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ABSTRACT

Stabilization of the systems described by stochastic delay-differential equations
(SDDEs) under preset conditions is a challenging task in the control community.
Here, to achieve this task, we leverage neural networks to learn control policies
using the information of the controlled systems in some prescribed regions. Specif-
ically, two learned control policies, i.e., the neural deterministic controller (NDC)
and the neural stochastic controller (NSC), work effectively in the learning pro-
cedures that rely on, respectively, the well-known LaSalle-type theorem and the
newly-established theorem for guaranteeing the stochastic stability in SDDEs. We
theoretically investigate the performance of the proposed controllers in terms of
convergence time and energy cost. More practically and significantly, we improve
our learned control policies through considering the situation where the controlled
trajectories only evolve in some specific safety set. The practical validity of such
control policies restricted in safety set is attributed to the theory that we further
develop for safety and stability guarantees in SDDEs using the stochastic con-
trol barrier function and the spatial discretization. We call this control as SYNC
(SafetY-aware Neural Control). The efficacy of all the articulated control policies,
including the SYNC, is demonstrated systematically by using representative control
problems.

1 INTRODUCTION

Stochastic delay-differential equations (SDDEs) (Mao, 1996; Lin & He, 2005; Sun & Cao, 2007;
Guo et al., 2016) have been widely applied to characterize the complex dynamical behavior emergent
in real-world systems with dependence on the current state, the past state, and the noise. Efficiently
controlling these systems is a long-standing and crucial problem, with the consequent emphasis
being placed on the design of control policies and analysis of stability in SDDEs. Traditional control
methods in stochastic settings have been fully developed in the convex optimization frameworks
using the control Lyapunov stability theory, e.g. the quadratic programming (QP) (Fan et al., 2020;
Sarkar et al., 2020). These methods cannot provide the analytical form of feedback controllers and
own a high computational cost, requiring solving QP problems at each iteration step. To overcome
these difficulties, utilizing neural networks (NNs) to automatically design controllers becomes one
of the mainstream approaches in recent years (Zhang et al., 2022; Chang et al., 2019). However,
existing machine-learning-based methods either focus on controlling systems without time-delay
or aim at learning the control Lyapunov function instead of the control policy (Khansari-Zadeh &
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Billard, 2014). All these, therefore, motivate us to design neural controllers for general nonlinear
SDDEs.
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Figure 1: Overall work flow. Sketches of SYNC. Both
the NDC and NSC can stabilize the SDDEs to the target
unstable equilibrium x∗. The safety-aware controlled
state trajectories are restricted in the safe region.

The safety verification of controlled systems
plays an important role in many branches of cy-
bernetics and industry. For example, with the
safety verification, one can reduce a significant
economic burden and loss of life (Ames et al.,
2016; Wang et al., 2016). In particular, the dom-
inant framework for safety control in stochastic
settings is the use of stochastic control barrier
function (SCBF) (Clark, 2019; 2021; Santoyo
et al., 2021). The core idea of designing a can-
didate SCBF is that its value tends to explode
as the system’s state leaves the safe region, im-
plying a safety guarantee as long as one could
design a controller such that the SCBF is always
finite within the controlled time duration. Un-
fortunately, the existing theories of SCBF either
require a lot of inequality constraints or are lim-
ited in handling systems without any time delay.

In this paper, we utilize neural networks (NNs)
to learn control policies for SDDEs based on
the corresponding stability theories. Addition-
ally, we develop a simplified SCBF theory for
SDDEs and then use it to construct the neu-
ral controller with a safety guarantee, named
SYNC. All these control policies are intuitively
depicted in Figure 1. The major contributions
of this paper include:

• designing a novel and practical framework of neural deterministic control based on the
existing LaSalle-Type stability theory,

• proposing a simplified stability theorem and designing the second novel neural stochastic
control framework that can benefit from noise according to this theorem,

• establishing an SCBF theory for SDDEs as well as a theory of safety guarantee and stability
guarantee using neural network settings,

• providing theoretical estimation for the proposed neural controller in terms of convergence
time and energy cost based on the developed theory of safety and stability guarantees, and

• demonstrating the efficacy of the proposed neural control methods through numerical
comparisons with the typical existing control methods on several representative physical
systems.

2 PRELIMINARIES

To begin with, we consider the SDDE in a general form of

dx(t) = F (x(t),x(t− τ), t)dt+G(x(t),x(t− τ), t)dBt, t ≥ 0, τ > 0, x(t) ∈ Rd, (1)

where x(t) = ξ(t) ∈ CF0
([−τ, 0];Rd) is the initial function, the drift term F : Rd×Rd×R+ → Rd

and the diffusion term G : Rd × Rd × R+ → Rd×r are Borel-measurable functions, and Bt is a
standard r-dimensional (r-D) Brownian motion defined on probability space (Ω,F , {Ft}t≥0,P) with
a filtration {Ft}t≥0 satisfying the regular conditions. Without loss of generality, we assume that
F (0,0, t) = 0 and G(0,0, t) = 0. This assumption guarantees that the zero solution x(t) ≡ 0 with
t ≥ 0 is an equilibrium of Eq. (1). Additionally, the following notations and assumptions are used
throughout the paper.
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Assumption 2.1 Assume that Eq. (1) has a unique solution x(t, ξ) on t ≥ 0 for any ξ ∈
CF0

([−τ, 0];Rd) and that, for every integer n ≥ 1, there is a number Kn > 0 such that

∥F (x,y, t)∥ ∨ ∥G(x,y, t)∥F ≤ Kn,

for any (x,y, t) ∈ Rd ×Rd ×R+ with ∥x∥ ∨ ∥y∥ ≤ n, where ∥ · ∥ denotes the L2-norm and ∥ · ∥F
denotes the Frobenius norm, i.e. ∥G(x,y, t)∥2F =

∑d
i=1

∑r
j=1 Gij(x,y, t)

2.

Definition 2.1 (Derivative Operator) Define the differential operator L associated with Eq. (1) by

L ≜
∂

∂t
+

d∑
i=1

Fi(x,y, t)
∂

∂xi
+

1

2

d∑
i,j=1

[G(x,y, t)G⊤(x,y, t)]ij
∂2

∂xi∂xj
.

According to the above definition of the derivative operator, an operation of L on the function
V ∈ C2,1(Rd × R+;R) yields:

LV (x,y, t) = Vt(x, t) +∇V (x, t)⊤F (x,y, t) +
1

2
Tr
[
G⊤(x,y, t)HV (x, t)G(x,y, t)

]
. (2)

Here, Vt, ∇V and HV represent, respectively, the time derivative, the gradient, and the Hessian
matrix of V . Notably, the following LaSalle-type stability theorem will be crucial to the establishment
of our partial results.
Theorem 2.2 (Mao, 2002) Suppose that Assumptions 2.1 holds. Assumes there are functions V ∈
C2,1(X × R+;R+), γ ∈ L1(R+;R+), and w1, w2 ∈ C(X ;R+) such that LV (x,y, t) ≤ γ(t) −
w1(x) + w2(y), w1(x) ≥ w2(x), and lim∥x∥→∞ inf0≤t≤∞ V (x, t) = ∞. Here, X ⊂ Rd is the
state space. Then, Ker(w1 − w2) ̸= ∅ and limt→∞ dist(x(t, ξ),Ker(w1 − w2)) = 0 a.s., where
Ker(w1 − w2) ≜ {x : w1(x)− w2(x) = 0}, dist(x,K) ≜ infy∈K ∥x− y∥ for a set K ⊆ Rd, and
a.s. stands for the abbreviation of almost surely.

Problem Statement We assume that the zero solution of the following SDDE:

dx(t) = f(x,x(t− τ), t)dt+ g(x,x(t− τ), t)dBt (3)

is unstable, i.e. limt→∞ x(t; ξ) ̸= 0 on some set of positive measures. We aim to stabilize the zero
solution using control based on neural networks (NNs). In other words, our goal is to leverage the
NNs to design an appropriate controller u = (uf ,ug) with uf (0,0, t) = ug(0,0, t) = 0 such that
the controlled system

dx = [f + uf (x(t),x(t− τ), t)]dt+ [g + ug(x(t),x(t− τ), t)]dBt (4)

is steered to the zero solution. We call uf : Rd × Rd × R+ → Rd as deterministic control while
we call ug : Rd × Rd × R+ → Rd×r as stochastic control, since they are integrated with dt and
dBt, respectively. The major difficulty of this problem comes from the non-Markovian property
of SDDEs. As such, we cannot apply the Markov decision process (MDP)-based methods, such
as the reinforcement learning, to control SDDEs. The majority of existing works prefer to learn
deterministic control and often regard the noise as a negative ingredient that may destroy the natural
dynamics of f . In what follows, we not only show that the deterministic control can achieve
stabilization in a probability sense, but also that elaborately-designed stochastic control can make
the same stabilization. This, therefore, yields two frameworks, viz., the neural deterministic control
(Section 3) and the neural stochastic control (Section 4). We make all our code and data available at
https://github.com/jingddong-zhang/SYNC.

3 NEURAL DETERMINISTIC CONTROL

In this section, we propose the neural deterministic controller (NDC) based on the Theorem 2.2 to
stabilize system (3). Heuristically, we construct the neural network form auxiliary functions and
control functions, and integrate the sufficient conditions in the theorem into the loss function to find
the neural controller that satisfies the expected conditions. However, the NDC can neither be used to
find stochastic controllers nor rigorously satisfy the expected stability conditions. These problems
will be addressed in Section 4 and 5.
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3.1 METHOD: LEARNING CONTROL AND AUXILIARY FUNCTIONS

The core idea of our method is base on using Theorem 2.2, that is, once we construct the auxiliary
functions V, γ, w1, w2 and the neural controller u to meet all the conditions assumed in Theorem 2.2
for the controlled system (4), the solution x(t; ξ) converges to the Ker(w1 −w2). In particular, if we
set Ker(w1 − w2) = {0}, the unstable zero solution of the control-free system (3) can be stabilized.
To this end, we first provide appropriate constructions of NNs to learn these candidate functions.
Thus, we design the explicit form of the loss function in the learning step.

