
A Experiment Details

A.1 CascadedCE and CascadedTD Experiment Details

For all cascaded and serial models, we used a ResNet-18 for CIFAR-10, CIFAR-100, and
TinyImageNet datasets. We experimented with deeper nets, up to ResNet-50, but found no
di�erences in model behavior. The models were trained using data parallelism over 8 GPUs
(see §A.7 for infrastructure details), with the model on each GPU using a batch size of 128.
SGD with Nesterov momentum, an initial learning rate of 0.1, weight decay of 0.005, and mo-
mentum of 0.9 was used to optimize a softmax cross-entropy loss for SerialCE/CascadedCE
and a temporal di�erence cross-entropy loss for SerialTD/CascadedTD. All models were
trained for 120 epochs and the learning rate was decayed with a multiplicative factor of 0.2
every 30 epochs.
The training datasets were split (class-balanced) as 90-10 train-validation, where the validation
splits were held out for downstream tasks, such as when training the meta-cognitive models
(see Appendix B). For CascadedTD, the batch normalization layer must be augmented such
that running means and variances are tracked independently for each timestep. At run-time,
if the maximum number of timesteps used during training is exceeded, as occurs when using
the EWS kernel, the final timestep statistics of the batch normalization layers are used for
all subsequent timesteps. Furthermore, we observed that the o�set parameter of the a�ne
transformation of the batch normalization on identity mappings blows up to NaN values
during training; consequently, we do not use batch normalization on the identity mapping in
the cascaded nor serial models.

A.2 Temporal Di�erence Loss

A.2.1 Incremental TD Formulation

TD(⁄) amounts to training at each time step t with a target, y
⁄
t , that is an exponentially

decaying trace of future outputs, anchored beyond some asymptotic time T to the true
target, y. Denoting the network output at step t œ {1, . . . , T} as ŷt, the trace is:

y
⁄
t = (1 ≠ ⁄)

Œÿ

n=1
⁄

n≠1
ȳt+n

with ȳt+n =
;

ŷt+n if t + n Æ T

y otherwise

= (1 ≠ ⁄)
T ≠tÿ

n=1
⁄

n≠1
ŷt+n + ⁄

T ≠t
y.

We train with cross entropy loss over all time steps. For a single example, the loss is

L = ≠
ÿ

t,i

y
⁄
ti ln ȳti.

The derivative of this loss with respect to the network parameters w can be expressed in
terms of the derivative with respect to the logits:

ÒwL = ≠
ÿ

t,i

(y⁄
ti ≠ ȳti)Òwzti,

where zti is the logit of class i at step t. The temporal di�erence method provides a means of
computing this gradient incrementally, such that at each step t, an update can be computed
based on only the di�erence of model outputs at t and t + 1:

Òtd
w L = ≠

ÿ

t,i

(ȳt+1,i ≠ ȳti)eti,

where eti is an eligibility trace, defined as:

eti =
;
0 if t = 0
⁄et≠1,i + Òwzti if t Ø 1

15



Table A.1: Asymptotic accuracy for CascadedTD models for various ⁄, as well as CascadedCE.
Green font indicates best performance across TD(⁄) and CascadedCE models for a given dataset.
Highlight indicates best performing TD(⁄) across ⁄’s for a given dataset.

Cascaded Model Variant
Dataset TD(0) TD(0.25) TD(0.5) TD(0.83) TD(1) CE

CIFAR-10 91.22 ± 0.18 91.65 ± 0.08 91.45 ± 0.16 90.98 ± 0.21 88.75 ± 0.42 91.91 ± 0.08
CIFAR-100 67.48 ± 0.14 67.35 ± 0.20 67.00 ± 0.18 65.06 ± 0.11 63.20 ± 0.14 65.56 ± 0.06

TinyImageNet 50.74 ± 0.11 52.03 ± 0.07 52.25 ± 0.07 51.39 ± 0.13 49.86 ± 0.15 52.46 ± 0.06

The incremental formulation of TD via Òtd
w L is valuable when gradients and/or weight

updates must be computed on line rather than presenting an entire sequence before computing
the loss, e.g., in the situation where the network runs for many steps and truncated BPTT
is required. In our experiments, we use the summed gradient, ÒwL, computed by PyTorch
from the full T step sequence and our exponentially weighted target, y

⁄
t .

