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Abstract: Imitation Learning (IL) is a sample efficient paradigm for robot learn-1

ing using expert demonstrations. However, policies learned through IL suffer from2

state distribution shift at test time, due to compounding errors in action prediction3

which lead to previously unseen states. Choosing an action representation for4

the policy that minimizes this distribution shift is critical in imitation learning.5

Prior work propose using temporal action abstractions to reduce compounding6

errors, but they often sacrifice policy dexterity or require domain-specific knowl-7

edge. To address these trade-offs, we introduce HYDRA, a method that leverages8

a hybrid action space with two levels of action abstractions: sparse high-level9

waypoints and dense low-level actions. HYDRA dynamically switches between10

action abstractions at test time to enable both coarse and fine-grained control of11

a robot. In addition, HYDRA employs action relabeling to increase the con-12

sistency of actions in the dataset, further reducing distribution shift. HYDRA13

outperforms prior imitation learning methods by 30-40% on seven challenging14

simulation and real world environments, involving long-horizon tasks in the real15

world like making coffee and toasting bread. Videos are found on our website:16

https://tinyurl.com/3mc6793z17

1 Introduction18

In recent years, supervised learning methods have made remarkable advancements in computer vi-19

sion (CV), natural language processing (NLP), and human-level game playing [1, 2, 3, 4, 5, 6, 7].20

In robotics, imitation learning (IL) has emerged as a data-driven and sample efficient approach for21

programming robots using expert demonstrations. More specifically, behavioral cloning (BC) meth-22

ods treat IL as a supervised learning problem and directly train a policy to map states to actions. BC23

methods are often favored in practice for their simplicity but suffer from the well-known distribu-24

tion shift problem, where the test time state distribution deviates from the training state distribution,25

primarily caused by the accumulation of errors in action predictions [8, 9, 10].26

Broadly, prior work has explored reducing distribution shift by interactively adding new data [9],27

incorporating large prior datasets [11, 12], choosing better state representations (inputs) [13, 14],28

or altering model or loss structure [15, 16, 14]. A less explored but critical factor is the action29

representation (outputs): action prediction error partially stems from how difficult it is for the policy30

to capture the expert demonstrated actions, so action representations are a critical line of defense31

against distribution shift. Prior work studying action representations generally fall into two camps:32

(1) methods that use temporal abstractions to treat long action sequences as a single action (i.e.,33

reducing the effective task horizon) and thus reduce the potential for compounding errors, and (2)34

methods that make the action representation more expressive to minimize the single-step prediction35

error [17, 18, 16, 19, 15]. However, both approaches come with a number of shortcomings.36

Methods using temporal abstractions often come at the cost of either the dexterity of the robot37

or the generality to new settings. One prior approach is for the robot to follow waypoints that38

cover multiple time steps [17, 14]; however, waypoints alone are not reactive enough for dynamic,39

dexterous action sequences (e.g., inserting a coffee pod). Other works use structured movement40
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primitives that can capture more dynamic behaviors like skewering food items or helping a person41

get dressed [20, 18, 21], but relying on pre-defined primitives often sacrifice generalizability to new42

settings (e.g., new primitives beyond skewering for food manipulation). Today, we lack temporal43

abstractions that reduce distribution shift without losing policy dexterity and generality.44

Other methods design each action to be more expressive to capture the multi-modality present in45

human behavior [19, 15, 16]; however, these expressive action spaces often lead to overfitting, high46

training time, or complex learning objectives. Rather than making the policy more expressive, a47

more robust approach is to make the actions in the dataset more consistent at a given state and easier48

to learn (e.g., showing one consistent way to insert a coffee pod rather than many conflicting ways).49

Prior work shows that more action consistency (e.g., consistent human demonstrators) with sufficient50

state coverage lead to better policies [19, 14, 22], likely by reducing online policy errors [23].51

To enable both a better temporal abstraction and more consistent actions in the dataset, our key52

insight is to leverage the fact that most robotics tasks are hierarchical in nature – they can be divided53

into two distinct modes of behaviors: reaching high-level waypoints (e.g., free-space motion) or54

fine-grained manipulation (e.g., object interaction). Then, we can learn a policy that dynamically55

switches between these modes – this is in fact similar to models of human decision making, where56

it is widely believed that humans can discover action abstractions and switch between them during57

a task [24, 25]. Capturing both waypoints and fine-grained actions enables us to compress action58

sequences (i.e., reduce distribution shift) without sacrificing the dynamic parts of the task, thus59

maintaining dexterity. In practice, this abstraction is general enough to represent most tasks in60

robot manipulation. Another notable advantage of partitioning tasks into two modes is that, during61

the waypoint reaching phase, we can relabel our actions with more consistent waypoint-following62

behaviors, thus increasing action consistency in the dataset.63

Leveraging this insight, we propose HYDRA, a method that dynamically switches between two ac-64

tion representations: sparse waypoint actions for free-space linear motions and dense, single-step65

delta actions for contact-rich manipulation. HYDRA learns to switch between these action modes66

with human-labeled modes, which are provided after or during data collection with minimal ad-67

ditional effort. In addition, HYDRA relabels low-level actions in the dataset during the waypoint68

periods – where the robot is moving in free space (e.g., when reaching a coffee pod) to follow consis-69

tent paths. These consistent actions simplify policy learning, which reduces action prediction error70

in the dataset overall and thus reduces distribution shift. HYDRA outperforms baseline imitation71

learning approaches across seven challenging, long-horizon manipulation tasks spanning both sim-72

ulation and the real world. In addition, it is able to perform a complex coffee making task involving73

many high precision stages with 80% success, 4x the performance of the best baseline, BC-RNN.74

2 Related Work75

Data Curation: Several prior works aim to curate data based on some notion of data quality, in76

order to reduce distribution shift. Most works define quality as the state diversity present in a dataset,77

To increase state diversity, Ross et al. [9] proposed to interactively collect on-policy demonstration78

data, but this requires experts to label actions for newly visited states. To reduce expert supervision,79

some methods use interventions to relabel on-policy data, where interventions can be automatically80

or human generated [26, 27, 28, 29, 22, 30]. Laskey et al. [31] inject noise during data collection81

to increase state diversity to achieve similar performance as interactive methods. Recent work has82

sought to formalize a broader notion of data quality beyond just state diversity [23]. HYDRA takes83

this broader definition into account, increasing data quality through action consistency.84

Model and State Priors: Rather than changing the data, many prior works build in structure to the85

model itself to address distribution shift. Object-centric state representations have been shown to86

make policies more generalizable [13]. Similarly, pretrained state representations trained on multi-87

task data have been shown to improve sample efficiency and robustness [12, 32]. Adding structure88

into the model itself, for example using implicit representations or diffusion-based policies, has also89

been shown to improve performance [16, 15]. The changes in HYDRA affect the action space and90

thus are compatible with many of these prior approaches.91
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Action Representations: Another approach is to change the action representation to reduce com-92

pounding errors. One category of prior works leverage temporal action abstractions to reduce the93

number of policy steps. Several works have learned skills from demonstrations, usually requiring94

lots of data but struggling to generalize [33, 34, 14]. Others use parameterized action primitives95

or motion primitives, but despite being more sample efficient, these often require privileged state96

information or are not general enough for all scenes [20, 18, 21]. Waypoint action spaces have also97

been shown to be a sample efficient temporal abstraction; however, they fail to capture dynamic and98

dexterous tasks in the environment [35, 16]. For more dexterity, Johns [36] proposes Coarse-to-Fine99