Auxiliary Function We employ a multi-layer feedforward neural network, denoted by NN(·; θ), to
design all the functions. Precisely, θ1 is the parameter vector of the positive function V (x, t; θ1), and
the L2 term ∥x∥2 is added to guarantee lim∥x∥→∞ inf0≤t<∞ V (x, t; θ1) = ∞, that is

V (x, t; θV ) = NN(x, t; θV )
2 + ε∥x∥2, ε > 0. (5)

In our framework, it requires V ∈ C2,1(Rd × R+). We therefore use a C2 activation function for
an NN, such as the hyperbolic tangent function, Tanh(·). We further discuss the impact of the L2

term in Appendix A.1.3. In order to design an integrable positive function γ(t) with the NN, we use
an activation function with at most linear growth such as ReLU and multiply an exponential decay
factor to the output of the NN, that is

γ(t; θγ) = exp(−ct) · NN(t; θγ)
2, c > 0. (6)

For simplicity, we design w(x, θw) = NN(x; θw)
2 as a positive function. Additionally, we set

w2 = w, w1 = w + p(x), p ≥ 0, Ker(p) = {0}. (7)

Deterministic Control Function We first consider the deterministic control, i.e. u = (uf ,0). To
guarantee the same zero solution of the control-free system (3) and the controlled system (4), the NDC
uf : Rd×Rd×R+ → Rd should satisfy uf (0,0, t) = 0. One feasible way to meet such a condition
is to set uf (x,y, t) = NN(x,y, t; θf ) − NN(0,0, t; θf ) or uf (x,y, t) = diag(x)NN(x,y, t; θf ).
Here, diag(x) is a diagonal matrix with xi as its i-th diagonal element.

Loss Function Once the learned functions V, γ, w1, w2 and u with the coefficient functions,
fu ≜ f + u and g, in the controlled system (4), meet all the conditions assumed in Theorem 2.2, the
stability of zero solution is naturally assured. To achieve this, we demand a suitable loss function to
evaluate the likelihood that those conditions are satisfied. It can be seen from our construction that
the only condition needed to be satisfied is LV (x,y, t) ≤ γ(t)− w1(x) + w2(y). Hence, we define
LaSalle’s loss function for the controlled system (4) as follows.

Definition 3.1 (LaSalle’s Loss) Consider the above parameterized candidate functions V, γ, w1, w2

and a controller uf for the controlled system (4). Then, LaSalle’s loss is defined as

LN,ε,c,p(θV ,θγ ,θw,θf ) =
1

N

N∑
i=1

max (0,LV (xi,yi, ti)− γ(ti) + w1(xi)− w2(yi)) , (8)

where {xi,yi, ti}Ni=1 are sampled from some distribution µ on Rd × Rd × R+.

In summary, the developed NDC framework is shown in Algorithm 1 in Appendix A.3.1.

Remark 3.1 The proposed NDC framework can be easily applied to the autonomous SDDE: dx(t) =
f(x,x(t − τ))dt + g(x,x(t − τ))dBt. In particular, one can simply consider the autonomous
auxiliary function V and the control function, and set γ(t) = 0. For sample distribution µ(Ω), here
we select the uniform distribution on a sufficiently large and closed region Ω as used in (Han et al.,
2016; Chang et al., 2019), and we include further analyses for the impact of µ in Appendix A.2.1.

3.2 NUMERICAL AND ANALYTICAL INVESTIGATIONS

Comparison Studies Recent works on controlling time-delayed systems mainly focus on elabo-
rately designing the analytical form of control to satisfy the conditions in the LaSalle-Type Theorem
2.2 (Lin & He, 2005; Xu et al., 2014), or simultaneously designing control and the Lyapunov function
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Figure 3: (a) The original driving-response model, (b) the controlled orbits under LC and NDC, (c)
the time trajectory of y2 with autonomous noise, and (d) the nonautonomous noise. The solid lines
are obtained through averaging the 10 sampled trajectories, while the shaded areas stand for the
standard errors.
to satisfy the conditions based on the Lyapunov theory (Yu & Cao, 2007). It should be noted that all
these methods require a delicate design of functions for specific dynamics, and thus are limited in
practical application for controlling general time-delayed systems. However, our neural method lever-
ages NNs to automatically learn the control policies, and can be applied in any kind of time-delayed
systems with stochastic settings. In Figure 3, we numerically compare the NDC and a baseline, the
linear control (LC) proposed in (Lin & He, 2005), on a noised driving-response Chua’s circuit. Here,
Chua’s circuit is a three-dimensional autonomous dynamical system with a unique nonlinear element,
producing typical chaotic dynamics (Matsumoto, 1984). In the simulation, we show that the NDC can
find the neural control for the response system y = (y1, y2, y3) with the autonomous and even the
nonautonomous time-delay noise. Actually, the nonautonomous time-delay noise was not considered
in (Lin & He, 2005). The simulation configurations are described in Appendix A.3.4.
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Figure 2: Training loss for 1-D SDDE.

Failure in Finding Stochastic Control As we can see that
the NDC performs well, a natural idea is to utilize the noise
part to achieve the stabilization of the SDDE (3). To ex-
plore this idea, we adopt the same NN of uf , design ug =
NN(x,y, t;θg), and train its parameters θg with LaSalle’s
loss (8). However, in Figure 2, we show that the loss can-
not converge to zero in controlling a simple 1-D toy system via the stochastic controller ug:
dx(t) = [x(t) + x(t − τ)]dt + [x(t − τ) + ug(x(t), x(t − τ); θg)]dBt. Actually, this phe-
nomenon can be analytically explained. Notice that θg arises in loss function as a quadratic term
l(θg) = 1

2Tr[u
⊤
g HV ug] according to Eq. (2), the sign of this term depends on the convexity

of V , i.e. the maximum eigenvalue’s sign of HV . Nevertheless, the positive function V with
lim∥x∥→∞ V (x, t) = ∞ implies l(θg) ≥ 0 for most of time. Hence, when we minimize l(θg) ≥ 0
in the training procedure, the ideal case l(θg) = 0 is equivalent to ug = 0. This indicates that we
are unable to learn a stochastic controller under LaSalle’s loss (8) satisfying the sufficient conditions
assumed in Theorem 2.2.

4 NEURAL STOCHASTIC CONTROL

To find the neural stochastic controller (NSC), we provide the following theoretical result on stabi-
lization of general stochastic functional differential equations (SFDEs) with the proof provided in
Appendix A.1.4. Since the failure of NDC in the stochastic control case comes from the positive
number contributed by the diffusion term, we aim at constructing stability condition such that the part
related to the diffusion term can be negative. We further explain the Theorem 4.1 in Appendix A.1.4.
Theorem 4.1 (Stochastic Stabilization) Consider the SFDE dx(t) = F (xt, t)dt+G(xt, t)dB(t),
with F,G being locally Lipschitzian functions, F (0, t) = 0, and G(0, t) = 0. For every M > 0,
assume that min∥xt(0)∥=M ∥xt(0)

⊤
G(xt, t)∥ > 0. If there exists a number α ∈ (0, 1) such that

∥xt(0)∥2(2⟨xt(0), F (xt, t)⟩+ ∥G(xt, t)∥2F)− (2− α)∥xt(0)
⊤
G(xt, t)∥2 ≤ 0, (9)

for xt ∈ C([−τ, 0],X ), where xt(s) = x(t+ s) for s ∈ [−τ, 0] and X is the state space. Then, the
solution of the SFDE satisfies limt→∞ x(t; ξ) = 0 a.s. for any ξ ∈ CF0([−τ, 0];Rd).

Remark 4.2 The SFDE in Theorem 4.1 is formulated in a very general type, including the SDDE
dx(t) = F (x(t),x(t − τ1), · · · ,x(t − τq), t)dt + G(x(t),x(t − τ1), · · · ,x(t − τq), t)dBt with
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τ1 < τ2 < · · · < τq ∈ [0, τ ]. This indicates that our framework can be generalized to stabilize the
SDDEs with multiple delays and even more general SFDEs as well.

In light of Theorem 4.1, we establish a more general framework for learning a neural controller
of system (4) with the form u = (uf ,ug) designed in the same NN architecture as the one used
in the NDC framework. We focus on stochastic control with uf = 0 and provide more control
combinations in Appendix A.3.3, whereas the loss function is differently designed as follows.

Definition 4.1 (Asymptotic Loss) Utilize the notations set in Definition 3.1 and gu = g + ug. The
loss function for the controlled system (4) with the controller u is defined as:

Lµ,α(θ) =
1

N

N∑
i=1

[
max

(
0, (α− 2)∥xi

⊤gu(xi,yi, ti)∥2 + ∥xi∥2(2⟨xi, f(xi,yi, ti)⟩+ ∥gu(xi,yi, ti)∥2F)
)]
,

(10)
where θ = (θf ,θg). Akin to Definition 3.1, we use the empirical loss function for training.

Here, α is an adjustable parameter, which is related to the convergence rate and the control energy.
We further discuss the design of the asymptotic loss in Appendix A.2.2 and numerically investigate
the role of α in Appendix A.4.1. We summarize the framework in Algorithm 2 in Appendix A.3.1.
And we further compare the computational complexity in Appendix A.3.2.

4.1 EXPERIMENTS OF THE COMBINATION METHODS

Table 1: Results on kinematic bicycle model.

Tt E0.001 Nd E[τ0.001]
NDC 1028.81s 102.17 6.3e-4 1.81
NSC 59.80s 62.10 4.0e-7 0.29
QP - - 0.016 > 5

We compare our neural control methods on a noise-
perturbed kinematic bicycle model for car-like vehi-
cles (Rajamani, 2011) in terms of the convergence
time and the energy cost, which are two important
indexes to measure the quality of a controller (Yan
et al., 2012; Li et al., 2017; Sun et al., 2017). To
quantify the energy cost in the control process, we first denote by τϵ ≜ inf{t > 0 : ∥x(t)∥ = ϵ}
the stopping time and then by Eϵ ≜ E

[∫ τϵ
0

(
∥uf∥2 + ∥ug∥2

)
dt
]

the energy cost. We approximate

this expectation value by the empirical value as 1
N

∑N
i=1

∫ τ i
ϵ

0

(
∥ui

f∥2 + ∥ui
g∥2
)
dt through the Monte

Carlo sampling. We show the results in Figure 4 and in Table 1 as well. Table 1 includes the training
time (Tt), empirical energy cost E0.001, nearest distance (Nd) between the bicycle and target position,
and empirical expectation E[τ0.001] for different methods. We include more experimental details in
Appendix A.3.5. We can see that the ranking of the comprehensive performance is NSC > NDC >
QP. This means that we can really benefit from introducing noise in the control protocol. This is
reasonable because, when we regard the energy cost as an objective function for minimization, the
randomness is more likely to lead this functional to the shortest path, akin to the common case where
the stochastic gradient descent outperforms the full-batch gradient descent. We show the NSC can
enlarge the region of attraction of the 100-D gene regulatory networks in Appendix A.4.2.

Uncontrollable Fluctuation The neural stochastic method we propose outperforms the control
methods including the deterministic control. However, the method can cause uncontrollable fluctua-
tion due to the stochasticity. In practice, we always want to bound this perturbation owing to physical
and engineering restrictions in the real world. We tackle this safety guarantee problem in Section 5.
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Figure 4: (Left) A schematic diagram of the kinematic bicycle model. (Right) Time trajectories of the
state variables x, y of the kinematic bicycle under different control cases. The solid lines are obtained
through averaging the 10 sampled trajectories, while the shaded areas stand for the standard errors.
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5 SAFETY GUARANTEE FOR SDDES
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Figure 5: Diagram of the safety guarantee.
We check the safety condition on discretiza-
tion points with mesh r.

