolated to ε-connected. To summarize, we obtain that with Cd = 2cd + 1,

|κε(x1, . . . , xi, . . . , xN )− κε(x1, . . . , x̃i, . . . , xN )| ≤ 1

N
Cd.

The conclusion then directly follows from McDiarmid’s inequality.

Lemma 2. Let σ ∈ L∞(Rd) be a probability density and let X1, . . . , XN be i.i.d. random variables
with distribution σ. Then,

E(κε(X1, . . . , XN )) ≥ (1− ∥σ∥L∞ωdε
d)N−1.

Proof. The probability that a point Xi belongs to the ball B(Xj , ε) for some j ̸= i can be bounded
from above by σ(B(Xj , ε)) ≤ ∥σ∥L∞ωdε

d, where ωd is the volume of the d-dimensional unit ball.
Thus, the probability that Xi is ε-isolated is larger than

(1− ∥σ∥L∞ωdε
d)N−1.

We conclude by noting that

E(κε(X1, . . . , XN )) =
1

N

∑
1≤i≤N

P(Xi is ε-isolated).

Proof of Corollary 5. We apply the previous Lemma 2 with εN = N− 1
β and β = d − 1

2 . The
expectation of κεN (X1, . . . , XN ) is lower bounded by:

E(κεN (X1, . . . , XN )) ≥
(
1−N− d

β ∥σ∥L∞ωd

)N−1

≥1− CN1− d
β

for large N , since β < d. By Lemma 1, for any η > 0,

P(κεN (X1, . . . , XN ) ≥ 1− CN1− d
β − η) ≥ 1− e−KNη2

,

for constants C,K > 0 depending only on ∥σ∥L∞ and d. We choose η = N− 1
2d−1 , so that η is of

the same order as N1− d
β since 1− d

β = − 1
2d−1 .Thus, for a slightly different C,

P(κεN (X1, . . . , XN ) ≥ 1− Cη) ≥ 1− e−KNη2

.

Now, for ω1, . . . , ωN such that

κεN (X1(ω1), . . . , XN (ωN )) ≥ 1− Cη,

Theorem 3 yields:

W 2
2

(
δBN (X(ω)), ρ

)
≲

N
d−1
β

N
+ η ≲ N− 1

2d−1

and such a disposition happens with probability at least

1− e−KNη2

= 1− e−KN
2d−3
2d−1

.
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C Proof of Corollary 6

We first note that by Proposition 1, we have ∥∇FN (Y )∥2 = 1
N2 ∥BN (Y )− Y ∥2. We then use

W2
2(δBN (Y ), δY ) ≤ 1

N ∥BN (Y )− Y ∥2 and

W2
2(ρ, δY ) ≤ 2W2

2(ρ, δBN (Y )) + 2N∥∇FN (Y )∥2.

Thus, using Theorem 3 to bound W2
2(ρ, δBN (Y )) from above, we get the desired result.

D Proof of Theorem 7

Lemma 3. Let Y 0 ∈ (Rd)N \ DN,εN for some εN > 0. Then, the iterates (Y k)k≥0 of (13) satisfy
for every k ≥ 0, and for every i ̸= j∥∥yki − ykj

∥∥ ≥ (1− τN )kεN (23)

Proof. We consider the distance between two trajectories after k iterations: ek =
∥∥yki − ykj

∥∥ .
Assuming that ek > 0, the convexity of the norm immediately gives us:

ek+1 − ek ≥

(
yki − ykj∥∥yki − ykj

∥∥
)

·
(
yk+1
i − yk+1

j −
(
yki − ykj

))
=τN

(
yki − ykj∥∥yki − ykj

∥∥
)

·
(
bki − bkj

)
− τN

∥∥yki − ykj
∥∥

where we denoted bki := bi(Y
k
N ) the barycenter of the ith Power cell Pi(Y

k
N ) in the tesselation

associated with the point cloud Y k
N . Since each barycenter bki lies in its corresponding Power cell, the

scalar product
(
yki − ykj

)
·
(
bki − bkj

)
is non-negative: Indeed, for any i ̸= j,∥∥yki − bki
∥∥2 − ∥∥ykj − bki

∥∥2 ≤ ϕk
i − ϕk

j

Summing this inequality with the same inequality with the roles of i and j reversed, we obtain:(
yki − ykj

)
·
(
bki − bkj

)
≥ 0

thus giving us the geometric inequality ek+1 ≥ (1− τN )ek. Since Y 0
N was chosen in ΩN \ DN,εN ,

this yields ek ≥ (1− τN )ke0 and inequality 23.

