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A Quantization

As discussed in prior literature [1, 4], one operation of floating-point addition and multiplication
have energy costs of 0.9 pJ and 3.7 pJ , respectively. Meanwhile, one operation of 8-bit integer
addition and multiplication have 0.03 pJ and 0.2 pJ energy costs, demonstrating much lower cost
than floating-point operation. Therefore, it is important to explore whether adder detectors performs
well for INT8 quantization. We tried to adopt INT8 post quantization for our Adder FCOS (B+N)
model, which suffers 0.8 mAP drop compared with full precision model, as shown in Table A. The
energy reduction further increases from 29% to 35%. Note that post training quantization is not
optimal for INT8 models, and quantization-aware training may greatly further improve the accuracy.

Table A: Quantitative results of INT8 convolutional and adder models

#MUL #ADD FP32 INT8
Energy mAP Energy mAP

FCOS 214.7 214.7 987.62 38.4 49.38 38.1
Adder FCOS (B+N) 112.9 316.5 702.58 (0.71×) 37.0 (-1.4) 32.08 (0.65×) 36.2(-1.9)

B Training Tricks for CNN-based Detectors

The training tricks in Table 1 in the main body of this paper mainly include well-tuned learning
rate with cosine decay. We also tried to utilize these tricks for training CNN-based object detectors.
As shown in Table B, these tricks bring 0.2%-0.6% mAP gain for various CNN-based detectors.
On contrast, this strategy improves the adder detector for 1.2% mAP, which indicates that the
well-developed hyper-parameters for CNN-based detectors are often not optimal for adder detectors.

Table B: Comparing CNN-based detectors and adder detectors for learning rate strategy.
Model Step LR Cosine LR + LR tuning

RetinaNet 36.4 36.6 (+0.2)
FCOS 38.4 39.0 (+0.6)
Adder FCOS 33.2 34.8 (+1.2)

C Robustness to Domain Shift

It is an interesting topic to explore the robustness to the domain shift for AdderNet-based detector.
We utilize the FCOS models trained on COCO to evaluate on the Cityscapes dataset for the common
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Figure 1: Qualitative results of RetinaNet [2], FCOS [3] and our proposed Adder FCOS.

object categories without fine-tuning. More specifically, we adopt the coco-trained models to predict
the detection results for Cityscapes val set, and map the original ground-truth categories of Cityscapes
to COCO (80 classes) to calculate the mAP. As shown in Table C, Adder FCOS suffers from
2.2% mAP drop on Cityscapes compared with convolutional counterpart, which is similar with
the performance drop on COCO. This demonstrates that adder detectors have similar robustness
performance to the domain shift with CNN detectors.

Table C: Robustness to the domain shift for AdderNet-based and CNN-based detectors.
Model COCO mAP Cityscapes mAP

FCOS 38.4 29.4
Adder FCOS (B+N) 36.5 (-1.9) 27.2 (-2.2)
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D Visualization

Figure 1 shows more qualitative results of our proposed adder detection and state-of-the-arts detectors,
including RetinaNet [2] and FCOS [3]. Adder FCOS works well for a variety of challenging scenarios
and has similar predictions with other detectors. Qualitative results for RetinaNet-MS-600 and its
adder variants are shown in Figure 2.
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Figure 2: Qualitative results of RetinaNet-MS-640 [2] and our proposed adder detectors.
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