Imitation Learning by modeling a single demonstrated trajectory as two parts: an approaching trajec-100

tory followed by an interaction trajectory. This approach, however, cannot easily scale to multi-step101

manipulation tasks with multiple stages of unstructured object interaction. HYDRA builds on these102

works, combining waypoints and low-level actions into one model to reduce compounding errors103

without losing dexterity or generality. Another category of works seek to increase the expressiv-104

ity of a single action to reduce action prediction error, for example with Gaussian mixture models105

or energy models [19, 15, 16]. However, increasing expressivity often leads to overfitting, more106

complex learning objectives, and increased training and evaluation time. Instead of increasing ex-107

pressivity, HYDRA takes a more robust approach by increasing action consistency in the data. Prior108

work shows the importance of consistent actions for minimizing distribution shift [19, 23]. HYDRA109

relabels actions in the dataset after data collection to increase consistency.110

3 Preliminaries111

Imitation learning (IL) assumes access to a dataset D = {τ1, . . . , τn} of n expert demonstra-112

tions. Each demonstration τi is a sequence of observation-action pairs of length Ni, τi =113

{(o1, a1), . . . , (oNi
, aNi

)}, with observations o ∈ O and actions a ∈ A. O often consists of robot114

proprioceptive data such as end effector poses and gripper widths, denoted sp ∈ P , as well as envi-115

ronment observations such as images or object poses, denoted se ∈ E , such that O = P ⊕ E . The116

true state of the environment is s ∈ S. In robotics, the action space usually consists of either torque,117

velocity, or position commands for the robot. While velocity actions are most common, prior works118

also use position actions in the form of target waypoints [14, 35]. The IL objective is to learn a119

policy πθ : O → A mapping from observations to actions via the supervised loss:120

L(θ) = −E(o,a)∼pD [log πθ(a|o)] (1)

At test time, the learned policy πθ is rolled out under environment dynamics f : S × A → S. Per121

step, we observe ot, sample an action ãt ∼ π(·|ot), and obtain the next state st+1 = f(st, ãt).122

Distribution Shift in IL. A fundamental challenge with imitation learning is state distribution shift123

between training and test time. Considering training sample (. . . ot, at, ot+1 . . . ): if the learned124

policy outputs ãt ∼ π(·|ot), which has a small action error ϵt = ãt − at, the next state following125

this action will also deviate: s̃t+1 = f(st, at + ϵt), which in turn affects the policy output at the126

next step. For real world dynamics, this change in next state can be highly disproportionate to ||ϵt||.127

For example in the coffee task in Fig. 1, with a slight change in gripper position (small ϵt) the policy128

can misgrasp the coffee pod (large change in st+1 and ot+1). Furthermore, noise in the dynamics129

f can lead to even larger changes in ot+1. As we continue to execute for the next N − t steps, this130

divergence from the training distribution can compound, often leading to task failure.131

Therefore, reducing distribution shift requires reducing ϵt for all t ∈ {1, . . . , N} or increasing the132

coverage of states st. One approach to reduce policy error is increasing action consistency, which133

prior work defines as lowering the entropy of the expert policy πE at each state: HπE
(a|s) [23].134

However, there is a trade-off between state coverage and action consistency during data collection,135

since less consistent actions often lead to more diverse states [23, 19]. HYDRA reduces distribution136

shift by using a temporal abstraction for the action space – which shortens the number of policy137

steps N and thus reduces compounding errors – and by improving action consistency in offline data138

– which reduces ||ϵt|| without reducing state coverage.139
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Figure 1: Multi-headed architecture of HYDRA: During training, we learn to predict waypoints, low level
actions, and the mode label for each time step. One network (Dense Net) predicts the low level action at and
the mode mt; both the action and mode heads of Dense Net share an intermediate representation et. A separate
network (Sparse Net) predicts the high level waypoint wt. At test time, we sample mt and either servo to reach
a waypoint (mt = 0) without requerying the policy, or follow a dense action for one time step (mt = 1). An
example of how sparse and dense modes can be arbitrarily stitched together at test time is shown on the right.

4 HYDRA: A Hybrid Action Representation140

To reduce distribution shift, our insight is that most robot manipulation tasks are a combination of141

sparse waypoint-reaching, such as reaching for an object or lifting a mug towards a shelf, and dense142

low-level actions, such as grasping an object or balancing a mug stably on a shelf. Waypoints capture143

free-space motions but struggle to capture dexterous or precise behaviors. Conversely, low-level144

actions capture these dynamic behaviors but are often redundant during long free-space motions.145

Instead of learning from only velocities or waypoints, HYDRA learns a hybrid action representation146

consisting of both high-level waypoints in the robot’s proprioceptive space w ∈ P and low-level ac-147

tions a ∈ A. Additionally, we learn to dynamically switch between these modes by predicting which148

mode m ∈ {0, 1}, sparse or dense, should be executed at each demonstrated state. Mode labels are149

annotated with little extra cost by experts either during or after data collection. This flexible ab-150

straction leads to (1) a compressed action space that reduces compounding errors without sacrificing151

dexterity or generality, and (2) a more consistent, simple low-level action distribution through action152

relabeling during the sparse periods. This section presents an overview of the approach, followed153

by discussions on mode labeling, action relabeling, and training/testing procedures.154

Overview: The multi-headed architecture of HYDRA is outlined in Fig. 1, with heads πM
θ : O →155

{0, 1}, πA
θ : O → A, πW

θ : O → P , for mode, action, and waypoint respectively. One network,156

Dense Net, predicts the low-level action at and the mode mt at each input ot = {set , s
p
t }. Another157

network, Sparse Net, separately outputs the desired future waypoint wt for input ot. We assume158

waypoints can be reached using a known controller T : O × P → A which converts the state159

and desired waypoint into a low-level action (e.g. a linear controller, see the right side of Fig. 1). In160

practice, Dense Net is recurrent since both the mode and action are highly history-dependent. Sparse161

Net in contrast only uses the current observation, since waypoints are less multi-modal and history162

dependent than actions. Then at test time, HYDRA predicts the mode mt and follows the controller163