In this section, we study the safety and stability guarantees
for the SYNC framework. Based on the stochastic control
barrier functions, we establish an analytical result on the
safety guarantee problem for SDDEs, which guarantees
that the process x(t; ξ) satisfies the safety constraint, i.e.,
x(t; ξ) ∈ int(C) for all t with the initial value ξ(0) ∈
int(C). Here, C = {x : h(x) ≥ 0} is a compact set
and the local Lipschitz function h: Rd → R is called
a stochastic control barrier function (SCBF). Inspired by
(Lechner et al., 2022), we prove that the safety and stability conditions for NN form functions can be
guaranteed through a stronger condition on finite samples. We include the analytical proofs for all
the results in Appendix A.1.

Definition 5.1 A continuous function α : (−b,+∞) → (−∞,+∞) is said to be of an extended
class-K function for some b > 0 if it is strictly increasing and α(0) = 0.

Baseline We extend the recent results on stochastic control barrier functions in SDEs (Clark, 2019)
to the SDDEs and summarize the results in Proposition 5.1. With this proposition and Theorem 2.2,
the traditional deterministic control methods based on the Quadratic Program (QP) in (Fan et al.,
2020; Sarkar et al., 2020) can be applied to test on the SDDEs. We use this QP method as the baseline
and the specific algorithm is shown in Appendix A.3.1. We also take the classic MPC method as the
baseline.

Proposition 5.1 Let the function B: Rd → R be locally Lipschitz and twice-differentiable on
int(C). If there exist three extended class-K functions α1,2,3(x) such that [α1(h(x))]

−1 ≤ B(x) ≤
[α2(h(x))]

−1, and LB(x,y, t) ≤ α3(h(x)) for the SDDE in (1). Then, P
(
x(t) ∈ int(C)

)
= 1 for

all t, provided with x(0) ∈ int(C).

A natural idea is to integrate Proposition 5.1 into our proposed neural control framework, but the
main drawback in the usage of this proposition is that B(x) is unbounded on C, lacking Lipschitz
continuity. This drawback makes it impossible to fulfill the expected conditions only through
numerical verification on finite samples. To conquer the difficulty, we propose the following theorem
for safety guarantee, which, we believe, is a significant promotion of the existing barrier function
theory.

Theorem 5.2 For the SDDE specified in (1), where F and G satisfy locally Lipschitz condition
and locally linear growth condition, if there exists an extended class-K function λ(x) such that
Lh ≥ −λ ◦ h for x ∈ D, where ◦ represents the function composition, D is compact and C ⊂ D.
Then, the solution satisfies P(x(t; ξ) ∈ int(C)) = 1 for any ξ ∈ CF0

([−τ, 0];Rd) with ξ(0) ∈ int(C).

Discretization and Safety Guarantee. Based on the Theorem 5.2, we can construct a neural
candidate class-K function λ and combine it with the NDC and NSC to learn a safe controller, where
the candidate λ is required to satisfy the condition assumed in Theorem 5.2. However, the main
difficulty is to guarantee the condition for every point x ∈ D, since, in practice, we can basically
guarantee this condition on a finite number of training data D̃ with D̃ being a discretization of D.
Surprisingly, the following theorem suggests that we only need to check a slightly stronger condition
on a finite number of states in D̃ in order to establish the safety guarantee on the whole D.

Theorem 5.3 Let M = M(F,G, h, λ,D) be the maximum of the Lipschitz constants of Lh and
λ ◦ h on D. Also, let r be the mesh size of D̃. Thus, for each x ∈ D, there exists x̃ ∈ D̃ such that
∥x− x̃∥2 < r. Suppose there exists a non-negative constant δ ≤ Mr such that

−Lh− λ ◦ h+ 4Mr ≤ δ, ∀x ∈ D̃. (11)

Then, λ satisfies the safety condition specified in Theorem 5.2.

Remark 5.4 Here, the non-negative δ is regarded as the tolerance error in the training stage. So,
practically, we terminate the training until the safety loss is smaller than Mr.
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Figure 6: Schematic diagram of inverted pendulum task (a). The θ component of the original system
(b), under baseline control (c), under NSC (d), and under our proposed safe control (e). The solid
lines are obtained through averaging the 5 sampled trajectories, while the shaded areas stand for the
standard errors.

Construct Neural Networks with Bounded Lipschitz Constant. We can define the loss function
for safety in the manner of the left-hand side in (11). However, M depends on the Lipschitz constants
of the NN functions λ and u, which probably makes it complex and difficult to train the loss function.
To simplify the loss function, we construct the NNs with bounded Lipschitz constants for λ and u.
Specifically, we add the spectral normalization for the neural control function to constrain its Lipschitz
constant lower than 1 (Miyato et al., 2018; Yoshida & Miyato, 2017). We apply the monotonic NNs
to construct the candidate extended class-K function as λθλ

(x) =
∫ x

0
qθλ

(s)ds, where qθλ
(·), the

output of the NNs, is definitely positive (Wehenkel & Louppe, 2019). To constrain the Lipschitz
constant of λθλ

, we modify the integral formula as λθλ
(x) =

∫ x

0
min{qθλ

(s),Mλ}ds, where Mλ is
a predefined hyperparameter. Thus, the Lipschitz constant of λθλ

is smaller than Mλ. Therefore, we
can calculate M from the considered functions and Mλ. Other Lipschitz regularization methods can
be applied in our framework (Gouk et al., 2021; Liu et al., 2022) as well.

SYNC Algorithm: We define the loss function for the safety guarantee of the controlled system (4)
as follows, (the specific algorithms are summarized in Algorithm 1 and 2)

LD̃,Mλ
(θ,θλ) =

1

|D̃|2
∑

(x,y)∈D̃×D̃

max {0,−Lh(x,y)− λθλ
(h(x)) + 4Mr} . (12)

We add this loss to equation 8 and equation 10, respectively, to separately train the NDC and NSC. To
obtain the safety guarantee, we terminate the training process once LD̃,Mλ

(θ,θλ) is less than Mr.

From Safety Guarantee to Stability Guarantee. Akin to the safety guarantee, we provide the
stability guarantee for the candidate neural control functions satisfying the condition in Theorems 2.2
and 4.1. However, both theorems require their conditions to be valid for every point x ∈ X ⊂ Rd,
while, in practice, it is impossible to obtain a finite discretization or a bounded Lipschitz constant on
the unbounded X . Ingeniously, this difficulty can be conquered with the help of the safety guarantee
since the safety condition restricts X ⊂ D where D is compact. As such, we can establish theoretical
results on stability guarantee for NDC and NSC in a similar manner as that in Theorem 5.3. We thus
summarize all these results in Appendix A.1.8.

We test the proposed safe control method to suppress the fluctuations emergent in the control process
on the task of controlling noise-perturbed inverted pendulum with time-delay. This control task is a
standard nonlinear control problem for testing different control methods (Anderson, 1989; Huang &
Huang, 2000). We apply the safe control method to steer the system to the upright position without
rotating a semi-circle, i.e. |θ| ≤ π. The results are shown in Figure 6 and the experimental details are
provided in Appendix A.3.6. It is observed that the safe control method significantly outperforms the
baseline and the stochastic control method in terms of stabilization and safety guarantee.

6 THEORETICAL RESULTS FOR NDC AND NSC
We have mentioned the stopping time and the energy cost in section 4.1 and numerically compare
the proposed neural controllers with these indexes. These two indexes are the classic factors to
measure the performance of the controller (Sun et al., 2017). From the construction in Section 5,
we circumscribe the Lipschitz constant ku of the control function. Based on the safety and stability
guarantee, the neural controller thus satisfies the conditions assumed in Theorems 2.2 and 4.1.
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Then, we have the following theoretical results and include their proofs in Appendix A.1.9.
Theorem 6.1 (Estimation for NDC) Consider the SDDE with NDC controller as

dx(t) = (f(x,x(t− τ)) + uf (x(t),x(t− τ))dt+ g(x(t),x(t− τ))dBt, x(0) = x0 ∈ Rd,

where ∥f(x,y)− f(x̄, ȳ)∥ ∨ ∥uf (x,y)− uf (x̄, ȳ)∥ ≤ L(∥x− x̄∥+ ∥y − ȳ∥). Assume that the
controlled system satisfies the conditions assumed in Theorem 2.2 and Remark 3.1 with Ker(w1 −
w2) = 0. Denote by ηε = inf{t > 0 : ∥x(t)∥ = ε} the stopping time and by E(ηε, T ) =

E[
∫ ηε∧T

0
∥u(x(s),x(s − τ))∥2ds] the corresponding energy cost in the control process with ϵ <

∥x0∥. Thus, using the same notations in Theorem 2.2, we have
E[ηϵ] ≤ Tϵ =

V (x0)−min∥x∥=ε V (x) +
∫ 0

−τ
w2(ξ(s))ds

min∥x∥≥ε(w1(x)− w2(x))
,

E(ηϵ, Tϵ) ≤
k2uC0

2(L2 + L+ ku)

[
exp

(
4(L2 + L+ ku)Tε

)
− 1
]
+

∫ 0

−τ

k2uξ
2(s)ds.

where C0 = ∥x0∥2 + (2L2 + L+ ku)
∫ 0

−τ
ξ(s)2ds and ξ ∈ C[−τ, 0] is the initial data.

We provide the similar theoretical results for NSC in Appendix A.1.10.

7 RELATED WORKS

Stability Theory of SDDEs. The early endeavors to develop the stability theory for SDDEs were
attributed to (Mao, 1999; 2002) inspired by LaSalle’s theory (LaSalle, 1968). The subsequent
developments have been systematically and fruitfully achieved in the last twenty years in the control
community Appleby (2003); Song et al. (2014); Liu et al. (2016); Zhu (2018); Peng et al. (2021).
These works reveal the positive effect of multiplicative noise to the stochastic dynamics with delays,
and motivate us to develop only neural stochastic control to stabilize dynamical systems.

Finding Stabilization Controller. Traditional control methods focus on transforming control
criteria, such as the control Lyapunov functions (CLFs), into the QP (Fan et al., 2020; Sarkar et al.,
2020) or the semi-definite planning (SDP) problems (Henrion & Garulli, 2005; Jarvis-Wloszek et al.,
2003; Parrilo, 2000) to find optimal control iteratively. These methods have high computational
complexity since they cannot give the closed form of the control. Hence, machine-learning-based
control methods have been introduced to improve the generalization and efficiency of the original
convex optimal problems (Khansari-Zadeh & Billard, 2014; Ravanbakhsh & Sankaranarayanan,
2019; Gurriet et al., 2018). However, all the existing learning methods consider dynamics without
time-delay (Wagener et al., 2019; Williams et al., 2018; Chang et al., 2019; Zhang et al., 2022).