A.2.2 TD(⁄) Sweep

Table A.1 shows the tabulated results for asymptotic accuracy of CascadedTD swept over ⁄

values on CIFAR-10, CIFAR-100, and TinyImageNet, as well as CascadedCE. Note, 5 trials
per ⁄ were trained for each dataset.

A.3 Data Augmentation

When training all models on CIFAR-10 and CIFAR-100, for each batch the 32 ◊ 32 images
are padded with 4 pixels to each border (via reflection padding), resulting in a 40 ◊ 40
image. A random 32 ◊ 32 crop is taken, the image is randomly flipped horizontally, and
standard normalized using the training set statistics is applied. Finally, a random 8 ◊ 8
block cut is taken such that the cropped pixels are set to 0. Images at run-time are only
standard normalized using training set statistics - no other augmentation is applied with the
exception of the persistent and noise robustness experiments. The same process is followed
for TinyImageNet with the following exceptions: (1) the 64◊64 images are padded to 86◊86
with reflection padding, random cropped back to 64 ◊ 64, randomly flipped horizontally,
then standard normalized, and (2) no 8 ◊ 8 block cutting is applied.

A.4 Noise Experiments

The four noise perturbations studied in the main article are lossy. Here we consider two
additional noise sources that are roughly information preserving: Translation: random shifts
±8 pixels in (x, y) on a reflection-padded image; Rotation: random rotations ±60¶ on a
reflection padded image.
SerialCE◊9 is best on information preserving transformations such as Translation and
Rotation because it is performing a full inference pass on the input whereas the cascaded
models are performing a single update step.
While both CascadedTD and CascadedCE smooth responses over frames, CascadedTD
performs better, indicating that beyond smoothing, TD training orchestrates the integra-
tion of image-specific perceptual information. This integration matters more for lossy
transformations, where information integration is essential.
The training details are the same as previous simulations, except that we discard the 8 ◊ 8
block data augmentation in order to avoid biasing the models toward the Occlusion noise
transformation. We evaluate the cascaded models with the OSD kernel to allow for a
comparison of cascaded models with SerialCE◊9.
In the persistent-noise experiment, five trials are run per image in the test set. In the
transient-noise experiment, we present the noise-free input for 10 time steps (su�cient for
the cascaded models to reach asymptote), apply one of the six noise transforms for N time
steps, and then present the noise-free input for another 10 steps, allowing the model to return
to its asymptotic state. We run five trials per condition for each N œ {1, 2, 3, 4, 5, 6} and
each image in the test set. Performance is evaluated as the drop-in-integrated-performance,

16



Figure A.1: Noise types. From left to right, top
to bottom: Focus, Perlin, Translation, Occlusion,
Resolution, Rotation.

Table A.2: Persistent-noise experiment. Highlight indicates best asymptotic performance for a
given noise type.

Persistent Asymptotic Model Performance

Noise SerialCEx9 CascadedCE CascadedTD
Focus 84.27 ± 0.06 83.75 ± 0.10 87.31 ± 0.04

Occlusion 86.26 ± 0.08 82.73 ± 0.09 89.76 ± 0.05
Perlin 85.18 ± 0.03 84.56 ± 0.05 87.67 ± 0.08

Resolution 84.53 ± 0.07 85.40 ± 0.07 88.19 ± 0.10
Rotation 89.11 ± 0.04 73.79 ± 0.10 87.51 ± 0.03

Translation 87.55 ± 0.12 76.72 ± 0.09 83.42 ± 0.14

Table A.3: Transient-noise experiment. Highlight indicates lowest DIP for a given noise type.
Transient Drop in Integrated Performance (DIP)

Noise SerialCEx9 CascadedCE CascadedTD
Focus 0.62 ± 0.04 0.66 ± 0.05 0.00 ± 0.01

Occlusion 7.70 ± 0.55 8.25 ± 0.72 0.93 ± 0.15
Perlin 0.86 ± 0.06 0.87 ± 0.07 0.00 ± 0.01

Resolution 0.81 ± 0.06 0.53 ± 0.05 0.18 ± 0.02
Rotation 0.24 ± 0.02 4.12 ± 0.29 0.00 ± 0.01

Translation 0.72 ± 0.05 4.17 ± 0.37 1.53 ± 0.14

DIP = ŷT ≠ Etœ{B,...,T }[ŷt], where T is the total time steps in the simulation, B is the onset
time of the noise transformations, and ŷt is the model’s target-class confidence at time step
t. DIP indicates how quickly a model can recover from noise perturbations.