T until reaching the waypoint during predicted sparse periods, and follows low-level actions at each164

step during predicted dense periods. See Appendix C for more details.165

4.1 Data Processing: Mode Labeling and Action Consistency166

To dynamically switch action abstractions, we need labeled modes mt, waypoints wt, and actions167

at at each time step. We first obtain binary mode labels mt from humans, and then use the mode168

labels to extract waypoints and to relabel low-level actions. Importantly, modes can be labeled either169

online (during demonstration collection, e.g. with a simple button interface), or entirely offline (after170

demonstration collection, e.g., labeling each frame with its mode). With modes labeled, we can171

segment each demonstration into sparse waypoint and dense action phases. We provide the details172

of the labeling and segmentation process in Appendix B. For each sparse phase, we can extract the173

desired future waypoint wt at ot: if mt = 0 (sparse), the future waypoint is final proprioceptive174

state wt = pt′ in that sparse segment, where t′ > t. But if mt = 1 (dense), the waypoint is the next175

proprioceptive state wt = pt+1. This yields a dataset of D̂ of (o, a, w,m) tuples. Now the policy176

has full supervision to learn the modes, waypoints, and actions.177
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Mode Labeling Strategy: Since waypoints will be reached online with controller T, the main178

requirement for labeling modes is that during sparse phases (mt = 0), the labeled waypoint wt179

should be reachable via T starting from ot (i.e., without collision): for example, if the demonstrator180

starts in free space and labels a waypoint close to coffee K-pod, and if the policy uses a linear P-181

controller as T, then the K-pod waypoint should be reachable from the initial pose in a straight-line182

path. Otherwise, the learned policy might collide when it tries to reach similar waypoints. We do not183

assume access to a collision-avoidance planner as T in this work, but if one has access to a planner184

then T can always reach the desired waypoint, so this reachability requirement can be ignored. Other185

considerations for mode labeling and a discussion of mode sensitivity is provided in Appendix B.186

We specifically show that our method is not overly sensitive to mode labeling strategies outside of187

the collision-free requirement above. Furthermore, we show that mode labels can be learned from188

substantially fewer examples without a major effect on performance Appendix D.3.189

Relabeling Low-Level Actions: As discussed in Section 3, action consistency can improve policy190

performance by simplifying the BC objective in Eq. (1) and thus reducing ||ϵt||, provided the data191

has enough state coverage. However, making actions consistent during data collection is challenging192

and can often reduce state coverage [22], so instead HYDRA performs offline action relabeling, i.e.,193

after collection. To relabel human actions at during the sparse periods, HYDRA uses waypoint194

controller T to “imagine” a new action at each demonstrated robot state spt based on the waypoint195

wt. We lack a consistent relabeling strategy for dense periods, so we leave this to future work.196

However, a subtle challenge with offline relabeling is that changing the actions in the data can put the197

policy out of distribution at test time, since new actions can lead to new states online. For example,198

if an arc path was demonstrated to get to a waypoint, but a linear controller is used for relabeling, the199

linear action will take us off that path. HYDRA avoids this problem by using a waypoint controller200

T online during sparse periods, meaning relabeled actions will not be deployed online. Rather, this201

action relabeling serves primarily to simplify the dense action learning objective of HYDRA and202

increase action consistency in the overall dataset.203

A natural question arises: since sparse actions will be executed with T online, could we instead204

further simplify learning by avoiding training on dense actions during sparse periods? If HYDRA205

mispredicts a sparse mode as dense, then the dense actions will still be executed online, so HYDRA206

should still be trained on dense actions during sparse periods as a back-up. We show that reducing207

the training weight of dense actions during sparse periods hurts performance in Appendix D.5.208

4.2 Training and Evaluation209

Training: HYDRA is trained to both imitate low-level actions a with policy πA
θ , high-level way-210

points w with πW
θ , and the mode m with πM

θ at each time step. To balance the waypoint and action211

losses, we use a mode-specific loss at each time step that weighs the current mode’s loss with (1−γ),212

and the other mode’s loss with γ. Given a processed dataset D̂ consisting of tuples of (o, a, w,m),213

we modify the loss in Eq. (1) with the new heads of HYDRA (mode, action, and waypoint):214

La(θ) = −E(o,a,w,m)∼pD̂

[
(1− αm) log πA

θ (a|o) + αm log πW
θ (w|o)

]
(2)

Lm(θ) = −E(o,a,w,m)∼pD̂

[
m log πM

θ (m = 1|o) + (1−m) log πM
θ (m = 0|o)

]
(3)

La weighs the BC loss for waypoints and actions by the current mode: αm = mγ+(1−m)(1−γ)215

is the mode-specific weight for the sparse waypoint part of La. If we are in sparse mode (m = 0),216

then αm = 1− γ, but in dense mode, αm = γ. Thus, a low gamma encourages the model to fit the217

loss for the current mode more than the loss for the other mode, and γ = 0.5 will be a mode-agnostic218

weighting. See Appendix D.5 for results of ablating γ. Lm is the mode cross entropy classification219

loss. Combining these terms with mode loss weight β, we get the full HYDRA objective:220

L(θ) = La(θ) + βLm(θ) (4)

Evaluation: During evaluation, the policy chooses the mode using m̃t. If m̃t = 0, the model will221

servo in a closed-loop fashion to the predicted waypoint w̃t using controller T. The policy is queried222

at every step to continually update the policy hidden state, but importantly its outputs are ignored223

until we reach the waypoint to avoid action prediction errors. If m̃t = 1, the model will execute just224

the next step using the predicted dense action ãt.225
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Figure 2: Simulation & Real-world environments, with task stages shown for real world tasks. Simulation: In
NutAssemblySquare, the task is to pick up a square nut at various positions and orientations and insert it onto
a vertical square peg. In ToolHang, a hanging frame is inserted onto a fixed stand, followed by placing a tool
on the frame. Both the frame and tool poses are randomized. Frame insertion is challenging due to the small
insertion area. KitchenEnv involves turning on a stove, moving a pot onto the stove, putting an object in the
pot, then moving the pot to a serving area. Real World: PegInsertion involves inserting a peg with a hole in the
center onto a round insertion rod (top right); the peg location and geometry are varied. MakeCoffee is a 6-step
task (top middle row) involving picking up a K-pod, inserting it into a Keurig machine, closing the lid of the
Keurig, positioning a mug, and then pressing start on the Keurig; the K-pod location and mug orientations are
varied. This is a more challenging version of the task used in prior work [13], which did not include the mug
component. MakeToast has 7-steps (bottom middle row): a hinged toaster oven is opened, a spatula is picked
up, bread is placed inside the toaster, the toaster is closed, and the timer dial is turned to start. Both bread and
spatula initial poses vary. SortDishes (bottom row) has 6 stages: pick up spoon, place spoon in rack, grasp plate
and insert it into rack, and grasp mug and hang the mug. All objects vary in initial pose.

5 Experiments226

We evaluate the performance of HYDRA in 3 challenging simulation environments and 4 complex227

real world tasks, shown in Fig. 2. These tasks cover a wide range of affordances and levels of228

precision, from precisely inserting a coffee pod to picking up bread with a spatula. See Appendix C229

for model hyperparameters, data collection, and training details. Videos can be found on our website.230

Data Collection: We leverage proficient human demonstration data for simulated tasks from231

robomimic [19]. Mode labels and waypoints were annotated offline for simulation datasets as de-232

scribed in Appendix B. Demonstrations for real world tasks were collected by a proficient user using233

VR teleoperation using an Oculus Quest 2. Mode labels and waypoints were provided during data234

collection (online) using the side button on the Quest VR controller with no added collection time.235

Simulation: In Fig. 3 (top row), we compare our method to BC and BC-RNN for the NutAssem-236

blySquare and ToolHang tasks (state-based), as well as the KitchenEnv task (vision-based) from237

robosuite (see top row in Fig. 2). Our method improves performance on the NutAssemblySquare238

task, where baselines are already quite strong. We also ablate the data size from 200 demos to 100239

and 50 in Fig. 3, illustrating that HYDRA is more sample efficient than baselines, with the gap grow-240

ing as data size decreases. HYDRA-NR in Fig. 3 removes action relabeling and drops performance241

by 8%, which we attribute to high action multi-modality in non-relabeled sparse periods.242
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Figure 3: Sim Results for HYDRA vs. BC, BC-RNN, and VIOLA: best checkpoint success rate averaged
over three seeds. Left to Right: NutAssemblySquare (state), ToolHang (state), and KitchenEnv (vision) tasks.
HYDRA beats baselines on all of these tasks, and even beats VIOLA [13] on the kitchen task despite using
a much smaller and simpler model. We also show a comparison for BC-RNN and HYDRA with decreasing
data sizes for NutAssemblySquare, showing that our method is more sample efficient than BC-RNN. HYDRA
without action relabeling (HYDRA-NR, NutAssemblySquare and ToolHang) drops performance by 7-8%.