Theory and Application of Control Barrier Function The barrier function method has been
extensively researched in the problem of safety verification of controlled dynamics (Prajna & Jad-
babaie, 2004; Jankovic, 2018; Prajna et al., 2004; Clark, 2019; 2021). Existing works for constructing
barrier functions in applications typically based on quadratic programming (Ames et al., 2014; 2016;
Khojasteh et al., 2020; Fan et al., 2020). Machine learning methods have also been introduced in safe
control fields in (Robey et al., 2020; Dean et al., 2020; Taylor et al., 2020).

8 DISCUSSION

We heuristically design two kinds of neural controllers for SDDEs based on the classic LaSalle-type
stabilization theory and the newly proposed stochastic stabilization theorem. To assure the controlled
trajectories can stay in the safety region, we cultivate the safety guarantee theorem through the SCBF
and the discretization techniques. Since the state space of the controlled SDDEs with safety guarantee
is bounded by the compact safety region, we can similarly deduce the stability guarantee theorem
for neural controllers through spatial discretization. Furthermore, we theoretically and numerically
investigate the neural controllers’ performance in terms of convergence time and energy cost. The
proposed neural controllers with safety and stability guarantee are summarized as SYNC, which
significantly simplifies the process of control design and has extensive potential in different control
fields, such as financial engineering (Zhou & Li, 2000).
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A APPENDIX

A.1 PROOFS AND DERIVATIONS

A.1.1 NOTATIONS AND PRELIMINARIES

In this section, we introduce some basic definitions and notations and then provide the proofs of the
theoretical results.

Notations. Throughout the paper, we employ the following notation. Let (Ω,F , {Ft}t≥0,P) be
a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is
increasing and right continuous while F0 contains all P-null sets). Let Bt = (B1(t), · · · , Br(t))

⊤

be a r-dimensional (r-D) Brownian motion defined on the probability space, where ⊤ denote the
transpose of a vector or matrix. If x, y are real numbers, then x ∧ y denotes the minimum of x and y,
x∨ y denotes the maximum of x and y. Let ∥x∥ denote the L2 norm of a vector and ∥A∥F denote the
Frobenius norm of a matrix A. Let ⟨x,y⟩ be the inner product of vectors x,y ∈ Rd. For a function
f(x) : Rd → R, let Kerf denote the zero solutions of f(x), that is, Kerf = {x : f(x) = 0}. For
the two sets A,B, let A ⊂ B denote that A is covered in B.

Definition A.1 (Martingale) The stochastic process Xt on t ≥ 0 is called a martingale (sub-
martingale) on probability space (Ω,F , {Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual
conditions, if the following two conditions hold: (1) Xt is Ft−measurable for any t ≥ 0; (2)
E[Xt|Fs] = Xs(E[Xt|Fs] = Xs) for any t > s ≥ 0.

Definition A.2 (Stopping Time) Given probability space (Ω,F , {Ft}t≥0,P) and a mapping τ : Ω →
[0,∞), we call τ an {Ft}t≥0 stopping time, for any t ≥ 0, τ ≤ t ∈ Ft,

Definition A.3 (Local Martingale) The stochastic process Xt, t ≥ 0 is called a local martingale, if
there exists a family of stopping times {τn}n∈Z+ such that limn→∞ τn = ∞, a.s. and {Xt∧τn}n∈Z+

is a martingale.

Definition A.4 (Itô’s Process) Let Bt be a d-dimensional Brownian motion on probability space
(Ω,F , {Ft}t≥0,P). A (d-dimensional) Itô’s process is a stochastic process Xt on (Ω,F , {Ft}t≥0,P)
in the form of

Xt = X0 +

∫ t

0

u(s, w)ds+

∫ t

0

dv(s, w)Bs (⇔ dXt = u(t, w)dt+ v(t, w)dBt) ,

where u and v satisfy the constraints as follows:

P
[∫ t

0

∥v(s, w)∥2ds < ∞ for all t ≥ 0

]
= 1,

P
[∫ t

0

∥u(s, w)∥ds < ∞ for all t ≥ 0

]
= 1.

Definition A.5 (Itô’s Formula) Let Xt be a d-dimensional Itô’s process given by

dXt = udt+ vdBt.

Let f(t,x) ∈ C1,2([0,∞)× Rd). Then, Yt = f(t,Xt) is an Itô’s process as well, satisfying

dYt =
∂h

∂t
(t,Xt)dt+∇xf(t,Xt) · dXt +

1

2
Tr(dX⊤

t Hessf(t,Xt)dXt).

We further denote by ∥ · ∥ the L2-norm for any given vector in Rd. Denote by | · | the absolute value
of a scalar number or the modulus length of a complex number. For A = (aij), a matrix of dimension
d× r, denote by ∥A∥2F =

∑d
i=1

∑r
j=1 a

2
ij the Frobenius norm.

A.1.2 USEFUL LEMMAS

The following results will be of great use in the proofs of our main theorems.
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Lemma A.1 (Shiryaev, 1989) Let A1 and A2 be non-decreasing processes a.s., let Z be a non-
negative semi-martingale with E(Z) < ∞, let M be a local martingale, and

Z(t) = Z(0) +A1(t)−A2(t) +M(t), t ≥ 0.

Then {w : limt→∞ A1(t) < ∞} ⊆ {w : limt→∞ Z(t) < ∞}
⋂
{w : limt→∞ A2(t) < ∞}, a.s.

Lemma A.2 (Karatzas & Shreve, 2012) Let Xt be non-negative submartingale, [r, s] be any subin-
terval of [0,∞) and λ > 0. Then

λP
(

sup
r≤t≤s

Xt ≥ λ

)
≤ E(Xs).

A.1.3 DRAWBACKS OF L2 REGULARIZATION IN V

Adding L2 regularization to objective functions is a classical operation to avoid over-fitting (Ying,
2019) and guarantee the positive definiteness (Gallieri et al., 2019). However, the explicit form ε∥x∥2
may fail in learning an effective neural control as this function cannot be the candidate V function in
some cases (Zhang et al., 2022). The following example illustrates this point.

Example A.3 Consider a 2-D SDDE as follows:

dx1(t) = x2(t)dt+
1

2
x1(t− 1)dB1(t), dx2(t) = [−2x1(t)− x2(t)]dt+ x1(t)dB2(t)

the solution of this system is validated to satisfy limt→∞ x(t; ξ) = 0 a.s. with any initial data
ξ ∈ CF0([−1, 0];R2); however, k∥x∥2 for any k ∈ R+ cannot be a useful auxiliary V function to
identify the sufficient conditions in Theorem 2.2.

Proof. On one hand, we select as V (x) = k∥x∥2 ≡ k(x2
1 + x2

2) with k > 0, an undetermined
coefficient. We thus get LV (x,y) = k(x2

1 − 2x1x2 − 2x2
2 + y21/4) and to satisfy LV (x,y) ≤

−w1(x) + w2(y), the following inequalities must hold

k(x2
1 − 2x1x2 − 2x2

2) ≤ −w1(x), y21/4 ≤ w2(y), w1(x) ≥ w2(x) ≥ 0.

Then we have

x2
1 ≤ w2(x) ≤ w1(x) ≤ 2x2

2 + 2x1x2 − x2
1, ⇔ x2

1 ≤ x2
2 + x1x2, ∀(x1, x2)

⊤ ∈ R2

which is impossible. Hence, the above form of V cannot guarantee the sufficient conditions for the
stability of the zero solution in Theorem 2.2.

On the other hand, we set as V̂ (x) = 5
2x

2
1 + x1x2 + x2

2, and then we obtain

LV̂ (x,y) = −3

2
x2
1 − x2

2 +
5

8
y21

As we choose w1(x) = 3
2x

2
1 + x2

2 and w2(x) = 5
8x

2
1, we have Ker(w1 − w2) = {(0, 0)⊤} and

LV̂ (x,y) ≤ −w1(x) + w2(y). So all the conditions in Theorem 2.2 are satisfied. Therefore, the
property of limt→∞ x(t; ξ) = 0 is assured. This example particularly indicates that regularization
terms need delicate design and fine-tuning in applications.

A.1.4 PROOF OF THEOREM 4.1

To begin with, for any ϕ, φ ∈ C([−τ, 0];Rd), t ∈ [0, T ] with ∥ϕ− φ∥ ≤ K we have

∥F (ϕ, t)− F (φ, t)∥ ∨ ∥G(ϕ, t)−G(φ, t)∥F ≤ K∥ϕ− φ∥,

according to the locally Lipschitz condition. Notice that F (0, t) = 0 and G(0, t) = 0. Then we can
deduce the following locally linear growth upper bound

∥F (ϕ, t)∥ ∨ ∥G(ϕ, t)∥F ≤ K.

Thus, a unique continuous solution x(t; ξ) almost surely exists for the SFDE in Theorem 4.1 (Mao,
2007). This means the positive quadratic process ∥x(t)∥2 is well-defined. For the simplicity of the
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symbols, we write F (xt, t), G(xt, t) as F, G, respectively. Applying Itô’s formula to ∥x(t)∥2 we
have,

d∥x∥2 = 2x⊤dx+ dxdx

= 2x⊤(Fdt+GdBt) + ∥G∥2Fdt
For α ∈ (0, 1), applying Itô’s formula to ∥x∥α = (∥x∥2)α/2 we have

d∥x∥α =
α

2
(∥x∥2)α

2 −1d∥x∥2 + α

4
(
α

2
− 1)(∥x∥2)α

2 −2d∥x∥2d∥x∥2

=
α

2
(∥x∥2)α

2 −1
[
2x⊤(Fdt+GdBt) + ∥G∥2Fdt

]
+ α(

α

2
− 1)(∥x∥2)α

2 −2∥x⊤G∥2dt

=
α

2
∥x∥α−4

[
∥x∥2

(
2x⊤F + ∥G∥2F

)
− (2− α)∥x⊤G∥2

]
dt+ α∥x∥α−2x⊤GdBt

Next, we let

A1(t) = 0,

A2(t) = −
∫ t

0

α

2
∥x(s)∥α−4

[
∥x(s)∥2

(
2x(s)⊤F + ∥G∥2F

)
− (2− α)∥x(s)⊤G∥2

]
ds,

M(t) =

∫ t

0

α∥x(s)∥α−2x(s)⊤GdBs

Then A2 is a non-decreasing process and M is a local martingale. Hence, combining the Lemma A.1
with the following formula,

∥x(t)∥α = ∥x(0)∥α +A1(t)−A2(t) +M(t),

we have
lim
t→∞

∥x(t)∥α < ∞, lim
t→∞

A2(t) < ∞, a.s.