A.5 Additional Temporal Dynamics Results

A.5.1 Deadline-based stopping criterion

In the main paper, we show speed-accuracy trade o�s for models based on a stopping criterion
that terminates processing when a confidence threshold is reached for one output class. In
Figure A.2, we examine an alternative stopping criterion that is based on a temporal deadline,
i.e., after a certain number of update iterations. When the speed-accuracy curves for the two
stopping criteria are directly compared, the confidence-threshold procedure is superior for
all models. For this reason, we report the confidence-threshold procedure in the main paper.
However, the confidence-threshold procedure does not allow us to readily compute error
bars across model replications because the mean stopping time is slightly di�erent for each

CIFAR-10 CIFAR-100 TinyImageNet

Figure A.2: Speed accuracy trade o� for CIFAR-10, CIFAR-100, and TinyImageNet. Here we
show the dynamics for a temporal-deadline stopping criterion, whereas Figures 4 and A.3 show
speed accuracy trade o�s obtained by a confidence threshold-based criterion. Accuracy assuming a
particular stopping time is computed for each deadline. Note, SerialCE◊9 produces an output
only after all updates. Confidence intervals across model replications are shown by the shaded
regions, which are di�cult to see because the uncertainty is small.

17



TinyImageNet

SERIALTD(0)-MULTIHEADCASCADEDTD
SERIALTD(1)-MULTIHEAD

CIFAR-100CIFAR-10

Figure A.3: Comparison of CascadedTD, SerialTD(1)-MultiHead (Shallow-Deep Nets), and
SerialTD(0)-MultiHead. Shallow-Deep Nets can be improved using TD(0), but the speed-
accuracy trade o� is still significantly worse on CIFAR-100, and asymptotic accuracy is lower than
that of CascadedTD.

replication. In Figure A.2, we show confidence intervals at the various stopping times using
shaded regions. (The regions are very small and are di�cult to see.) The main reason for
presenting these curves is to convince readers of the reliability of the speed-accuracy curves.

A.5.2 Serial models trained with TD

In the main paper, we compare cascaded models to Shallow-Deep Networks, a serial model
with multi-headed outputs trained with TD(1). Just as training with ⁄ < 1 improves
performance of CascadedTD, one might hope to observe a similar benefit for serial models
such as Shallow-Deep Networks. Figure A.3 shows that indeed training with TD(0) is
superior to training with TD(1) for SDNs, labeled in the graph as SerialTD-MultiHead.
The serial model’s performance improves significantly, nearly to the level of CascadedTD,
for two data sets, but for the third, CascadedTD still has a considerable advantage over the
serial model, whether trained with ⁄ = 0 or ⁄ = 1.

A.5.3 Qualitative performance of TD trained models on CIFAR-10

Figure A.4 shows CIFAR-10 instances with low and high selection latency for both Cascad-
edTD and CascadedCE models. As with CIFAR-100, the qualitative di�erences between low
and high selection latency for CascadedTD are stark, with low selection latency instances
being more representative of prototypical instances of the given class (e.g., boats on blue
water; horses in fields), whereas high selection latency instances are less typical (e.g., boats
on green grass; horses in snow). In contrast, the strong delineation between low and high
selection latency groups is not observed for CascadedCE, supporting the claim that TD
training allows the model to more rapidly respond to prototypical exemplars.

(b
) C

AS
CA

DE
DC

E

(a
) C

AS
CA

DE
DT

D

rapid exemplars slow exemplars rapid exemplars slow exemplars

automobile

ship / vessel

horse

automobile

ship / vessel

horse

Figure A.4: (a) CIFAR-10 instances categorized raplidy (left) and slowly (right) by a cascaded
model trained using a TD loss. (b) same as (a) for a standard corss-entropy loss. As observed
for CIFAR-100, the cascaded model trained with a TD loss on CIFAR-10 stratifies instances by
typicality, with rapid processing of prototypical views on a homogeneous background and slow
processing of unusual and cluttered views.