For the Tool Hang task (top middle in Fig. 3), which is long horizon and consists of many waypoint243

and dense periods and requiring much higher precision, our method has an even bigger gap in per-244

formance with BC and BC-RNN. While the best baseline gets 29%, our method reaches 63% with245

the same inputs. Once again, removing action relabeling (HYDRA-NR) drops performance by 7%246

but is still substantially better than baseline.247

For KitchenEnv (vision-based), we also compare to VIOLA [13], an image-based model that uses248

bounding box features and a large transformer architecture to predict actions. Once again, HYDRA249

is able to outperform BC-RNN by 35% on this long horizon task. HYDRA also outperforms VIOLA250

by 9%, despite using a simpler and smaller model.251

In Appendix D, we show a waypoint-only baseline, mode labeling strategy ablations, and a252

relabeling-only ablation where action consistency is improved but the waypoint controller is not253

used online. In Appendix D.3, we show that mode labels can be learned with fewer examples with-254

out a large drop in performance (e.g., using 25% of mode labels drops performance by 10%).255

Real World: In Fig. 4, we compare our method to BC-RNN (vision-based) for four high precision256

tasks: PegInsertion, MakeCoffee, MakeToast, and SortDishes. The latter three are long-horizon, and257

Fig. 4 shows cumulative success per task stage. In PegInsertion, our method substantially outper-258

forms BC-RNN at both peg grasping and precise insertion portions of the task, thanks to combining259

precise waypoints with flexible low level actions where necessary.260

For MakeCoffee, HYDRA once again beats BC-RNN and VIOLA by a substantial margin at all261

stages of the task. Although all methods perform well in grasping the K-pod, the performance of262

the baselines declines rapidly in the following phases. While BC-RNN failed to do this task in prior263

work, we see that with a bit of parameter tuning, BC-RNN is a strong baseline, achieving 20%264

performance [13]. The reported performance of VIOLA in prior work for coffee pod insertion and265

closing the lid is 60%, which matches with the performance we observe for the corresponding stage266

of our coffee task. Our task adds two more stages (picking up and placing a mug before pressing the267

button), interestingly causing the final success rate of VIOLA to drop to 20%, the same as BC-RNN.268

Using the same parameters and model size as BC-RNN, HYDRA achieves 80% final success at this269

task with the same underlying dataset.270

For MakeToast and SortDishes, HYDRA performs better on all stages of the task as compared to271

BC-RNN. We omit VIOLA in these tasks since, as seen in the coffee task, BC-RNN is a competitive272

baseline. Both tasks consists of several bottleneck stages where performance drops sharply. In273

MakeToast, for picking up bread, the spatula must slide underneath a bread slice – HYDRA passes274

this stage 70% of the time, beating BC-RNN by 30%. The last stage (turning the toaster on) is275

particularly challenging for all methods, but HYDRA completes it 20% of the time compared to276

0% for BC-RNN. In SortDishes, the final hang-mug stage similarly requires high precision with277

randomized objects. Not including the challenging last stage, HYDRA beats BC-RNN by 40% on278

this task. See Appendix D.1 for rollouts of each task for each model.279
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Figure 4: Real Results for HYDRA vs. BC, BC-RNN, and VIOLA. The x-axis denotes each stage (right-most
value is the final success rate). Top Left: HYDRA vs. BC-RNN on the real PegInsertion task for 50 demos
under 32 rollouts across 4 different nuts. This task requires very precise grasping and insertion of multiple types
of nuts, which our method does with high success. While baseline is unable to perform insertion, HYDRA gets
41% success. Top Right: MakeCoffee long-horizon task for 100 demos under 10 rollouts. Our method beats
baseline by 60%. Bottom Left: MakeToast long-horizon task for 100 demos under 10 rollouts. While both
methods struggle to turn the toaster on, HYDRA is able to reach 50% success for 6/7 stages compared to 10%
for baseline. Bottom Right: SortDishes for 100 demos under 10 rollouts. Waypoints in HYDRA precisely
capture the diverse poses in this task, beating BC-RNN by 40% and 20% for the last two stages.

We observe that the performance gain for HYDRA in our real world experiments is notably higher280

than in simulation. We hypothesize this is due to (1) higher variance in action playback on the281

real robot setup, which HYDRA mitigates during sparse periods using the closed-loop waypoint282

controller, and (2) increased potential for compounding errors in longer tasks. Overall, HYDRA is283

well-suited to long horizon tasks even with many high-precision bottleneck stages, due to its ability284

to switch between waypoints and dense actions and its ability to increase action consistency offline.285

We also observed that in our real world tasks, HYDRA exhibits emergent retrying behavior, often286

re-servoing to a consistent and in-distribution waypoint to retry a failed dense period.287

6 Discussion288

Summary: In this work, we propose HYDRA, which uses a flexible action abstraction to reduce289

compounding errors, and improves action consistency while maintaining the state diversity present290

in uncurated human demonstrations. HYDRA learns to dynamically switch between following way-291

points and taking low level actions with a small amount of added mode label supervision that can be292

provided either online or offline. HYDRA substantially outperforms baselines on three simulation293

tasks and four real world tasks that involve long horizon manipulation with many bottleneck states.294

Limitations & Future Work: While only a minor amount of added supervision, HYDRA relies on295

having expert-collected mode labels. We show that mode labels can be learned from much less data296

in Appendix D.3, but future work might consider using unsupervised methods for mode labeling,297

e.g., skill segmentation [37] or automatically extracting “linear” portions of a demonstration. We298

also hypothesize multi-task datasets can help learn a general mode-predictor that can be fine-tuned299

or deployed zero-shot on novel tasks. Furthermore, when mode labels are collected online, mode300

labeling can add a mental load for the demonstrator and might also influence the quality of the data301

on its own. Future work might conduct more extensive user studies to better understand the effect302

of providing mode labels for both the demonstrator and the final learning performance.303

Despite these limitations, HYDRA is a simple and easy-to-implement method, and it is exciting that304

it shows substantial improvement over state-of-the-art imitation learning techniques and significant305

promise in solving challenging manipulation tasks in the real world.306
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We provide a broader discussion of our method in this appendix. In Appendix A we list a set of417

motivating questions that may arise during reading the main text of this work and provide our re-418

sponse with links to additional details in corresponding sections in the Appendix. In Appendix B we419

discuss how to collect mode labels, and considerations for how to define waypoint and dense seg-420

ments. In Appendix C, we outline training procedures, model architectures, and hyperparameters.421