Lemma 4. For any k ≥ 0

FN (Y k
N ) ≤ FN (Y 0

N )ηkN + 2Cd,Ω(1− ηN )
ε1−d
N

N

Ak
N − ηkN

AN − ηN
, (24)

where we denote ηN = 1− τN
2 (2− τN ) and AN = (1− τN )1−d.

Proof. This is obtained in a very similar fashion as Lemma 3. For any k ≥ 0, the semi-concavity of
FN yields the inequality:

FN (Y k+1
N )−

∥∥Y k+1
N

∥∥2
2N

−

(
FN (Y k

N )−
∥∥Y k

N

∥∥2
2N

)
≤
(
−Bk

N

N

)
·
(
Y k+1
N − Y k

N

)
with Bk

N := BN (Y k
N ) in accordance with the previous proof.

Rearranging the terms,

FN (Y k+1
N )− FN (Y k

N ) ≤− τN (1− τN
2
)

∥∥Bk
N − Y k

N

∥∥2
N

=− τN (1− τN
2
)W2

2(δBk
N
, δY k

N
)

≤τN (1− τN
2
)

(
−1

2
W2

2(δY k
N
, ρ) +W2

2(ρ, δBk
N
)

)
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by applying first the triangle inequality to W2(δBk
N
, δY k

N
) and then Cauchy-Schwartz’s inequality.

Using Theorem 3, this yields:

FN (Y k+1
N ) ≤(1− τN

2
(2− τN ))FN (Y k

N ) + 2Cd,ΩτN (2− τN )
ε1−d
N

N
(1− τN )k(1−d)

≤ηNFN (Y k
N ) + 2Cd,Ω(1− ηN )

ε1−d
N

N
Ak

N .

and we simply iterate on k to end up with the bound claimed in Lemma 4.

Proof of Theorem 7. To conclude, we simply make (order 1) expansions of the terms in 24. The
definition of kN in Theorem 7, although convoluted, was made so that both terms in the right-hand

side of this inequality, FN (Y 0
N )ηkN

N and (1− ηN )
ε1−d
N

N

A
kN
N −η

kN
N

AN−ηN
have the same asymptotic decay to

0 (as N → +∞): With the notations of the previous proposition, we have for fixed N :

W2
2

(
ρ, δ

Y
kN
N

)
≤ W2

2

(
ρ, δY 0

N

)
ηkN

N + 2Cd,Ω
(1− ηN )

AN − ηN

AkN

N − ηkN

N

Nεd−1
N

(25)

We make use here of the notation from Section 3:

TN = kNτN =

⌊
1

d
ln(FN (Y 0

N )Nεd−1
N )

⌋
to clear this expression a bit, and, because of the assumption limN→∞ τN = 0, we may write:

AkN

N − ηkN

Nεd−1
N

=
e(d−1)TN

Nεd−1
N

+ oN→∞

(
TN

(Nεd−1
N )

1
d

)

as well as ηkN = e−TN + oN→∞

(
TN

(Nεd−1
N )

1
d

)
, and substituting TN ,

W2
2

(
ρ, δ

Y
kN
N

)
≲
W2

2

(
ρ, δY 0

N

) d−1
d

(
Nεd−1

N

) 1
d

+ oN→∞

(
TN

(Nεd−1
N )

1
d

)

≲W2
2

(
ρ, δY 0

N

)1− 1
d

N
−1

d2
+α(1− 1

d )

E Case of a low variance Gaussian in Section 4

Here, we consider ρσ the probability measure obtained by truncating and renormalizing a centered
normal distribution with variance σ to the segment [−1, 1]. We first show that for any N ∈ N and
δ ∈ (0, 1), we can find a small σN,δ such that the Wasserstein distance beween ρσN,δ

and its best
N -points approximation of is at least CN−(2−δ).

Proposition 8. For any σ > 0, consider ρσ
def
= mσe

− |x|2

2σ2 1[−1;1]dx the truncated centered Gaussian
density, where mσ is taken so that ρσ has unit mass. Then, for every δ ∈ (0, 1), there exists a constant
C > 0 and a sequence of variances (σN )N∈N such that

∀Y ∈ (Rd)N \ DN , W2
2

(
δBN (Y ), ρσN

)
≥ CN−(2−δ)

From the proof, one can see that the dependence of σN on N is logarithmic.