18



Figure A.5: ImageNet2012 Results. Left: Speed accuracy trade o� for terrier breed subset of
ImageNet2012, obtained by varying a stopping threshold and measuring mean latency and mean
accuracy. CascadedTD is our parallel anytime prediction model; SerialTD-MultiHead is the
state-of-the-art method, SDN [24]. Right: E�ect of TD hyperparameter ⁄ on CascadedTD test
accuracy. ⁄ = 1 corresponds to the training methodology of all past research on anytime prediction,
which is inferior to any ⁄ < 1.

A.6 Generalization to High Resolution Images

To assess how well our methods generalize to high resolution images, we trained a model
on 224 ◊ 224 resolution images of 10 breeds of terriers (dogs) from ImageNet2012 [44].
These breeds are visually similar to one another and cannot be discriminated perfectly
based on any simple feature such as color. We observed the same qualitative behavior from
models as we observed for our models trained on smaller resolution images (see Figure A.5
(left)). We obtain an asymptotic test accuracy of 67.2% for CascadedTD(0) versus 63.2% for
SerialTD(1)-MultiHead (i.e., Shallow-Deep Nets), and a 13% speed up for CascadedTD(0)
to reach a threshold of 50% accuracy; see Figure A.5 (left).
We conducted a sweep over hyperparameter ⁄ to determine its e�ect on asymptotic accuracy
of CascadedTD. Figure A.5 (right) shows results for our terrier subset of ImageNet2012.
Our results here are consistent with those from our smaller resolution dataset experiments
from the main paper, where the ⁄ hyperparameter has a systematic e�ect on performance
such that ⁄ < 1 yields significantly improved performance. For example, TD(0.55) achieves
a performance of 69.1%, which is a 9.3% improvement over TD(1). This supports our claim
that our method generalizes to higher resolution datasets.
For training details, each class consisted of 1300 examples, which were split 90/10 into train
and test examples. All simulation details were the same as our previous work, except batch
size had to be reduced from 128 to 32 for the larger images, and, the first convolution layer
of the ResNet was changed from 3x3 to 7x7 receptive fields.

A.7 Computing Infrastructure

We used 8x NVIDIA Tesla V100’s on Google Cloud Platform (GCP) for training all Cas-
cadedCE and CascadedTD models; a single V100 was used for all evaluations, and to train
MetaCog-OOD and MetaCog-Resp models. All models were implemented in PyTorch
v1.5.0, using Python 3.7.7 operating on Ubuntu 18.04.

Table A.4: Average runtime for training CascadedCE and CascadedTD over CIFAR-10, CIFAR-
100, and TinyImageNet.

Dataset Model
Average Runtime

(hours)

CIFAR-10 CascadedCE 1.48 ± 0.002
CascadedTD 1.81 ± 0.001

CIFAR-100 CascadedCE 1.48 ± 0.001
CascadedTD 1.83 ± 0.001

TinyImageNet CascadedCE 1.45 ± 0.035
CascadedTD 1.97 ± 0.020

19



A.8 Average Runtime and Reproducibility

Table A.4 shows average run times (in hours) for CascadedCEand CascadedTD. Variability
in run time, expressed as ±1 SEM, is also shown. Reproducibility was ensured in the data
pipeline and model training by seeding Random, Numpy, and PyTorch packages, as well
as flagging deterministic cudnn via PyTorch API. When sweeping over ⁄ for a given model
and dataset, 5 replications were trained to obtain reliability estimates; a fixed set of 5 seeds
was for all models to ensure matched initial conditions across models. The average runtime
for training the meta-cognitive models on a single V100 GPU requires less than 3 minutes.
When training multiple trials for a given meta-cognitive model, all models are initialized
with the same weights, and 42 was used to seed all packages as detailed above.

B Meta-cognitive Experiment Details

For all meta-cognitive experiments, training data is generated from the EWS kernel applied
to CascadedTD(0).

B.1 OOD Detection Dataset Details

CIFAR-10 serves as the in-distribution dataset, which contains 5,000 validation and 10,000
test set instances. The 5,000 validation instances, which we use as the in-distribution training
set for OOD, were derived from a 90-10 train-validation split of the original 50,000 training
instances used for training the CascadedTD model. The OOD datasets are as follows:
TinyImagenet The Tiny ImageNet (TinyImageNet) is a 200-class subset of ImageNet [7]
and it contains 10,000 validation and 10,000 test instances. Following the methods of [33]
we introduce two variations: 1) resize; the image is downsampled to 32 ◊ 32, and 2) crop; a
random 32 ◊ 32 crop is taken from the image.
LSUN The Large-scale Scene UNderstanding (LSUN) [55] consists of 10 scenes categories,
such as classroom, restaurant, bedroom, etc. It contains 10,000 validation and 10,000 test
instances, and similar to TinyImageNet, we use the resize and crop variations.
SVHN The Street View House Numbers (SVHN) [39] dataset is obtained from house
numbers in Google Street View images. It consists of 73,257 validation and 26,032 test set
images.