In Appendix D, we provide ablation experiments for our method, including sensitivity to mode la-422

bels, learning mode labels from less data, ablations to γ, and robustness of HYDRA to added system423

noise.424

A Motivating Questions425

Intuitively, why does HYDRA help improve BC? Humans demonstrate manipulation tasks at an426

abstraction level that is different from how the robot interprets the data. A BC agent interprets the427

data literally as taking a specific action at an exact state while the human is noisely reaching for an428

object. At the high level, HYDRA improves BC by realigning the task abstraction of the robot to429

the human demonstrator during waypoint mode of the task. Concretely, HYDRA curates the dataset430

in a way that improves action consistency and optimality without reducing state diversity and hence431

allowing the learned policy to stay closer in distribution at test time.432

What’s the relationship of HYDRA with works in hindsight relabeling? Hindsight relabel-433

ing [38] is the idea of relabeling past experiences of goal-reaching trajectories with the final state it434

reaches to reuse any sub-optimal data (especially for reinforcement learning settings). Recent work435

of Zhang and Stadie [39] draws the connection between goal-conditioned imitation learning and436

hindsight relabeling from a divergence-minimization perspective. The current implementation of437

HYDRA operates in single-task imitation learning setting, and therefore is only remotely related to438

the idea in hindsight relabeling. From this perspective, one can think of HYDRA as effectively re-439

ducing divergence of the dataset’s action distribution by relabeling actions for the waypoint periods440

of the trajectory.441

Does online mode labeling change demonstrator behavior? We explain the online mode labeling442

process in Appendix B. We acknowledge that asking the demonstrator to provide online mode label-443

ing adds additional cognitive load during demonstrating the task, and at the same time may change444

their demonstration behavior. In practice, asking the demonstrator to provide the two mode labels445

can communicate the structure the robot leverages to learn tasks and may in turn allow the human446

to provide better demonstrations (such as consistent waypoints etc.). However, we leave this user447

study to future work.448

How sensitive is HYDRA to mode labeling? In our experiments, we (experts in this task) provided449

the mode labels for different tasks. We found HYDRA to be robust to the labeling strategies across450

the two labelers. For simulated environments, we use existing datasets and labeled the modes using451

an interface that shows the robot view of the task and the human annotator marks whether a frame is452

waypoint or dense mode. For real robot tasks, the human demonstrator provides the mode labels as453

they provide the demonstration using a button on the teleoperation controller. We provide guidelines454

for how to perform mode labeling in Appendix B.455

B Labeling Modes in HYDRA456

B.1 Providing Mode Labels457

The primary assumption made in HYDRA is the availability of mode labels for sparse and dense458

periods. Here we provide a discussion of how mode labels can be collected via a simple binary459

“click” interface, either online (during demonstration collection) or offline (after collection). In460

either case, we can label dense periods and exact waypoints using a single binary “click” variable461

via an external button: to label a waypoint at the end of a sparse period, we provide a single click462

at the waypoint state; to label a dense period, we sustain the click until the end of the dense period463

(see left image in Fig. 5). Once clicks are labeled, we demarcate periods in between clicks as sparse464

modes, and periods with sustained clicks as dense modes (see right image in Fig. 5).465
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Figure 5: Mode labeling example for peg-insertion task. For each demo a human labels binary click signals
at each time step (labeled online or offline) to segment trajectories into arbitrary sequences of sparse waypoint
phases and dense action phases. Left: Uncurated demo, with single clicks and sustained clicks shown. Right:
Relabeled demo, with waypoint and dense segments overlayed in green and orange, respectively. We also
relabel actions for the states in sparse segments with the optimal waypoint reaching action shown in white. For
sparse segments, the waypoint head of HYDRA is trained to output the final waypoint at each state along the
trajectory.

With the trajectories segmented into sparse and dense modes, we can extract the desired future466

waypoint wt for each ot: if mt = 0 (sparse), the future waypoint is the next labeled “single click”467

proprioceptive state wt = pt′ where t′ > t (for example, states ot with t1 ≤ t < t2 in Fig. 5 will use468

wt = pt2 ). But if mt = 1 (dense), the waypoint is the next proprioceptive state wt = pt+1. Thus we469

construct a dataset of D̂ of (ot, at, wt,mt) tuples. Now the policy has full supervision to learn both470

the action and waypoint as well as the mode of operation. In Algorithm 1, we outline this process of471

turning a click-labeled dataset into per-step waypoints and mode labels.472

Algorithm 1 Labeling Modes
1: Given click-labeled dataset: D = {(ot, at, ct) . . . }
2: D̂ = {}
3: for all t do
4: mt = ct & (ct−1 | ct+1) ▷ Sustained click for dense
5: // Mark single click as waypoint
6: isolated = ¬ct−1 & ct & ¬ct+1

7: // Mark start of dense period as waypoint
8: start dense = ¬ct−1 & mt

9: if isolated or start dense then
10: wtp:t−1 = pt ▷ Set previous waypoints
11: tp = t ▷ start of next sparse phase
12: else if mt = 1 then
13: // During dense mode the next state is a waypoint
14: wt = pt+1

15: tp = t

16: Add (ot, at, wt,mt) to D̂
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B.2 Waypoint Controller473

For all experiments in the main text, we use a linear controller Tlinear for reaching waypoints online.474

This means that when HYDRA predicts a waypoint period (m̃t = 0), it will servo closed loop until475

it reaches the predicted w̃t or times out after N seconds. In all of our experiments, the waypoint476

follower times out after N = 5 seconds if it has not reached the waypoint.477

For this closed loop servoing during test time, the policy will still be called, but its outputs will478

be ignored. This is important for recurrent models specifically (e.g., Dense Net), since the hidden479

state for the policy should be updated similarly to how it was trained (on all states, even during480

the sparse period). While this mitigates the changes in the hidden state, this might still induce a481

different hidden state than was produced offline, since the human policy followed a non-optimal482

path to reach waypoint w from state st, as compared to the optimal online trajectory generated by483

T. For example, if the demonstrator follows an arc-like trajectory to pick up a coffee pod and marks484

the waypoint right before picking up the coffee pod, then online the policy with Tlinear will servo485

to that waypoint directly; the hidden state for these two paths will likely be different. This problem486

is difficult to observe in practice, and did not empirically show up in practice (as evidenced by the487

improved performance of our method compared to baselines).488

In theory, one could bypass this issue by “skipping” the hidden state of the policy over entire sparse489

segments during training. Then during test time, if the policy outputs m̃t = 0, the policy would not490

be called again until reaching the output wt. However, this requires loading entire sparse segments491

and more in the training batches, which is computationally expensive and less simple then loading492

batches of fixed horizon as is commonly done. We leave a broader analysis of the hidden state493

problem for future work.494

Additionally, we experimented with several controller gains and did not notice any effect on perfor-495

mance. Therefore we choose a fast controller to reach waypoints. These gains are constant for all496

experiments.497

B.3 Mode Labeling Sensitivity498

In our experiments, we noticed that mode labeling was quite robust to different labeling strategies499

provided that the labeling strategy satisfies the following guidelines.500

Waypoint Following Behaviors: Waypoint following behaviors should be labeled for free-space501

motions in the environment, when the robot is “in transit” (e.g., reaching). As described in Sec-502

tion 4.1, a key consideration for mode labeling is making sure labels for sparse periods are compat-503

ible with the waypoint controller T. For example, if we are following a linear controller, waypoint504

segments should be reproducible with straight line segments from any start state along the waypoint505

segment. For a given (mt, wt, st), then if mt = 0, we should be able to reach waypoint wt from st506

with T (i.e. without timing out). As mentioned in the main text, if T includes collision avoidance as507

part of the controller, then we no longer have any requirements on waypoint following behaviors.508