Notice that M(t) = ∥x(t)∥α − ∥x(0)∥α + A2(t), so we have limt→∞ M(t) < ∞, a.s. Then we
claim that limt→∞ x(t) = 0, a.s., otherwise, there exits a set Ω0 with positive measure such that,

lim
t→∞

x(t; ξ)(w) = xw, ∥xw∥ = kw > 0, ∀w ∈ Ω0

Since local martingale M(t) exists finite limit limt→∞ M(t) almost surely, the quadratic variation
process ⟨M⟩(t) also possesses a finite limit almost surely, where

⟨M⟩(t) =
∫ t

0

α2∥x(s)∥2α−4∥x(s)⊤G∥2ds.

Thus, there exists a set Ω1 ⊂ ω0, P(Ω1) > 0, such that,

lim
t→∞

⟨M⟩(t)(w) =
∫ ∞

0

α2∥x(s)(w)∥2α−4∥x(s)(w)⊤G∥2ds < ∞, ∀w ∈ Ω1,

which further implies∫ ∞

0

∥x(s)(w)⊤G∥2ds =
∫ ∞

0

∥xs(0)(w)
⊤G(xs(w), t)∥2ds < ∞, ∀w ∈ Ω1,

However, according to the condition min∥xt(0)∥=M ∥xt(0)
⊤G(xt, t)∥ > 0, ∀M > 0, we have

lim inf
t→∞

∥xt(0)(w)
⊤G(xt(w), t)∥2 = ∥(xw)⊤G(xt ≡ xw, t)∥2 > 0,

which contradicts the integral
∫∞
0

∥xs(0)(w)
⊤G(xs(w), t)∥2ds < ∞. Therefore, P(Ω0) = 0 and

limx(t; ξ) = 0, a.s.

Explanation for Theorem 4.1. To compare the influence of diffusion term G in Theorem 2.2 and
Theorem 4.1, we list the sufficient conditions respectively:

• cond1 for Theorem 2.2

Vt(x, t)+∇V (x, t)⊤F (x, y, t)+
1

2
Tr
[
G⊤(x, y, t)HV (x, t)G(x, y, t)

]
≤ γ(t)+w1(x)−w2(y),
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• cond2 for Theorem 4.1
∥xt(0)∥2(2⟨xt(0), F (xt, t)⟩+ ∥G(xt, t)∥2F)− (2− α)∥xt(0)

⊤
G(xt, t)∥2 ≤ 0, α ∈ (0, 1)

We can see that G contributes quadratic form term
1

2
Tr[G⊤(x, y, t)HV (x, t)G(x, y, t)] in cond1,

as we explain in Section 3, this term is positive for most of the time, which leads to the failure
in finding stochastic control in this framework. To overcome this problem, we aim at designing
stability conditions such that the part related to G can be negative most of the time. In cond2, it can
be verified that ∥xt(0)∥2(∥G(xt, t)∥2F)− (2− α)∥xt(0)

⊤
G(xt, t)∥2 ≤ ∥xt(0)∥2(∥G(xt, t)∥2F(1−

(2 − α) cos2(w)), where w represent the angle between the vector xt(0) and G(xt, t). When w is
near kπ, k ∈ Z, we have (1− (2− α) cos2(w)) ≤ 0. Hence, we can find a stochastic controller that
makes the angle w near to kπ to make the term ∥xt(0)∥2(∥G(xt, t)∥2F)− (2−α)∥xt(0)

⊤
G(xt, t)∥2

is less than zero.

A.1.5 VALIDATION OF PROPOSITION 5.1

The ideas in the proof are the same as that in (Clark, 2019) and here we validate the results for
SDDEs.

First, notice that the barrier funcition B(x) with 1
α1(h(x))

≤ B(x) ≤ 1
α2(h(x))

is continuous on int(C)
and becomes +∞ at the boundary ∂(C). Since each sample path of x(t) is continuous, each sample
path of B(x(t)) is continuous. Then, the safety property for any trajectory initiated from int(C), i.e.
x(t) ∈ int(C), ∀t ≥ 0, is equivalent to B(x(t)) < ∞, ∀t ≥ 0. So we only need to prove that the
state trajectory of the barrier function B is bounded provided with B(x(0)) < ∞, i.e.

sup
t∈[0,∞)

B(x(t)) < ∞, a.s.

Due to the continuity of the sample path for the barrier function, we only need to prove
P
[

sup
t∈[0,∞)

B(x(t)) = ∞
]
= 0 ⇔ P

[
sup

t∈[0,s]

B(x(t)) = ∞
]
< δ, ∀s, δ > 0.

Now, we fix any s, δ > 0 and find a suitable K = K(s, δ) such that

P
[
sup

t∈[0,s]

B(x(t)) > K
]
< δ,

Next, denote L = B(x(0)) and define the stopping times as follows:
η0 = 0, ζ0 = inf{t : B(xt) < L},
ηi = inf{t : B(xt) > L, t > ζi−1}, i = 1, 2, · · · ,
ζi = inf{t : B(xt) < L, t > ηi}, i = 1, 2, · · · .

Then we define a new process B̃ as follows:

B̃(t) = L+

∞∑
i=1

[∫ ζi∧t

ηi∧t

α3(α
−1
2 (

1

L
))dr +

∫ ζi∧t

ηi∧t

∇B(x(r))⊤GdBr

]
.

It can be seen that B̃ is a submartingale since B̃ is the summation of a positive increasing process and
martingale. By Itô’s formula, we have

B(x(t)) = L+

∫ t

0

LB(x(r),x(r − τ))dr +

∫ t

0

∇B(x(r))⊤GdBr.

We claim that B(x(t)) ≤ B̃(t) and the proof is by induction. Notice that we have the following
equalities by definition,

B̃(0) = B(x(ηi)) = B(x(ζi)) = L, i = 0, 1, · · · ,
For any t ∈ (ηi, ζi] we have

B̃(t) = B̃(ηi) +
∫ t

ηi

α3(α
−1
2 (

1

L
))dr +

∫ t

ηi

B(x(r))⊤GdBr

B(x(t)) = B(ηi) +
∫ t

ηi

LB(x(r),x(r − τ))dr +

∫ t

ηi

∇B(x(r))⊤GdBr.

(13)
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By induction we have B(x(ηi)) ≤ B̃(ηi), and when t ∈ [ηi, ζi] we have B(x(t)) ≥ L, which further
indicates that,

LB ≤ α3(h(x)) ≤ α3(α
−1
2 (

1

B(x(t))
)) ≤ α3(α

−1
2 (

1

L
)) (14)

Combining Eqs. (13) and (14), we have B(x(t)) ≤ B̃(t) on [ηi, ζi]. Next, for t ∈ (ζi, ηi+1], we have

B̃(t) = B̃(ζi) ≥ B(x(ζi)) = L ≥ B(x(t)),
which completes the proof of the claim. Notice that

E[B̃(s)] = L+

∞∑
i=1

∫ ζi∧s

ηi∧s

α3(α
−1
2 (

1

L
))dr ≤ L+

∫ s

0

α3(α
−1
2 (

1

L
))dr = L+ sα3(α

−1
2 (

1

L
))

Then, set K(s, δ) =
δ

2(L+ sα3(α
−1
2 ( 1

L )))
. Apply Lemma A.2 to B̃ yields:

P( sup
t∈[0,s]

B̃(t) > K) ≤ 1

K
E[B̃(s)] = δ

2
< δ.

Thus, we have
P( sup

t∈[0,s]

B(x(t)) > K) ≤ P( sup
t∈[0,s]

B̃(t) > K) < δ.

Based on the arbitrariness of s, δ, we have P[supt∈[0,∞) B(x(t)) = ∞] = 0, which completes the
whole proof.

A.1.6 PROOF OF THEOREM 5.2

Notice that each sample path of x(t) is continuous and h(x) is also continuous. This implies that
h(x(t)) > 0 ⇐⇒ x(t) ∈ int(C). Now we prove h(x(t)) > 0 a.s. with initial h(x(0)) > 0, which
is equivalent to τ = ∞ a.s., where stopping time τ = inf{t ≥ 0 : h(x(t)) = 0}. we prove it by
contradiction. If τ = ∞ a.s. was false, then we can find a pair of constants T > 0 and M ≫ 1 for
P(B) > 0, where

B = {w ∈ Ω : τ < T and ∥x(t)∥2 ≤ M,∀0 ≤ t ≤ T}.
But, by the standing hypotheses, there exists a positive constant KM such that

λ(x) ≤ KMx, ∀|x| ≤ sup
∥x∥2≤M

h(x) < ∞.

Then, for w ∈ B and t ≤ T ,
λ(h(x(t))) ≤ KMh(x(t)).

Now, for any ε ∈ (0, h(x(0))), define the stopping time
τε = inf{t ≥ 0 : h(x(t)) /∈ (ε, h(x(0))}.

By Itô’s formula,
dh(x) = Lhdt+∇h⊤GdBt

≥ −λ(h)dt+∇h⊤GdBt

Take expectation on both sides with respect to τε on set B,

E[h(x(τε ∧ t))1B ] ≥ h(x(0))−
∫ t

0

E[λ(h(x(τε ∧ s)))1B ]ds

≥ h(x(0))−
∫ t

0

E[KMh(x(τε ∧ s))1B ]ds

By Gronwall’s inequality,

E[h(x(τε ∧ t))1B ] ≥ Le−KM (τε∧t)P(B)

Note that for w ∈ B, τε ≤ T and h(x(τε)) = ε. The above inequality, therefore, implies that

E[εP(B)] = εP(B) ≥ h(x(0))e−KM (τε∧T )P(B) ≥ h(x(0))e−KMTP(B)

Letting ε → 0 yields that 0 ≥ h(x(0))e−KMTP(B), but this contradicts the definition of B and
P(B) > 0.
The proof is complete.
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A.1.7 PROOF OF THEOREM 5.3

From the condition, we know that Lh+λ◦h−3Mr ≥ 0. For any (x,y) ∈ D, there exists x̃, ỹ ∈ D̃
s.t.

∥x− x̃∥2 ≤ r, ∥y − ỹ∥2 ≤ r.

By interpolation,

Lh(x,y)− λ(h(x)) = Lh(x,y)− Lh(x̃, ỹ) + L(x̃, ỹ) + λ(h(x̃)) + λ(h(x))− λ(h(x̃))

≥ −∥Lh(x,y)− Lh(x̃, ỹ)∥+ L(x̃, ỹ) + λ(h(x̃))− 3Mr − ∥λ(h(x))− λ(h(x̃))∥+ 3Mr

≥ −M(2∥x− x̃∥+ ∥y − ỹ∥) + 3Mr ≥ 0.

The proof is complete.