Proof. We denote g : x ∈ R 7→ 1√
2π

e−
|x|2
2 the density of the centered Gaussian distribution and Fg

its cumulative distribution function, so that

m−1
σ =

∫ 1

−1

e−
|x|2

2σ2 dx = σ
√
2π

∫ 1/σ

−1/σ

g(y)dy =
√
2πσ(Fg(1/σ)− Fg(−1/σ)) (26)
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Note that, whenever σ → 0, we have (σmσ)
−1 →

√
2π. We denote by Fσ : [−1, 1] → [0, 1]

the cumulative distribution function of ρσ. Given any point cloud Y = (y1, . . . , yN ) such that
y1 ≤ . . . ≤ yN , the Power cells Pi(Y ) is simply the segment

Pi(Y ) = [F−1
σ (i/N), F−1

σ ((i+ 1)/N)].

Since these segments do not depend on Y , we will denote them (Pi)1≤i≤N . Finally, defining
bi = N

∫
Pi

xdρσ(x) as the barycenter of the ith power cell and δB = 1
N

∑
i δbi , we have

W2
2(δB , ρσ) =

N∑
i=1

∫
Pi

(x− bi)
2dρσ(x)

≥ ρσ(−1)

N∑
i=1

∫
Pi

(x− bi)
2dx

≥ Cρσ(−1)

N∑
i=1

(F−1
σ ((i+ 1)/N)− F−1

σ (i/N))3,

(27)

where we used that ρσ attains its minimum at ±1 to get the first inequality. We now wish to provide
an approximation for F−1

σ (t), t ∈ [0, 1]. We first note, using Taylor’s formula, that we have

F−1
σ (t) = σF−1

g

(
Fg

(
−1

σ

)
+ t

[
Fg

(
1

σ

)
− Fg

(
−1

σ

)])
= σF−1

g

(
Fg

(
−1

σ

)
+

t√
2πσmσ

)
= −1 + σ(F−1

g )′
(
Fg

(
−1

σ

))
t√

2πσmσ

+
σ

2
(F−1

g )′′(s)
t2

2πσ2m2
σ

for some s ∈ [Fg(− 1
σ ), Fg(− 1

σ ) + t(Fg(
1
σ )− Fg(− 1

σ ))]. But,

(F−1
g )′(t) =

1

g ◦ F−1
g (t)

=
√
2πe

|F−1
g (t)|2

2 ,

(F−1
g )′′(t) = −

g′ ◦ F−1
g (t)(

g ◦ F−1
g (t)

)3 = 2πF−1
g (t)e|F

−1
g (t)|2 ,

and we see that ∣∣∣∣F−1
σ (t)−

(
−1 +

t

mσ
e

1
2σ2

)∣∣∣∣ ≤ e
1
σ2

t2

2σ2m2
σ

Therefore, if we denote ε(σ, t) the second-order error in the above formula, i.e. ε(σ, t) = e
1
σ2 t2

2σ2m2
σ

,
the size of the first Power cell P0(Y ) is of order:

F−1
σ (1/N)− F−1

σ (0) =
1

Nmσ
e

1
2σ2 +O

(
ε

(
σ,

1

N

))
.

We will choose σN depending on N in order for the first term in the left-hand side to dominate the
second one:

ε

(
σN ,

1

N

)
= o

(
1

Nmσ
e

1
2σ2

)
. (28)

In this way, we have

(F−1
σ (1/N)− F−1

σ (0))3ρσ(−1) ≥c
1

N3m3
σ

e
3

2σ2 mσe
− 1

2σ2

=c
1

N3m2
σ

e
1
σ2 .

(29)

We now choose σ = σN such that e
1

2σ2 = Nα for an exponent α to be chosen. We need α > 0 so
that σN → 0. This last condition and (26) implies that mσN

is of order
√
logN . This means that the

condition (28) is satisfied if α < 1 and N large enough.
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The sum in (27) is lower bounded by its first term, (29), and we get

W2
2(δB , ρσ) ≥ c

1

N3m2
σN

e
1

σ2
N ≥ C

(
N2α−3

ln(N)

)
for some constant C > 0, since σ depends logarithmically on N . Finally, if we want this last
expression to be larger than N−(2−δ) we can take for instance 2α > 1 + δ and N large enough.

The following corollary, whose proof can just be obtained by adapting the above proof to a simple
multi-dimensional setting where measures and cells “factorize” according to the components, confirms
the facts observed in the numerical section (Section 4), and the sharpness of our result (Remark 4).
Corollary 9. Fix δ ∈ (0, 1). Given any n ∈ N, consider an axis-aligned discrete grid of the form
ZN = Y1× . . .×Yd in Rd, with N = Card(ZN ) = nd, where each Yj is a subset of R with cardinal
n. Finally, define σN := σn,δ as in Proposition 8 Then we have

W2
2(δBN (ZN ), ρσN

⊗ · · · ⊗ ρσN
) ≥ CN− (2−δ)

d ,

where the constant C is independent of N .
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