Dense Object Interaction: Dense periods should include (but is not limited to) all object interac-509

tions in the scene where “collision” with the scene is necessary (e.g., grasping a coffee pod, inserting510

the coffee pod into the coffee machine, picking up toast with a spatula). Humans excel at identify-511

ing these types of interactions, so these segments are quite easy to label. The exact amount of time512

“padded” onto these dense periods did not seem to affect learning in our experiments. Note that if513

each entire demo is treated as a dense period, our algorithm reduces to BC.514

Labeling Strategy Consistency: The final consideration is for the consistency of the mode labeling515

strategy between different demonstrations. Variation in the exact boundaries / choices for waypoints516

and dense segments is inevitable with human labeling. While the effects of certain types of variation517

can be quite difficult to quantify in general, we believe that is important to minimize this variation518

without adding additional burden on the user. In our experiments, for each task and dataset, we519

have only one user provide the mode labels, according to a single strategy. For example, in the520

NutAssemblySquare task, where to goal is to insert a square nut onto a peg, a user might define the521

following strategy:522
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1. Reach waypoint above the square nut (sparse)523

2. Go down, grasp, pick up (dense)524

3. Move the nut up (sparse)525

4. Move the nut above the insertion point (sparse)526

5. precisely insert the nut on the peg (dense)527

In general our method is quite robust to variations within a single mode labeling strategy (for a528

single labeler), and we do no additional post-processing on mode labels or waypoints in any of our529

experiments.530

B.4 Training on Mode Labels531

With labeled modes and waypoints, HYDRA learns to predict the mode, the waypoint, and the low-532

level action at every time step according to the loss in Eqn. 4. However, due to training a higher533

dimensional action space (e.g. for robot poses: |A| = 7 + 7 + 1) with a supervised objective, over-534

fitting can be a key concern during training. For all vision-based experiments, we perform random535

cropping to 90% the image size. However, there are several interesting mode-specific augmentations536

that can be done using mode labels and waypoints to mitigate this problem:537

Mode Smoothing: While the simple binary cross entropy mode loss in Eqn. 3 suffices for learning538

to predict modes, sometimes the hard boundary between segments can lead to mode oscillation or539

cycling when evaluating at test time. For example, model might predict a dense mode, then predict540

a sparse mode at the next step that brings it back to the previous state, and repeat. In these cases541

(which are rare in practice) it can be beneficial to smooth the mode labels to extract continuous542

probabilities for the mode label at each step: p(τm) = convolve(τm, [ 1n , ...
1
n ]), where n is the kernel543

size. This yields the following loss:544

Lm(θ) = −E(o,a,w,m)∈D̂

[
p(m) log πM

θ (m = 1|o) + (1− p(m)) log πM
θ (m = 0|o)

]
(5)

With this smoothing of the mode labels, we are effectively removing the hard boundary between545

sparse and dense periods, which can help generalization for the mode prediction head of HYDRA546

at test time.547

Waypoint Period Augmentation: It is common in the literature to add small amounts of proprio-548

ceptive state noise (increasing state diversity) to demonstrations. However, during object interaction549

(i.e. dense periods), this noise can make policy learning more difficult since minor variations in550

the state can have large changes in the action space. However, with knowledge of sparse and dense551

modes in HYDRA, we could add diverse state augmentations to the proprioceptive state during only552

the sparse periods. This waypoint period augmentation can help reduce overfitting in SparseNet,553

since we will learn to reach the same waypoint (action) from many different robot poses (state).554

Both mode smoothing and waypoint augmentation, while not utilized in our experiments, illustrate555

the potential for new augmentation strategies that arise with access to mode labels.556

C Model Architectures & Training557

To train HYDRA, we use a similar procedure as in prior work [19, 14]. For each input of shape558

D1×. . . DN , we load sequential batches of size B×H×D1×. . . DN , where H is the horizon length.559

Next we outline the network design for HYDRA, and hyperparameters used in each environment.560

C.1 Network Design561

As described in Section 4, HYDRA consists of SparseNet, which predicts the waypoint trajectory562

τw, and DenseNet, which predicts the mode trajectory τm and low level action trajectory τa. Both563

networks condition on the same input observation space (proprioceptive state trajectory τsp and564

environment state τse ). For vision based experiments, sp consists of both wrist mounted and external565

camera observations. Each image is encoded via a ResNet18 architecture encoder (two encoders,566

Eext
θ , Ewrist

θ , with separate parameters) which is trained end-to-end. Next, the image encodings are567

concatenated along with the proprioceptive trajectory τsp .568
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Environment Method # Demos B H lr γ βm |i| |D| |S| |πA
θ | |πM

θ | GMM

NutAssemblySquare
BC 200 256 – 1e-4 – – – 400 – – – 0

BC-RNN 200 256 10 1e-4 – – – 400 – – – 0
HYDRA 200 256 10 1e-4 0.5 0.01 – 400 200 200 200 0

ToolHang
BC 200 256 – 1e-4 – – – 400 – – – 5

BC-RNN 200 256 10 1e-4 – – – 1000 – – – 5
HYDRA 200 256 20 1e-4 0.5 0.1 – 1000 400 400 400 0

KitchenEnv
BC-RNN 100 16 10 1e-4 – – 64 1000 – – – 5
HYDRA 100 16 10 1e-4 0.5 0.01 64 1000 400 400 400 5

PegInsertion
BC-RNN 75 8 10 1e-4 – – 64 1000 – – – 0
HYDRA 75 8 10 1e-4 0.5 0.01 64 1000 1000 1000 1000 0

MakeCoffee
BC-RNN 100 8 10 1e-4 – – 64 1000 – – – 0
HYDRA 100 8 10 1e-4 0.5 0.01 64 1000 1000 1000 1000 0

MakeToast
BC-RNN 80 8 10 1e-4 – – 64 1000 – – – 0
HYDRA 80 8 10 1e-4 0.5 0.01 64 1000 1000 1000 1000 0

Table 1: Hyperparameters for each environment, from left to right: B is batch size, H is the horizon length
for training, lr is the learning rate, γ is the per time step weighting of the current mode, βm is the weighting
of the mode loss, |i| is the image encoding size (for each image), |D| is the hidden-size for recurrent dense
networks (DenseNet, BC-RNN) or the MLP width (BC), |S| is the width of the SparseNet MLP (3 layers),
|πA

θ | is the width of the action head (2 layers), |πM
θ | is the width of the mode head (2 layers), and finally GMM

is the number of Gaussian mixtures (or 0 if deterministic) used for the dense action space. The top 3 rows
are sim environments, where the first two are state only. The bottom three rows are vision-based real-world
experiments. Hyperparameters stay mostly constant for HYDRA between experiments, with larger policy sizes
for harder tasks. In almost all cases, BC-RNN, BC, and HYDRA share the same hyperparameters.