A.1.8 THEOREMS AND PROOFS IN STABILITY GUARANTEE

Based on the safety guarantee, the state space X is restricted in the compact set D, so we need
to ensure the validity of the conditions assumed in Theorem 2.2 and Theorem 4.1 through the
discretization on D. We summarize the analytical results as follows.
Theorem A.4 (Stability guarantee for NSC) For the stochastic functional differential equation
dx(t) = F (x(t),x(t − τ))dt + G(x(t),x(t − τ))dB(t), with F,G satisfying locally Lipschitz
condition and locally linear growth condition. Let M = M(F,G,D) be the maximum of the
Lipschitz constants of ∥x∥2(2⟨x, F ⟩ + ∥G(x)∥2F) and x⊤G(x) on D. Suppose that there exists a
non-negative constant δ ≤ Mr such that

∥x∥2(2⟨x, F ⟩+ ∥G∥2F)− (2− α)∥x⊤G∥2 + (7− 2α)Mr ≤ δ, ∀x,y ∈ D̃. (15)

Then, under the safety condition in Theorem 5.3, the solution satisfies limt→∞ x(t; ξ) = 0 a.s. for
any ξ ∈ CF0

([−τ, 0];Rd).

Proof. Analogous to the proof performed in Appendix A.1.7, we prove the results by the interpola-
tion method. For any (x,y) ∈ D, there exists x̃, ỹ ∈ D̃ such that

∥x− x̃∥2 ≤ r, ∥y − ỹ∥2 ≤ r.

Then we have
∥x∥2(2⟨x, F ⟩+ ∥G∥2F)− (2− α)∥x⊤G(x)∥2

= ∥x∥2(2⟨x, F (x,y)⟩+ ∥G(x,y)∥2F)− ∥x̃∥2(2⟨x̃, F (x̃, ỹ)⟩+ ∥G(x̃, ỹ)∥2F)
+ ∥x̃∥2(2⟨x̃, F (x̃, ỹ)⟩+ ∥G(x̃, ỹ)∥2F)− (2− α)∥x̃⊤G(x̃, ỹ)∥2

+ (2− α)∥x̃⊤G(x̃, ỹ)∥2 − (2− α)∥x⊤G(x,y)∥2

≤ M(∥x− x̃∥+ ∥y − ỹ∥) + δ − (7− 2α)Mr + (2− α)M(∥x− x̃∥+ ∥y − ỹ∥)
≤ 2Mr − (6− 2α)Mr + 2(2− α)r ≤ 0.

Hence, the stability condition assumed in Theorem 4.1 is satisfied on D. Under the safety condition,
the state space satisfies X ⊂ D, so the conclusion follows directly from Theorem 4.1. This therefore
completes the proof.
Theorem A.5 (Stability guarantee for NDC) Consider the system the same as the one considered
in Theorem A.4. Let M = M(F,G, V,w1, w2,D) be the maximum of the Lipschitz constants of
LV, w1 and w2 on D. Suppose that there exists a non-negative constant δ ≤ Mr such that

LV (x,y) + w1(x)− w2(y) + 5Mr ≤ δ, ∀x,y ∈ D̃. (16)

Then, under the safety condition in Theorem 5.3, the condition in Theorem 2.2 is satisfied within
X ⊂ D.

Proof. The proof is the same as the proof for Theorem A.4.

Remark A.6 Here, we consider the autonomous case for SDDE because we cannot discretize the
unbounded time domain with a finite number of points. However, some non-autonomous systems
could be transformed into higher-dimensional autonomous systems, which makes our theory more
practically useful for a broader range of systems.
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Based on the above two theorems about stability guarantee, we can redesign the stability loss for
NDC and NSC under the safety guarantee with Eqs. (15) and (16). The definition is the same as
Eq. (12) and we summarize them as follows.

Loss of stability guarantee in NDC:

LD̃,ε,c,p(θV ,θγ ,θw,θf ) =
1

|D̃|2
∑

(x,y)∈D̃×D̃

max (0,LV (x,y) + w1(x)− w2(y) + 5Mr) ,

(17)
Loss for stability guarantee in NSC:

LD̃,α(θ) =
1

|D̃|2
∑

(x,y)∈D̃×D̃

max
(
0, (α− 2)∥x⊤gu(x,y)∥2

+∥x∥2(2⟨x, f(x,y)⟩+ ∥gu(x,y)∥2F) + (7− 2α)Mr
)
,

(18)

During the training stage, we terminate the training process once the above loss is less than Mr.

A.1.9 PROOF OF THEOREM 6.1

First, we prove the estimation for E[ηε]. Applying Itô’s formula to V (x) yields:

V (x(t)) = V (x0) +

∫ t

0

LV (x(s))ds+

∫ t

0

∇V (x(s)) · g(x(s),x(s− τ))dBs∫ t

0

LV (x(s))ds ≤
∫ t

0

[−w1(x(s)) + w2(x(s− τ))]ds

= −
∫ t

0

w1(x(s))ds+

∫ t−τ

−τ

w2(x(s))ds

≤ −
∫ t

0

[w1(x(s))− w2(x(s))]ds+

∫ 0

−τ

w2(ξ(s))ds

Substituting t with the stopping time ηε and taking expectation on both sides, we have

E[V (x(ηε))] ≤ E[V (x0)] +

∫ 0

−τ

w2(ξ(s))ds−
∫ ηε

0

[w1(x(s))− w2(x(s))]ds.

From ∥x(τε)∥ = ε < ∥x0∥, w1 ≥ w2 and ∥x(t)∥ ≥ ε, t ≤ ηε, it follows that

E
∫ ηε

0

[w1(x(s))− w2(x(s))]ds ≤ E[V (x0)− V (x(ηε))] +

∫ 0

−τ

w2(ξ(s))ds,

→ E
∫ ηε

0

min
x(s)≥ε

[w1(x(s))− w2(x(s))]ds ≤ E[V (x0)− min
∥x∥=ε

V (x)] +

∫ 0

−τ

w2(ξ(s))ds,

→ E[ηε] ≤
V (x0)−min∥x∥=ε V (x) +

∫ 0

−τ
w2(ξ(s))ds

min∥x∥≥ε(w1(x)− w2(x))
≜ Tε

Notice that NN control satisfies u(0,0) = 0. Thus, under the Lipschitz condition, we have
∥u(x,y)∥ ≤ ku∥(x,y)∥ ≤ ku∥x∥+ ku∥y∥. From Itô’s formula for ∥x∥2, we have

∥x(t)∥2 − ∥x(0)∥2 =

∫ t

0

(2⟨x, f + uf ⟩+ ∥g∥2)ds+
∫ t

0

2⟨x(s), g(x(s),x(s− τ))dBs⟩
(19)
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According to the Lipschitz conditions for f, g,uf , we have∫ t

0

(2⟨x, f + uf ⟩+ ∥g∥2)ds

≤
∫ t

0

2∥x∥[(L+ ku)(∥x(s)∥+ ∥x(s− τ)∥)] + 2L2(∥x(s)∥2 + ∥x(s− τ)∥2)ds,

≤
∫ t

0

(2L2 + 3L+ 3ku)∥x(s)∥2 + (2L2 + L+ ku)∥x(s− τ)∥2ds,

≤
∫ t

0

(2L2 + 3L+ 3ku)∥x(s)∥2ds+
∫ t−τ

−τ

(2L2 + L+ ku)∥x(s)∥2ds,

≤
∫ t

0

4(L2 + L+ ku)∥x(s)∥2ds+
∫ 0

−τ

(2L2 + L+ ku)∥ξ(s)∥2ds.

Thus, taking the expectation on both sides in Eq.(19) along the time interval [0, t ∧ ηε] gives

E[∥x(t ∧ ηϵ)∥2] ≤ C0 + E
∫ t∧ηϵ

0

4(L2 + L+ ku)∥x(s)∥2ds

= C0+4(L2 + L+ ku)

∫ t

0

E[∥x(s)∥21{s<ηϵ}]ds,

where C0 = ∥x0∥2 +
∫ 0

−τ
(2L2 + L+ ku)∥ξ(s)∥2ds .Then we have

E[∥x(t)∥21{t<τϵ}] ≤ E[∥x(t ∧ τϵ)∥2]

≤C0 + 4(L2 + L+ ku)

∫ t

0

E[∥x(s)∥21{s<τϵ}]ds.

Now, applying Gronwall’s inequality, we get

E[∥x(t)∥21{t<ηϵ}] ≤ C0e
4(L2+L+ku)t.

Finally, we have

E(τε, Tε) = E

(∫ τε∧Tε

0

∥u(x(s),x(s− τ))∥2ds

)

≤ E

(∫ τε∧Tε

0

k2u(∥x(s)∥2 + ∥x(s− τ)∥2)ds

)

≤ E

(∫ τε∧Tε

0

2k2u∥x(s)∥2ds+
∫ 0

−τ

∥ξ(s)∥2)ds

)

≤ 2k2u

∫ Tε

0

E[∥x(s)∥21{s<τϵ}]ds+

∫ 0

−τ

∥ξ(s)∥2)ds

≤ k2uC0

2(L2 + L+ ku)

[
exp

(
4(L2 + L+ ku)Tε

)
− 1
]
+

∫ 0

−τ

∥ξ(s)∥2)ds,

which completes the proof.

A.1.10 THEORETICAL RESULTS FOR NSC

Theorem A.7 (Estimation for NSC) Consider the SDDE with NSC controller as

dx(t) = f(x,x(t− τ))dt+ (g(x(t),x(t− τ)) + ug(x(t),x(t− τ))dBt, x(0) = x0 ∈ Rd,

where f, g are the same as those in Theorem 5.2. Assume that the controlled system satisfies
the conditions assumed in Theorem 4.1. Using the same notations in Theorem 4.1, if the term
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in (9) further satisfies max∥xt(0)∥≥ε ∥xt(0)∥α−4(∥xt(0)∥2(2⟨xt(0), f(xt)⟩ + ∥G(xt)∥2F) − (2 −
α)∥xt(0)

⊤
G(xt)∥2) = −δε < 0 with G = g + ug , we have

E[ηϵ] ≤ Tϵ =
2(∥x0∥α − εα)

α · δε
,

E(ηϵ, Tϵ) ≤
k2uC1

2(2L2 + L+ k2u)

[
exp

(
4(2L2 + L+ k2u)Tε

)
− 1
]
+

∫ 0

−τ

k2uξ
2(s)ds.

where C1 = ∥x0∥2 + (4L2 + L+ 2k2u)
∫ 0

−τ
ξ(s)2ds and ξ ∈ C[−τ, 0] is the initial data.