B.2 OOD Detection Training Details

The MetaCog-OOD model is trained for 300 epochs with batch sizes of 256. We used Adam
with an initial learning rate of 0.001 and weight decay of 0.0005 to optimize a binary cross
entropy loss. Dropout with keep probability 0.5 was used for regularization. Numerical
values corresponding to Figure 7 are tabulated in Table B.5 with reported SEM corrected to
remove random variance [35].
The OOD examples from TinyImageNet and LSUN have crop and resize variations [33]
to make them match CIFAR10 images in dimensions. MetaCog-OOD is trained per (in-,
out-of-distribution) dataset pairing—e.g., (CIFAR-10, SVHN)—and input representation
type (discussed below). The respective test set is used for evaluation.

B.3 Response Initiation

We explored a third stopping criterion, in addition to the confidence-threshold and temporal-
deadline criteria. The third criterion was based on a meta-cognitive model that observes the
output sequence from cascaded-model updates and uses this sequence to determine when
to stop. To handle sequences, this MetaCog-Resp model was an RNN, specifically a GRU,
trained with a logistic output unit that produced a binary stop/don’t-stop decision. In
contrast to the confidence-threshold criterion, which is based solely on the network output
at step t, MetaCog-Resp in principle uses steps 0 ≠ t to make its decision. It produces a
continuous output in [0,1], and by stopping when the output rises above a threshold, we can

20



Table B.5: CIFAR-10 (in-distribution) vs. Aggregate OOD dataset quantitative measures corre-
sponding to Figure 7. Each representation may include all time step outputs, tall, or only the final
output, tfinal.

OOD Representation AUROC FPR @ 95% TPR

CascadedTD [MSP] 89.5 ± 0.5 63.0 ± 3.5
MetaCog-OOD tfinal [MSP] 88.8 ± 0.5 63.0 ± 3.1
MetaCog-OOD tall [MSP] 90.2 ± 0.5 46.4 ± 3.1

MetaCog-OOD tfinal [Entropy] 90.5 ± 0.3 51.2 ± 2.5
MetaCog-OOD tall [Entropy] 92.7 ± 0.3 38.9 ± 2.5

MetaCog-OOD tfinal [Softmax] 92.6 ± 0.1 31.7 ± 0.7
MetaCog-OOD tall [Softmax] 95.7 ± 0.1 20.5 ± 0.7
MetaCog-OOD tfinal [Logits] 96.7 ± 0.1 17.5 ± 0.4
MetaCog-OOD tall [Logits] 97.3 ± 0.1 13.7 ± 0.4

map out a speed-accuracy trajectory analogous to that obtained with the confidence-threshold
criterion.
MetaCog-Resp is trained for 300 epochs with a batch size of 256. We used Adam with an
initial learning rate of 0.0001 and weight decay of 0.0001 to optimize a binary cross entropy
loss. The supervised target is 1.0 at step t if the output with highest probability at t remains
unchanged for all subsequent steps, or 0.0 otherwise. Essentially, the model is trained to
predict when additional compute will change its decision. To obtain a finer granularity on
time steps, we trained and evaluated MetaCog-Resp with the EWS kernel.
We trained MetaCog-Resp to predict when to stop for both CascadedCE and CascadedTD.
MetaCog-Resp is trained on the 4,500 instances of the CIFAR-10 validation set that have
been processed by the cascaded model, yielding a training set of dimension 4, 500 ◊ 70 ◊ 10,
where there are 70 timesteps and 10 logit values. We generate our evaluation set from the
same method above using the CascadedCE model on the 10,000 instance test set.
Figure B.1 shows the response initiation results comparing CascadedTD (left panel) and
CascadedCE (right panel) with stopping criterion using MetaCog-Resp versus a temporal
deadline. The MetaCog-Resp criterion yields significant improvements to response initiation
for both models. This finding lends support to the notion that there is a signal in the
model output over time as information trickles through the cascaded layers. Essentially,
MetaCog-Resp can interpret the temporal evolution of cascaded model outputs to improve
its speed-accuracy trade o�.