Algorithm 2 Training HYDRA
1: Given N (number of training steps)
2: Given mode-labeled dataset: D̂ = {(τo, τa, τw, τm) . . . }
3: Networks Eext

θ , Ewrist
θ , πW

θ , πA
θ , πM

θ
4: for i in range(N ) do
5: τo, τa, τw, τm ∼ D̂ ▷ Load (B ×H × . . . )
6: τi = Ewrist

θ (τo)⊕ Eext
θ (τo)⊕ τsp ▷ Encode

7: τw = πW
θ (τi) ▷ waypoint (SparseNet)

8: τm = πM
θ (τe) ▷ mode (DenseNet)

9: τa = πA
θ (τe) ▷ action (DenseNet)

10: Compute L(θ) in Eqn. 4 and update θ

C.2 Model & Training Details569

Visual encoders use a ResNet-18 architecture trained end-to-end on both external images and end-570

effector images. We train all methods for 500k training steps over 3 random seeds, and like prior571

work we report the average over the best performing checkpoints per run [19]. We found that BC572

policy performance fluctuates significantly even for neighboring checkpoints. However, unlike prior573

work we use a fixed evaluation set of 50 episodes in simulation to choose the best checkpoint. This574

reduces the likelihood of choosing the checkpoint that was evaluated on favorable environments575

(i.e., rejection sampling of harder environment initialization).576

For all experiments, our method uses an RNN (LSTM) for Dense Net (predicting the mode and the577

dense action), and uses a separate MLP with the same inputs for the Sparse Net (predicting sparse578

waypoints), as shown in Fig. 1.579

The input embedding is then passed into SparseNet (MLP) which outputs the waypoint as a robot580

pose (position and quaternion). DenseNet can be any sequential model (RNN, Transformer, etc) that581

produces some temporal embedding τe (RNN in our case). This architecture is shown in Fig. 6, and582

the training cycle is shown in Algorithm 2.583
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Figure 6: Specific instantiation of HYDRA for vision based experiments.

C.3 Evaluation Details584

During evaluation (see Algorithm 3), the policy chooses the mode using m̃t. If m̃t = 0, the585

model will servo in a closed-loop fashion to the predicted waypoint w̃t (Line 7) using controller586

T (Line 10). The policy is queried at every step to continually update the policy hidden state, but587

importantly its outputs are ignored until we reach the waypoint to avoid action prediction errors.588

(Line 4). If m̃t = 1, the model will execute one step using the predicted dense action ãt (Line 14).

Algorithm 3 Test Time Execution
1: Given env, π(m, a,w|o), initial state o0, controller T
2: t = 0, w = None
3: while not done do
4: m̃t, ãt, w̃t ∼ π(·|ot) ▷ Sample policy
5: // Check for new sparse mode
6: if w is not set and m̃t = 0 then
7: w = w̃t ▷ Set a new waypoint
8: // Compute the waypoint-optimal action (sparse)
9: if w is set but not reached and not timed-out then

10: ãt ← T(ot, w) ▷ Compute waypoint-optimal action
11: else
12: w = None ▷ Unset waypoint if reached
13: // Step the environment
14: ot+1 = env.step(ãt)
15: t = t+ 1

589

C.4 HYDRA Hyperparameters590

The hyperparameters used in the main text for all six environments are shown in Table 1, for BC,591

BC-RNN, and HYDRA. Hyperparameters stay mostly constant for HYDRA across all of the ex-592

periments, with larger policy sizes for harder tasks. Additionally, in almost all cases, BC-RNN,593

BC, and HYDRA share the same hyperparameters where possible. In the real world experiments,594

hyperparameters are exactly the same both across methods and across environments.595

D Additional Results & Analysis596

In this section we show rollouts of our method and baselines, and then perform ablations of our597

method and analyze the results, including mode labeling sensitivity, mode label learning from less598

data, choices in action space design, different loss weightings, and robustness experiments. All599

ablations are performed on the NutAssemblySquare task unless otherwise stated.600

D.1 Rollouts for Real Environments601

Fig. 7 shows example rollouts from the uncurated demonstration, the learned BC-RNN policy, and602

HYDRA. Qualitatively, in the top row of Fig. 7 we see that HYDRA produces more consistent and603
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Figure 7: MakeCoffee (top) and MakeToast (bottom) rollouts, with the demos (left), HYDRA rollouts (middle),
and BC-RNN rollouts (right). Our method produces more consistent and optimal actions compared to both
BC-RNN and the demonstrations, and thus is able to stay within the narrow success “band” of the state dis-
tribution. BC-RNN has many sub-optimal behaviors, leading to less completed trajectories in middle column.
The demonstrations for MakeToast are even noisier than those in MakeCoffee, leading to even more notice-
able distribution shift for BC-RNN in the MakeToast task. In contrast, HYDRA curates the demonstrations in
MakeToast using sparse and dense periods to follow more consistent paths, thus leading to higher success.

optimal trajectories at evaluation time that help the policy to stay within the narrow “band” of the604

successful state distribution at test time, thus improving performance.605

For the long horizon MakeToast task, the performance of HYDRA is much better than BC-RNN,606

but lower overall than in MakeCoffee. We hypothesize that the difference between this task and607

MakeCoffee is primarily in the consistency of demonstrated actions (see demonstration rollouts in608

Fig. 7), with significant variation in the behaviors for nearby states especially during dense periods.609

This leads to BC-RNN having highly noisy and sub-optimal actions, which manifest quite notice-610

ably in Fig. 7. However, HYDRA yields much more consistent and optimal motions, reducing the611

distribution-shift problem.612

D.2 Mode Sensitivity613

Next, we consider the sensitivity of HYDRA to mode labels, specifically in terms of the number of614

labeled waypoints in each episode. In Table 2, we ablate the number of waypoints by introducing N615

intermediate waypoints in every sparse segment, for N = 1 and N = 2. Since there are at least 3616

sparse segments labeled in each demo in NutAssemblySquare, this corresponds to adding at least 3 or617

6 more waypoints to each demonstration, respectively. We see that performance drops are relatively618

minor in both cases, showing that HYDRA is robust to different waypoint choices. We hypothesize619

that the reason for the minor performance change when adding more waypoints is that SparseNet620

must learn a more complex waypoint space that is more multi-modal.

Base Add-1 Add-2
90.0 86 80.0

Table 2: Success rates for HYDRA when artificially more waypoints are added to sparse periods. Adding
intermediate waypoints to sparse segments has only a minor effect on performance despite the increase in
complexity of the pose action space.