First, we prove the estimation for E[ηε]. From the arguments presented in Appendix A.1.4, we have

∥x(t)∥α = ∥x(0)∥α +

∫ t

0

α

2
∥x∥α−4q(x(s),x(s− τ))ds+

∫ t

0

α∥x∥α−2⟨x, g + ugdBs⟩,

q(x(s),x(s− τ)) = (∥x(s)∥2(2⟨x(s), f(x(s),x(s− τ))⟩

+ ∥(g + ug)(x(s),x(sτ))∥2F)− (2− α)∥x(s)⊤(g + ug)(x(s),x(s− τ))∥2).
(20)

Now we provide the proof of this theorem. From the condition in Theorem A.7, we have

max
∥x(s)∥≥ε

q(x(s),x(s))

∥x(s)∥4−α
≤ −δε.

Noticing ∥x(t)∥ ≥ ε, t ≤ ηε, setting t as ηε, and taking expectation in (20), we have

εα ≤ ∥x0∥α − α

2
δεE[τε]

Then we have

E[τε] ≤
2(∥x0∥α − εα)

α · δε
≜ Tε.

The estimation of the energy cost is just the same as that in Appendix A.1.9.

A.2 LIMITATIONS AND ANALYSIS

A.2.1 SAMPLE DISTRIBUTION

For sample distribution µ = µ(Ω) in NDC and NSC frameworks without safe guarantee, we
empirically select a large enough closed domain Ω around the target point and uniformly sample
N points in Ω as our training data. Theoretically, this sampling method can not guarantee that
sufficient conditions for stability be satisfied everywhere in the domain where the system evolves
even though the loss is low (or zero). In candid, the reasonable selection for sample distribution needs
further investigation and in this paper, we do not focus on this direction due to the good numerical
performance of our neural frameworks. Here we provide an explanation for the validity of our
numerical experiments: the low loss implies that the LaSalle-Type or Asymptotic stability conditions
are satisfied in Ω, and this may force the state trajectories initiated from Ω to the zero solution. In
this way, the system will still evolve in Ω and the trained stability conditions are still effective.

However, this problem can be naturally solved when we consider the safety guarantee. The condition
for safety guarantee can be approximately satisfied once barrier loss is low (or zero) on training
data sampled from int(C), thus the system will evolve in int(C). Now we only need the stability
conditions to be satisfied in int(C), so it is enough to set the data sample distribution µ for LaSalle or
Asymptotic loss as uniform distribution on int(C).

A.2.2 DESIGN OF ASYMPTOTIC LOSS

We omit the condition minxt(0)=M ∥xt(0)
⊤G(xt, t)∥ > 0 when we construct the Asymptotic loss 4.1

because the NSC performs well in numerical experiments. In case of G(xt, t) = G(x(t),x(t−τ), t),
this condition requires the output of the NN- G(x,y,θ) locates outside the orthogonal space of x.
The projection operator in (Kolter & Manek, 2019) can be introduced to design our NSC to locally
satisfy this condition. However, how to design a NN to globally satisfy this condition is a challenging
direction that needs further investigations. For completeness, we check whether the condition is
satisfied or not on the train data, and we show the results in Table 2.
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Table 2: The test results for the learned control policies in the second framework. The minimum
norm represents mini=1,··· ,N ∥x⊤

i ug(xi,yi)∥ on the train data {(xi,yi)}i=1,··· ,N , where ug is the
corresponding diffusion term in the controlled dynamics. We use (1) and (2) to denote the case in
2-D kinematic bicycle and inverted pendulum, respectively.

NSC (1) NSC+D (1) NSC+M (1) NSC (2) NSC+Safe (2)
Minimum norm 523.7 0.2788 304.6 0.1381 0.1313

Condition satisfied? Yes Yes Yes Yes Yes

A.3 EXPERIMENTAL CONFIGURATIONS

In this section, we provide the detailed descriptions of the experimental configurations of the control
problems in the main text. The computing device that we use for calculating our examples includes a
single i7-10870 CPU with 16GB memory, and we train all the parameters with Adam optimizer until
the loss function is below the given training error δ.

A.3.1 ALGORITHMS

We summarize the Algorithms of NDC and NSC as follows, we mark the part corresponding to safety
in blue,

Algorithm 1: Neural Deterministic Control

Input: Data {xi,yi, ti}ni=1 sampled from µ(Ω), iteration step m, learning rate β, training error δ,
coefficient functions f and g, initial parameters θ0, and ε, c, p(x) used in Eq.(5)(6)(7),
θ = (θV ,θγ ,θw,θf ) or θ = (θV ,θγ ,θw,θf ,θλ) and Mλ with safety guarantee.
Output: Controller uf (xi,yi, ti) and auxiliary function V (xi, ti), γ(ti), w1(xi), w2(yi) in the
form of Eq.(5)(6)(7). And candidate barrier function B(xi) with safety guarantee.
for r = 0 to m− 1 do

Compute Vt(xi, ti),∇V (xi, ti),HV (xi, ti),∇B(xi), HB(xi) with safety guarantee
i = 1, · · · , n
Compute LaSalle loss: L(θr,ur) from Eq.(8) and plus Eq.(12) with safety guarantee.
θr+1 = θr − β · ∇θL(θr) ▷ Update parameters
if L(θr+1) ≤ δ then

break

Algorithm 2: Neural Stochastic Control

Input: Data {xi,yi, ti}ni=1 sampled from µ(Ω), parameter α ∈ (0, 1) used in Eq.(10), and all
other parameters, m, β, δ, f , and g, defined in the same manner as those in Algorithm 1.
θ = (θf ,θg) or θ = (θf ,θg,θλ) and Mλ with safety guarantee.
Output: Controller u(xi,yi, ti), and candidate barrier function B(xi) with safety guarantee.
for r = 0 to m− 1 do

Compute loss function: L(θr) from (10) and plus Eq.(12) with safety guarantee.
θr+1 = θr − β · ∇θL(θr) ▷ Update parameters
if L(ur+1) ≤ δ then

break

In the above two algorithms, We can replace the stability loss in NDC and NSC with Eq. 17 and Eq. 18
when we want to obtain the stability guarantee. We extend the QP methods in (Sarkar et al., 2020; Fan
et al., 2020) to the controlled SDDEs dx(t) = [f(x(t),x(t−τ), t)+u(t)]dt+g(x(t),x(t−τ), t)dBt

as follows, and similarly, the blue parts only appear when we consider safety guarantee.
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Algorithm 3: Baseline QP Control

Input parameters: Relaxation coefficients p1, p2, Lyapunov exponent ε and coefficient γ of
linear class-K function.
Objective function: u∗ = argmin ∥u∥2 + p1d

2
1+p2d

2
2,

Constraints: LV +
1

ε
V ≤ d1, ▷ Control Lyapunov function

V (x, t) =
1

2
∥x∥2,

LB − γh(x) ≤ d2, ▷ Control barrier function

B =
1

h(x)
.

A.3.2 ANALYSIS FOR COMPUTATIONAL COMPLEXITY

Computational Complexity of NDC Although the NDC outperforms those traditional control
methods in terms of flexibility, convergence rate, and generalization ability, the training for NDC is
not efficient. The major reason is that we should compute the Hessian matrix HV . The computational
complexity of this operator is O((mn)2) for batch size = m on n-D dynamics, which is extremely
time-consuming on controlling high dimensional systems with large amounts of data.

Computational Complexity of NSC The NSC framework is computationally efficient because
we only need the tensor operation in the training process. The computational complexity of this
procedure is O(mn) for batch size = m on n-D dynamics, which is significantly faster than the
NDC framework in high dimensional tasks.

From the above investigations, we suggest that, when the task is safe-critical, the deterministic control
is recommended. This is because the noise in the stochastic control can definitely bring uncertainty
to the system, which may impact the efficacy of the safety guarantee. However, the deterministic
control can suppress the influence of stochasticity.

A.3.3 VARIANTS OF NSC

We can use different combinations in the current framework, viz., the neural stochastic control (NSC)
u = (0,ug), the neural deterministic control in this framework (NSC+D) u = (uf ,0), and the
neural mixed control (NSC+M) u = (uf ,ug).

A.3.4 CHUA’S MODEL IN SECTION 3

The driving system is,
ẋ1 = a[x2 − x1 − q(x1)],

ẋ2 = b[x1 − x2] + cx3,

ẋ3 = −dx2,

q(x) = m0x+
1

2
(m1 −m0)(|x+B| − |x−B|).

The response system is perturbed by uncorrelated noise,
dy1 = a[y2 − y1 − q(y1)]dt+ g1(z, zτ , t)dB1(t),

dy2 = [b(y1 − y2) + cy3]dt+ g2(z, zτ , t)dB2(t),

dy3 = −dy2 + g3(z, zτ , t)dB3(t),

where z = (z1, z2, z3)
⊤ = (x1 − y1, x2 − y2, x3 − y3)

⊤, zτ (t) = z(t− τ), and the control goal is
finding deterministic control u that can completely synchronize the response system to the driving
system, that is z = 0. The SDDEs of variation z is

dz1 = a[z2 − z1 − (p(x1)− p(y1))]dt+ g1(z, zτ , t)dB1(t),

≤
(
a[z2 − z1] + |a|max(|m0|, |m1|)|z1|

)
dt+ g1(z, zτ , t)dB1(t),

dz2 = [b(z1 − z2) + cz3]dt+ g2(z, zτ , t)dB2(t),

dz3 = −dz2dt+ g3(z, zτ , t)dB3(t),
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and we denote the above equations as dz ≤ f(z)dt+ g(z, zτ , t)dBt. So we only need to find deter-
ministic control for the corresponding master equation dz = [f(z)+u(z, zτ , t)]dt+g(z, zτ , t)dBt.
Here we set a = 7, b = 0.35, c = 0.5, d = 7,m0 = −1/7,m1 = −40/7, B = 1, τ = 0.1, initial
value for driving system is ξx(t) = (1.5 − sin(t),−4.4 − sin(t), 0.15 − sin(t))⊤, initial value for
response system is ξy(t) = (15 + exp(t),−4 + exp(t), 1.5 + exp(t))⊤, and we consider two cases
of diffusion terms

Autonomous Diffusion Term We set g(z, zτ , t) as follows,

g1(z, zτ , t) = g2(z, zτ , t) = g3(z, zτ , t) =

3∑
i=1

[sin(2zi)− sin(zτ,i)],

which satisfies the condition ∥gi(z, zτ , t)∥2 ≤ qi∥z∥2+ri∥zτ∥2 for some positive numbers qi, ri, i =
1, 2, 3 in (Lin & He, 2005). For finding the autonomous neural control u(x,y) in this case, we
sample 10000 data (x,y) from uniform distribution U([−50, 50]6). We parameterize the functions
V (x) as 3 × 12 × 1 NN with Tanh activation, w(x) as 3 × 6 × 6 × 1 NN with ReLU activation,
u(x,y) as 6× 24× 24× 3 NN with ReLU. We set ε = 1e-4, p(x) = ε exp(− 1

∥x∥2 ), δ = 1e-3 and
we train the parameters with learning rate (lr) 0.05 for 200 steps for 20 batches with batch size 1000.