0 10 20 30 40 50
Timestep, t

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

CascadedTD

CascadedTD+MetaCog

0.0 0.2 0.4 0.6 0.8 1.0

Threshold

CascadedTD

0 10 20 30 40 50 60
Timestep, t

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y CascadedSeq

CascadedSeq+MetaCog

0.0 0.2 0.4 0.6 0.8 1.0

Threshold

CascadedCE
Figure B.1: Response initiation results comparing two stopping criteria for CascadedTD (left
panel) and CascadedCE (right panel). The solid line represents a temporal-deadline stopping
criterion. The fainter dotted line uses MetaCog-Resp to determine when to stop based on an
output threshold.

C Correspondence Between Model Time Steps and Run Time on

Parallel Hardware

The premise of our work is that we have massively parallel hardware with delays on inter-
component communication. This architecture allows all ResNet blocks to be updated
simultaneously. A block update involves a sequence of matrix multiplications, vector

21



additions, and vector thresholding operations. Because all model variants perform block
updates, we needn’t break down the block update into its primitive operations; instead, we
consider the basic cycle to be a block update. Due to the assumed communication delay in
our hardware, the updated output from a block is not available to other blocks until the
next cycle. Both the Serial and Cascaded models can be run on this parallel hardware. The
Serial model does not take full advantage of the parallel hardware because it updates only
block k at cycle k. The Serial model performs anytime read out at cycle k by summing the
outputs of blocks 1 through k ≠ 1 and passing the sum through the classifier head. The
Cascaded model takes full advantage of the parallel hardware by updating all blocks at each
cycle k using their output from cycle k ≠ 1. Just as the Serial model, the Cascaded model
can perform any-time read out using the one-cycle lagged block outputs. Thus, comparing
the Serial and Cascaded models in units of block updates—as we have done throughout
the article—provides a runtime comparison on the assumed parallel hardware. Note that
Fischer et al. [11] similarly compare models with di�erent rollouts using the same notion
of runtime. It is not obvious that parallel updating using partially propagated states will
provide benefits.

D Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect

the paper’s contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In results and discussion

sections
(c) Did you discuss any potential negative societal impacts of your work? [No] We

cannot conceive of negative impacts beyond the generic concerns about ML/AI
models.

(d) Have you read the ethics review guidelines and ensured that your paper conforms
to them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Derivations of

the fairly trivial theory underlying our model is presented in the supplementary
materials.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the

main experimental results (either in the supplemental material or as a URL)?
[Yes] Details of experimental procedure are in supplemental materials. We will
provide a git repository with code once the paper is accepted.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how
they were chosen)? [Yes] In supplemental materials.

(c) Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [Yes] Where applicable, except for speed-accuracy
curves where the error bars were small and the figure was su�ciently complex
that error bars would make it harder to interpret figure.

(d) Did you include the total amount of compute and the type of resources used
(e.g., type of GPUs, internal cluster, or cloud provider)? [No] We did describe
our computing infrastructure in the supplementary materials.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new
assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] We do not

cite the authors of the three data sets we used, CIFAR-10, CIFAR-100, and
TinyImageNet

(b) Did you mention the license of the assets? [N/A]

22



(c) Did you include any new assets either in the supplemental material or as a
URL? [No]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally
identifiable information or o�ensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots,

if applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional

Review Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total

amount spent on participant compensation? [N/A]

23


	Experiment Details
	CascadedCE and CascadedTD Experiment Details
	Temporal Difference Loss
	Incremental TD Formulation
	TD(TEXT) Sweep

	Data Augmentation
	Noise Experiments
	Additional Temporal Dynamics Results
	Deadline-based stopping criterion
	Serial models trained with TD
	Qualitative performance of TD trained models on CIFAR-10

	Generalization to High Resolution Images
	Computing Infrastructure
	Average Runtime and Reproducibility

	Meta-cognitive Experiment Details
	OOD Detection Dataset Details
	OOD Detection Training Details
	Response Initiation

	Correspondence Between Model Time Steps and Run Time on Parallel Hardware
	Checklist