621
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D.3 Learning Mode Labels from Less Data622

Providing mode labels can be an additional overhead when training HYDRA. To reduce overhead,623

we might want to learn the mode labels from a few labeled examples, and use this to relabel the rest624

of the dataset. To show the promise of such an approach, we learn to predict the “click state” at625

each time step (same as in Fig. 5) using a simple RNN architecture with the same parameters as the626

model used for training. This model outputs two logits, one for the mode itself (mt), and one that627

represents a switching criteria between segments (st). This allows us to predict not only the sparse628

or dense label, but also the waypoint label for each sparse segment. We additionally smooth both629

mt and st as is commonly done in binary sequence prediction tasks. In Table 3, we demonstrate that630

we can learn mode labels from 25% of the data with only a 10% drop in performance for the square631

task, and even less of a drop when training on 50% or 75% of the data.

90% 75% 50% 25%
92 88 86 82

Table 3: Success rates for HYDRA for NutAssemblySquare when the mode labels are learned (predicting “click
state” in Fig. 5).

632

With this preliminary evidence, we believe the sample efficiency of this mode learning procedure can633

be improved by incorporating prior data from a wide range of tasks, potentially even using labeled634

internet data. To address the multi-modality of mode labels that might occur when having multiple635

people provide labels, future work might leverage few-shot or in-context learning approaches to636

adapt to a particular style of mode labeling.637

D.4 Variations in the Action Space638

Why do we need the dense period at all? In Table 4, we compare HYDRA’s hybrid action space639

to waypoint only ablations, both with and without the test-time controller Tlinear. With Tlinear, the640

model outputs a waypoint and the robot reaches that waypoint using Tlinear without querying the641

policy (“open loop”), and without Tlinear, the model outputs a new waypoint every step which gets642

converted to action a using Tlinear (“close loop”).643

First we show results for WP-Next{N} in Table 4, where waypoints are the pose of the robot N steps644

in the future at each state (hindsight relabeling). Second, we compare to WP-Mode, which uses645

the same mode labels in HYDRA to get more intelligent future waypoints during sparse segments.646

No pose-based models see any success, which we hypothesize is due to the mismatch between647

the human action a and the online action Tlinear(o, w), which can lead to out of distribution states.648

Even in the open loop case, the waypoint only models are unable to perform the task, with failures649

involving imprecise behaviors during dense periods where exact velocities truly matter.650

We additionally compare our method with and without the use of Tlinear online (first column in651

Table 4). We see that HYDRA greatly benefits from the online waypoint controller, since Tlinear652

follows an optimal path while the policy-in-the-loop approach leaves room for compounding errors653

in both the mode, action, and waypoint prediction. This once again illustrates that HYDRA yields654

more consistent and optimal actions by employing a hybrid action abstraction.

Ours WP-Next1 WP-Next2 WP-Next5 WP-Mode
w/ T 90.0 0.0 0.0 2.0 0.0
w/o T 58.0 0.0 0.0 0.0 0.0

Table 4: Success rates for different action spaces. HYDRA uses a hybrid action space, while the the rest use a
pose-based action space. Top row: waypoints are reached using Tlinear before calling the policy again (“open”
loop). Bottom row: waypoint actions are computed at every step and instead of reaching the action, the policy
will convert a waypoint w to dense action a using Tlinear (“closed” loop). WP-Next{N} uses the proprioceptive
state N steps in the future as the waypoint for each state. WP-Mode uses the same mode labels as in HYDRA
to get the waypoints, but does not implement a hybrid action space. None of the pose-based action spaces get
reasonable performance, showing the importance of both dense actions and waypoint phases.

655

D.5 Ablating Mode Weighting (γ)656

We also show the effect of different values of γ, the weight of the current mode loss. If for a given657

step in training mode mt = 0 (sparse), then we weight the sparse waypoint loss for wt with 1−γ and658
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the dense action loss for at with γ. Lower γ thus corresponds to fitting the current mode action loss659

more than the other mode’s loss. Therefore, γ also controls the contribution of the relabeled actions660

during sparse periods to the overall objective in Eq. (2). We use γ = 0.5 in most experiments,661

meaning both action (waypoint and dense action) losses are weighted equally during training. We662

provide a sweep over γ in Table 5 for NutAssemblySquare and ToolHang, and we see that choosing663

γ only has a minor effect. Nonetheless, γ = 0.5 is consistently the best. This illustrates that (1)664

HYDRA is fairly robust to γ, (2) learning relabeled dense actions during sparse periods and sparse665

actions during dense periods is beneficial to performance – this supports the claim in Section 4.1666

that training on relabeled dense actions outperforms uncurated dense actions and667

γ = 0.1 γ = 0.2 γ = 0.4 γ = 0.5

Square 80.0 84.0 88.0 90.0
ToolHang 60.0 62.0 58.0 64.0

Table 5: Success rates for different values of γ for both NutAssemblySquare and ToolHang. For both Nu-
tAssemblySquare amd ToolHang, γ does not have a large effect. We saw even less of a change for vision based
experiments. Thus for real world experiments, we fix γ = 0.5 (no mode-specific weighting).

D.6 Transformer-based architecture668

In Table 6 we show the performance of a purely transformer-based BC implementation on the Kitch-669

enEnv task. We see in this long horizon task that BC-RNN notably outperforms BC-Transformer in670

this single-task imitation learning setting, and we found similar drops in performance for the state-671

based simulation experiments. Thus, we did not include BC-Transformer as a baseline in our real672

world experiments. We note that VIOLA, which uses a similar underlying transformer but with a673

object-centric input representation, performs notably better on KitchenEnv than BC-Transformer.674

BC-RNN BC-Transformer VIOLA HYDRA
Square 84 78.0 – 90.0
Kitchen 52.0 24.0 78.0 87.0

Table 6: Success rates for different values of BC architectures on NutAssemblySquare (state-based) and Kitch-
enEnv (vision-based). For NutAssemblySquare, we see that using BC-Transformer minorly reduces perfor-
mance. In KitchenEnv, we see a larger performance drop for BC-Transformer compared to BC-RNN. VIOLA
proves a superior transformer based architecture compared to simple BC-Transformer for KitchenEnv. In all
cases, HYDRA beats both RNN and Transformer-based baselines. All models share the same visual encoder
structure and action spaces as described in Table 1.

D.7 Robustness of HYDRA to system noise675

In Section 3 we noted the fundamental trade-off between consistent actions and state diversity. HY-676

DRA breaks this tradeoff by relabeling actions in offline data, encouraging action consistency with-677

out reducing the state coverage of the data. To show that HYDRA still benefits from the state678

diversity in human data, in Table 7 we analyze the effect of system noise on HYDRA and BC. We679

find that HYDRA only drops from 90% to 86% (4% drop) under the same system noise as used680

with BC. This shows that not only does HYDRA capture the state diversity in human data, but it is681

able to be even more robust to distribution shift than BC. We attribute this boost in part to the use682

of a closed loop waypoint controller, which consistently reaches the waypoint under system noise.683

This also supports the claim made in Section 6 that the gap in performance between HYDRA and684

baselines in real compared to simulation experiments can in part be attributed to the added system685

noise found in the real world.686

Base Noise=0.1 Noise=0.3
BC-RNN 84 76.0 60.0
HYDRA 90 92.0 86.0

Table 7: The effect of increasing system noise (columns left to right) on BC-RNN (top row) and HYDRA
(bottom row) trained on human data for NutAssemblySquare. While BC-RNN drops 24% under the max system
noise, HYDRA only drops 4%, illustrating the ability of HYDRA to capture state diversity and thus be robust
to distribution shift.
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