Nonautonomous Diffusion Term Now we set time-dependent g(z, zτ , t) as

g1(z, zτ , t) = g2(z, zτ , t) = g3(z, zτ , t) = 5(1 + t)

3∑
i=1

[sin(2zi)− sin(zτ,i)],

which obviously contradicts the condition ∥gi(z, zτ , t)∥2 ≤ qi∥z∥2 + ri∥zτ∥2. Hence, the response
system can not be synchronized to the driving system by the linear control in (Lin & He, 2005).
Now we learn the nonautonomous neural control u(x,y, t) in this case, we sample 10000 data
(x,y, t) from uniform distribution U([−30, 30]6 × [0, 10]). We parameterize the functions V (x, t)
as 4 × 16 × 1 NN with Tanh activation, γ(t) as 1 × 6 × 6 × 1 NN with ReLU multiplied by e−t,
u(x,y, t) as 7× 24× 24× 3 NN with ReLU. The others are the same as those in the autonomous
diffusion term case. Finally, we show the controlled trajectories for y1, y3 in Figure 7 as a complement.
The system is simulated with Euler–Maruyama numerical scheme and the random seeds are set as
{20× i, i = 0, · · · , 9}.
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Figure 7: (a) Time trajectories of y1 in autonomous case, (b) time trajectories of y3 in autonomous
case, (c) time trajectories of y1 in nonautonomous case, (d) time trajectory of y3 in nonautonomous
case.

A.3.5 2-D KINEMATIC BICYCLE MODEL IN SECTION 4

Here we model the state of the common noise-perturbed kinematic bicycle system as x =
(x, y, θ, v)⊤, where x, y are the coordinate positions in the phase plane, θ is the heading, v is
the velocity. The dynamic is as follows,

dx(t) = v(t) cos θ(t)dt+ x(t− τ)dBt

dy(t) = v(t) sin θ(t)dt+ y(t− τ)dBt

dθ(t) = v(t)dt

dv(t) = (x(t)2 + y(t)2)dt
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Table 3: Results on kinematic bicycle model.

Tt E0.001 Nd E[τ0.001]
NDC 1028.81s 102.17 6.3e-4 1.81
NSC 59.80s 62.10 4.0e-7 0.29
NSC+D 61.56s 529.23 4.3e-6 0.25
NSC+M 82.11s 196.21 6.0e-8 0.19
QP - - 0.016 > 5

The initial value is ξ = ((2 +
t

3
) cos(

π

2
+ t), (2 +

t

3
) sin(

π

2
+ t), π/2 + t, 2 + t/3)⊤, t ∈ [−0.1, 0].

For training deterministic control uf and stochastic control ug under different frameworks, we
sample 2000 data from U([−10, 10]8), we construct the NNs as follows.

NDC We parameterize V (x) as 4 × 16 × 1 NN with Tanh activation, w(x) as 4 × 8 × 8 × 1
NN with ReLU activation, uf (x,y) as 8 × 32 × 32 × 4 NN with ReLU. We set ε = 1e-4,
p(x) = ε exp(− 1

∥x∥2 ), δ = 5e-4. We train the parameters with lr = 0.05 for 200 steps.

NSC We parameterize both uf (x,y;θf ) and ug(x,y;θg) as 8× 32× 32× 4 NNs with ReLU
activation, and we set α = 0.8, δ = 1e-8. We train the θ = (θf ,0), θ = (θf ,θg), θ = (0,θg) in
NSC(+D), NSC(+M), NSC cases, respectively, for 200 steps until the Asymptotic loss is below δ.

We use Euler–Maruyama numerical scheme to simulate the system without and with control, and the
random seeds are set as {20× i, i = 0, · · · , 9}. For the QP method without safety guarantee, we set
p1 = 10, p2 = 0, ε = 0.2, γ = 5. We provide a more comprehensive comparison in Table 3.

A.3.6 INVERTED PENDULUM IN SECTION 5

The pendulum can be written as a system with two state variables: θ, the angle deviating from the
vertical position, and θ̇, the angular velocity. Denote the 2-D state variable by x = (θ, θ̇) ≜ (x, y)
and we have the following noise retarded equations

dx(t) = y(t)dt+ sinx(t− τ)dBt,

dy(t) =

[
g

l
sinx(t)− b

ml2
y(t)

]
dt+ sin y(t− τ)dBt

(21)

The initial value is ξ = (
π

2
− t,−1 +

t

3
), t ∈ [−0.1, 0]. For training stochastic control ug without

and with safety guarantee |θ| ≤ 2π, we sample 1000 data from U([−5, 5]4) ⊂ ([−2π, 2π]4) to
accelerate the convergence of barrier loss. We construct the NNs as follows.

NSC We parameterize ug(x,y;θg) as 4 × 16 × 16 × 2 NN with ReLU activation. We set
α = 0.8, δ = 1e-5, and train the parameters θg for 200 steps with lr = 0.05.

NSC+Safety Based on the above constructions in NSC, we set h(θ, θ̇) = π2 − θ2, and set the
class-K function λ as a parameterized UMNN (Wehenkel & Louppe, 2019):

λ(x) =

∫ x

0

min(Mλ, qθλ
)ds,

where qθλ
> 0 and Mλ is the hyperparameter to control the Lipschitz constant of λ. We use

1× 10× 10× 1 NN with ELU to parameterize qθλ
. We train the parameters (θg,θλ) simultaneously

for 2000 steps with lr = 0.05.

Discretization and Lipschitz constant. We use the square domain D = [−π, π]2 to cover the
safety region and use torch.linspace to discretize this domain on each dimension with interval
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r. Then we obtain the Lipschitz in Eq. (11) as follows:

M = max(2πMλ, 2(Lfπ +Mf ) + (Lg + 1)(π +Mg))

Lf = 1 + g/l + b/ml2, Mf = g/l + (1 + b/ml2)π,

Lg = 2, Mg = 2,

which directly follows from the calculation of the concrete form of Eq. (21). Moreover, the Lipschitz
constant of control u is less than 1 and the Lipschitz constant of λ is less than Mλ. For simplicity,
we set g = m = l = b = 1, Mλ = 200, and r = 0.05.

MPC Following the standard setting in (Camacho & Alba, 2013), we set the horizon in MPC
rollout process as N = 10, with the constraints |x| ≤ 2π, (u2

1(k) + u2
2(k)) ≤ 100, (x0, y0) =

θ, θ̇, xk+1 = xk+δt(y+u1(k)), yk+1 = yk+δt(g/l sin(xk)−b/(ml2)yk+u2(k)), k = 1, · · · , N .
The objective function is set as x2(N) + y2(N). Here δ is the step in Euler simulation.

In Euler–Maruyama numerical simulation, we pick random seeds that the state trajectories under
NSC control cross the safety boundary |θ| = 2π, and we test the performance of NSC(+Safety)
control on these same random seeds {1, 4, 79, 80, 81}. For the baseline QP method with the safety
guarantee, we set p1 = 20, p2 = 20, ε = 0.2, γ = 5.0.

A.4 MORE EXPERIMENTS

A.4.1 INFLUENCE OF α

We test the performances of the NSC in the stabilization of system (21) for different values of α,
where the values of α are equally spaced in [0, 1]. To this end, we construct the stochastic control
ug as 4 × 16 × 16 × 2 NN with ReLU activation. We sample 300 points from U([−5, 5]4) as the
training data. For each α and the corresponding NSC, we sample 10 controlled trajectories along the
time interval [−0.1, 0.5]. We depict the average final position of the variable θ(t) and the average
energy cost in the control process over the 10 sampled trajectories in Figure 8. Clearly, the control
efficacy tends to be better and better with an increase of α.

Moreover, we select three values, {0.1, 0.5, 0.9}, for α to specifically compare the stabilization
performance with the baseline QP method on 12 random seeds. As clearly shown in Figure 9, the
performance of the correspondingly-constructed control function ug becomes stronger as the value
of α increases, and all the neural control outperform the baseline.
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Figure 8: (Left) The convergence positions of θ(t) in the controlled system (21) for different values
of α selected from {0.05, 0.1, 0.15, · · · , 0.95}, (Right) the corresponding energy cost in the control
process. Here in the simulations, the time for the convergence position is set at t = 0.5, and the
convergence position for each α is obtained through averaging the quantities of the 10 sampled
trajectories with random seeds {0, 1, · · · , 11}

A.4.2 CONTROLLING THE GENE REGULATORY NETWORKS

Here, we show that our proposed frameworks for neural control can perform well in controlling
high-dimensional dynamics. We consider the Michaelis-Menten equation (Alon, 2006), which is
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Figure 9: Comparison of control results of the controlled system (21) for the hyperparameter α in the
NSC taking values from ∈ {0.1, 0.5, 0.9}, respectively, and baseline QP control.

applied to the gene regulatory networks and governs the concentration of substrates as

ẋi = −cxa
i +

N∑
j=1

Wij

xb
j

1 + xb
j

, i = 1, · · · , N, (22)

where a, b, c are positive parameters. We focus on cooperative interactions in which the nodes xi

positively contribute to each other’s activity, i.e. Wij ≥ 0. We fix a = c = 1, b = 2, N = 100 and
generate adjacent matrix as small world network (Watts & Strogatz, 1998), and assign values to the
edged positions according to a distribution U([0, 2]). The systems exhibits an active state x∗

1 in which
all x1,i > 0, and an inactive state x∗

0 in which all x0,i = 0. Hence, the following noise-perturbed
dynamic has the same equilibrium states as the Eq. (22).

dxi =
(
− xi +

100∑
j=1

Wij

x2
j

1 + x2
j

)
dt+ sin(

xi

x1,i
π)dBt, i = 1, · · · , 100, (23)

The domain of attraction of x∗
1 is larger than that of x∗

0, as shown in Figure 10. We now use our NSC
to enlarge the attraction region of x∗

0, that is, any trajectory initiated from the domain of attraction of
x∗
1 will be stabilized to x∗

0.
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Figure 10: (Left) The schematic diagram of weighted small world network W in Eq. (22). (Middle)
Average activity x̄ versus initial data dξ(t) = σdBt on [−0.5, 0] with ξ(−0.5) ∼ U([0, σ]) in Eq.
(23). (Right) Controlled average activity along time with ξ initiated from attraction region of x∗

0 and
x∗
1, respectively, σ = 0.25 and σ = 1. The results are sampled with 10 random seeds {0, 1, · · · , 9}.
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Figure 11: Time evolution of the gene regulatory networks. The state variables in the original system
are activated near the inactive state x∗

0 (left), and the active state x∗
1 can be suppressed to the inactive

state in the controlled system (right).
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